Diatomic metasurfaces designed for interferometric mechanisms possess significant potential for the multidimensional manipulation of electromagnetic waves,including control over amplitude,phase,frequency,and polarizat...Diatomic metasurfaces designed for interferometric mechanisms possess significant potential for the multidimensional manipulation of electromagnetic waves,including control over amplitude,phase,frequency,and polarization.Geometric phase profiles with spin-selective properties are commonly associated with wavefront modulation,allowing the implementation of conjugate strategies within orthogonal circularly polarized channels.Simultaneous control of these characteristics in a single-layered diatomic metasurface will be an apparent technological extension.Here,spin-selective modulation of terahertz(THz)beams is realized by assembling a pair of meta-atoms with birefringent effects.The distinct modulation functions arise from geometric phase profiles characterized by multiple rotational properties,which introduce independent parametric factors that elucidate their physical significance.By arranging the key parameters,the proposed design strategy can be employed to realize independent amplitude and phase manipulation.A series of THz metasurface samples with specific modulation functions are characterized,experimentally demonstrating the accuracy of on-demand manipulation.This research paves the way for all-silicon meta-optics that may have great potential in imaging,sensing and detection.展开更多
In this paper,we present a novel first-order digitalΣΔconverter tailored for digital-to-analog applications,focusing on achieving both high yield and reduced silicon estate.Our approach incorporates a substantial le...In this paper,we present a novel first-order digitalΣΔconverter tailored for digital-to-analog applications,focusing on achieving both high yield and reduced silicon estate.Our approach incorporates a substantial level of dithering noise into the input signal,strategically aimed at mitigating the spurious frequencies commonly encountered in such converters.Validation of our design is performed through simulations using a high-level simulator specialized in mixed-signal circuit analysis.The results underscore the enhanced performance of our circuit,especially in reducing spurious frequencies,highlighting its efficiency and effectiveness.The final circuit exhibits an effective number of bits of 13.展开更多
Maintaining the s-polarization state of laser beams is important to achieve high modulation depth in a laser-interference-based super-resolution structured illumination microscope(SR-SIM).However,the imperfect optical...Maintaining the s-polarization state of laser beams is important to achieve high modulation depth in a laser-interference-based super-resolution structured illumination microscope(SR-SIM).However,the imperfect optical components can depolarize the laser beams hence degenerating the modulation depth.Here,we first presented a direct measurement method designed to estimate the modulation depth more precisely by shifting illumination patterns with equal phase steps.This measurement method greatly reduces the dependence of modulation depths on the samples,and then developed a polarization optimization method to achieve high modulation depth at all orientations by actively and quantitatively compensating for the additional phase difference using a combination of waveplate and a liquid crystal variable retarder(LCVR).Experimental results demonstrate that our method can achieve illumination patterns with modulation depth higher than 0.94 at three orientations with only one LCVR voltage,which enables isotropic resolution improvement.展开更多
Designing novel two-dimensional structures and precisely modulating their second harmonic generation(SHG)attributes are key to advancing nonlinear photonic technologies.In this work,through first-principles calculatio...Designing novel two-dimensional structures and precisely modulating their second harmonic generation(SHG)attributes are key to advancing nonlinear photonic technologies.In this work,through first-principles calculations,we propose a novel tetrahedral phase of transition metal dichalcogenides(TMDs)and validate its structural feasibility in a family of compounds,i.e.,ZX_(2)(Z=Ti,Zr,Hf;X=S,Se,Te).Cohesive energy and phonon dispersion calculations further demonstrate that eight of nine possible ZX_(2)monolayers are dynamically stable.All the ZX_(2)monolayers exhibit pronounced out-of-plane SHG with nonlinear susceptibility components reaching the order of 10^(2)pm/V.Strain engineering imposes a profound influence on the SHG response of ZX_(2)monolayers by reducing symmetry and modifying nonlinear susceptibility components.The redshift and significant enhancement of the prominent peak in SHG spectra are also revealed due to strain-induced charge redistribution and band gap reduction.Intriguingly,strain-driven nonlinear optical switching effects are realized in the ZX_(2)monolayers,with a reversible switching of SHG component ordering under tensile and compressive strain.In such a case,the anisotropic SHG pattern transforms from fourfold to twofold symmetry under the strain.Our work demonstrates the efficacy of strain engineering in precisely enhancing SHG,paving the way for the integration of novel TMD structures into tunable and flexible nonlinear optical devices.展开更多
Owing to their charge-free property,magnons are highly promising for achieving dissipationless transport without Joule heating,and are thus potentially applicable to energy-efficient devices.Here,we investigate valley...Owing to their charge-free property,magnons are highly promising for achieving dissipationless transport without Joule heating,and are thus potentially applicable to energy-efficient devices.Here,we investigate valley magnons and associated valley modulations in a kagome ferromagnetic lattice with staggered exchange interaction and Dzyaloshinskii-Moriya interaction.The staggered exchange interaction breaks the spatial inversion symmetry,leading to a valley magnon Hall effect.With nonzero Dzyaloshinskii-Moriya interaction in a staggered kagome lattice,the magnon Hall effect can be observed from only one valley.Moreover,reversing the Dzyaloshinskii-Moriya interaction(D→-D)and exchanging J_(1)and J_(2)(J_(1)■J_(2))can also regulate the position of the unequal valleys.With increasing Dzyaloshinskii-Moriya interaction,a series of topological phase transitions appear when two bands come to touch and split at the valleys.The valley Hall effect and topological phase transitions observed in kagome magnon lattices can be realized in thin films of insulating ferromagnets such as Lu_(2)V_(2)O_(7),and will extend the basis for magnonics applications in the future.展开更多
Directional modulation(DM)is one of the most promising secure communication techniques.However,when the eavesdropper is co-located with the legitimate receiver,the conventional DM has the disadvantages of weak anti-sc...Directional modulation(DM)is one of the most promising secure communication techniques.However,when the eavesdropper is co-located with the legitimate receiver,the conventional DM has the disadvantages of weak anti-scanning capability,anti-deciphering capability,and low secrecy rate.In response to these problems,we propose a twodimensional multi-term weighted fractional Fourier transform aided DM scheme,in which the legitimate receiver and the transmitter use different transform terms and transform orders to encrypt and decrypt the confidential information.In order to further lower the probability of being deciphered by an eavesdropper,we use the subblock partition method to convert the one-dimensional modulated signal vector into a twodimensional signal matrix,increasing the confusion of the useful information.Numerical results demonstrate that the proposed DM scheme not only provides stronger anti-deciphering and anti-scanning capabilities but also improves the secrecy rate performance of the system.展开更多
In this paper, we investigated phase modulation-based computational ghost imaging. According to the results of numerical simulations, we found that the range of the random phase affects the quality of the reconstructe...In this paper, we investigated phase modulation-based computational ghost imaging. According to the results of numerical simulations, we found that the range of the random phase affects the quality of the reconstructed image. Besides,compared with those amplitude modulation-based computational ghost imaging schemes, introducing random phase modulation into the computational ghost imaging scheme could significantly improve the spatial resolution of the reconstructed image, and also extend the field of view.展开更多
High-entropy alloys (HEAs) usually contain more than five alloying elements. The ductility of a body-centered cubic (bcc)- type HEA typically is lower than that of their face-centered cubic (fcc) counterpart. An...High-entropy alloys (HEAs) usually contain more than five alloying elements. The ductility of a body-centered cubic (bcc)- type HEA typically is lower than that of their face-centered cubic (fcc) counterpart. And low ductility restricts engineering applications of the bcc-structured HEAs. In engineering materials, improvement in ductility usually results in deduction of mechanical strength. A method to improve both mechanical strength and ductility in a bcc-structured HEA was proposed by adding interstitial carbon. Experimental results showed that replacement of 5 at.% Cr with 5 at.% C in a bcc-structured Fe35Mn25Al15Cr10Ni15 HEA resulted in an increase in fcc phase from 0.3 to 93.7 vol.%. Strength and ductility increased at the same time. The transition of bcc-structure to fcc-structure along with a remaining small amount of bcc phase improved mechanical properties. This work indicates that interstitial carbon can be employed to modulate the fraction of constituent phases in a bcc-structured HEA to enhance engineering mechanical properties.展开更多
Recently,a Rydberg atom-based mixer was developed to measure the phase of a radio frequency(RF)field.The phase of the signal RF(SIG RF)field is down-converted directly to the phase of a beat signal created by the pres...Recently,a Rydberg atom-based mixer was developed to measure the phase of a radio frequency(RF)field.The phase of the signal RF(SIG RF)field is down-converted directly to the phase of a beat signal created by the presence of a local RF(LO RF)field.In this study,we propose that the Rydberg atom-based mixer can be converted to an all-optical phase detector by amplitude modulation(AM)of the LO RF field;that is,the phase of the SIG RF field is related to both the amplitude and phase of the beat signal.When the AM frequency of the LO RF field is the same as the frequency of the beat signal,the beat signal will further interfere with the AM of the LO RF field inside the atom,and then the amplitude of the beat signal is related to the phase of the SIG RF field.The amplitude of the beat signal and the phase of the SIG RF field show a linear relationship within the range of 0 toπ/2 when the phase of the AM is set with a differenceπ/4 from the phase of the LO RF field.The minimum phase resolution can be as small as 0.6°by optimizing the experimental conditions according to a simple theoretical model.This study will expand and contribute to the development of RF measurement devices based on Rydberg atoms.展开更多
Four-wave mixing induced by modulation instability in a single-mode fiber is analyzed from the phase-matching point of view. For the two-channel transmission, a method is proposed to select the four-wave-mixing-induce...Four-wave mixing induced by modulation instability in a single-mode fiber is analyzed from the phase-matching point of view. For the two-channel transmission, a method is proposed to select the four-wave-mixing-induced sidebands, which is based on the proper use of a continuous-wave and a pulse as light sources. We find that a mass of sidebands are generated in the modulation instability resonance region, and the power of the sideband increases with not only the peak power of the pump pulse but also the continuous-wave power which acts as a seed. The research will provide guidance for fiber communication and sensing systems using wavelength division multiplexing technology.展开更多
In this article, we use the spin coherent state transformation and the ground state variational method to theoretically calculate the ground function. In order to consider the influence of the atom-atom interaction on...In this article, we use the spin coherent state transformation and the ground state variational method to theoretically calculate the ground function. In order to consider the influence of the atom-atom interaction on the extended Dicke model's ground state properties, the mean photon number, the scaled atomic population and the average ground energy are displayed. Using the self-consistent field theory to solve the atom-atom interaction, we discover the system undergoes a first-order quantum phase transition from the normal phase to the superradiant phase, but a famous Dicke-type second-order quantum phase transition without the atom-atom interaction. Meanwhile, the atom-atom interaction makes the phase transition point shift to the lower atom-photon collective coupling strength.展开更多
For pulse Doppler radars,the widely used method for identifying second-trip echoes(STs)in the signal processing level yields significant misidentification in regions of high turbulence and severe wind shear.In the dat...For pulse Doppler radars,the widely used method for identifying second-trip echoes(STs)in the signal processing level yields significant misidentification in regions of high turbulence and severe wind shear.In the data processing level,although the novel algorithm for ST identification does not yield significant misidentification in specific regions,its overall identification performance is not ideal.Therefore,this paper proposes a hybrid method for the identification of STs using phase modulation(signal processing)and polarimetric technology(data processing).Through this approach,most of the STs are removed,whereas most of the first-trip echoes(FTs)remain untouched.Compared with the existing method using a signal quality index filter with an optimized threshold,the hybrid method exhibits superior performance(Heidke skill scores of 0.98 versus 0.88)on independent test datasets,especially in high-turbulence and severe-wind-shear regions,for which misidentification is significantly reduced.展开更多
This paper presents an equalization algorithm for continuous phase modulation (CPM) over frequency-selective channels. A specific training sequence is first embedded in each data packet. By recursive least-squares ...This paper presents an equalization algorithm for continuous phase modulation (CPM) over frequency-selective channels. A specific training sequence is first embedded in each data packet. By recursive least-squares (RLS) estimation, the channel information parameters can be acquired, and a fractionally Simulation results show that the proposed algorithm can acquire the spaced equalizer performs joint decoding and equalization. channel information parameters rapidly and accurately, and that the fractionally spaced equalizer can eliminate the intersymbol interference (ISI) effectively, and is not sensitive to timing inaccuracy, so this algorithm can be exploited for demodulation system in burst mode.展开更多
A four-level quantum dot (QD) nanostructure interacting with four fields (two weak near-infrared (NIR) pulses and two control fields) forms the well-known double-cascade configuration.We investigate the cross-phase mo...A four-level quantum dot (QD) nanostructure interacting with four fields (two weak near-infrared (NIR) pulses and two control fields) forms the well-known double-cascade configuration.We investigate the cross-phase modulation (XPM) between the two NIR pulses.The results show,in such a closed-loop scheme,that the XPM can be greatly enhanced,while the linear absorption and two-photon absorption (gain) can be efficiently depressed by tuning the relative phase among the applied fields.This protocol may have potential applications in NIR all-optical switch design and quantum information processing with the solid-state materials.展开更多
A reduced state Soft Input Soft Output (SISO) a posteriori probability algorithm for Seri-ally Concatenated Continuous Phase Modulation (SCCPM) is proposed in this paper. Based on the Reduced State Sequence Detection ...A reduced state Soft Input Soft Output (SISO) a posteriori probability algorithm for Seri-ally Concatenated Continuous Phase Modulation (SCCPM) is proposed in this paper. Based on the Reduced State Sequence Detection (RSSD),it has more general form compared with other reduced state SISO algorithms. The proposed algorithm can greatly reduce the state number,thus leads to the computation complexity reduction. It also minimizes the degradation in Euclidean distance with decision feedback in the reduced state trellis. Analysis and simulation results show that the perform-ance degradation is little with proper reduction scheme.展开更多
Modulation recognition becomes unreliable at low signal-to-noise ratio(SNR)over fading channel.A novel method is proposed to recognize the digital modulated signals with frequency and phase offsets over multi-path fad...Modulation recognition becomes unreliable at low signal-to-noise ratio(SNR)over fading channel.A novel method is proposed to recognize the digital modulated signals with frequency and phase offsets over multi-path fading channels in this paper.This method can overcome the effects of phase offset,Gaussian noise and multi-path fading.To achieve this,firstly,the characteristic parameters search is constructed based on the cyclostationarity of received signals,to overcome the phase offset,Gaussian white noise,and influence caused by multi-path fading.Then,the carrier frequency of the received signal is estimated,and the maximum characteristic parameter is searched around the integer multiple carriers and their vicinities.Finally,the modulation types of the received signal with frequency and phase offsets are classified using decision thresholds.Simulation results demonstrate that the performance of the proposed method is better than the traditional methods when SNR is over 5dB,and that the proposed method is robust to frequency and phase offsets over multipath channels.展开更多
This paper proposes a new information modulation resorting to orthogonal signal and its phase for dual-function radar communication(DFRC)systems.Focusing on the standardized linear frequency modulation(LFM)signal by a...This paper proposes a new information modulation resorting to orthogonal signal and its phase for dual-function radar communication(DFRC)systems.Focusing on the standardized linear frequency modulation(LFM)signal by additional phase,a bank of signals enjoying satisfactory autocorrelation and cross-correlation characteristics,are generated.Then,these signals map the different information as well as their phases are also modulated to increase the communication bit rate,thus yielding a series of dual-use signals.Finally,the radar detection and communication performance of dual-use signals are also provided through numerical simulation and half-physical platform verification,confirming the effectiveness of the designed signals compared with the existing design strategy.展开更多
This paper investigates the effects of walk-off among optical pulses on cross-phase modulation induced modulation instability in the normal dispersion region of an optical fibre with high-order dispersion. The results...This paper investigates the effects of walk-off among optical pulses on cross-phase modulation induced modulation instability in the normal dispersion region of an optical fibre with high-order dispersion. The results indicate that, in the case of high-order dispersion, the walk-off effect takes on new characteristics and will influence considerably the shape, position and especially the number of the spectral regions of the gain spectra of modulation instability. Not only the group-velocity mismatch, but also the difference of the third-order dispersion of two optical waves will alter the gain spectra of modulation instability but in different ways. Depending on the values of the walk-off parameters, the number of the spectral regions may increase from two to at most four, and the spectral shape and position may change too.展开更多
This letter reports the nanoscale spatial phase modulation of GaAs growth in V-grooved trenches fabricated on a Si (001) substrate by metal-organic vapor-phase epitaxy, Two hexagonal GaAs regions with high density o...This letter reports the nanoscale spatial phase modulation of GaAs growth in V-grooved trenches fabricated on a Si (001) substrate by metal-organic vapor-phase epitaxy, Two hexagonal GaAs regions with high density of stacking faults parallel to Si {111 } surfaces are observed. A strain-relieved and defect-free cubic phase GaAs was achieved above these highly defective regions. High-resolution transmission electron microscopy and fast Fourier transforms analysis were performed to characterize these regions of GaAs/Si interface. We also discussed the strain relaxation mechanism and phase structure modulation of GaAs selectively grown on this artificially manipulated surface.展开更多
基金supports from National Key Research and Development Program of China(2021YFB2800703)Sichuan Province Science and Technology Support Program(25QNJJ2419)+1 种基金National Natural Science Foundation of China(U22A2008,12404484)Laoshan Laboratory Science and Technology Innovation Project(LSKJ202200801).
文摘Diatomic metasurfaces designed for interferometric mechanisms possess significant potential for the multidimensional manipulation of electromagnetic waves,including control over amplitude,phase,frequency,and polarization.Geometric phase profiles with spin-selective properties are commonly associated with wavefront modulation,allowing the implementation of conjugate strategies within orthogonal circularly polarized channels.Simultaneous control of these characteristics in a single-layered diatomic metasurface will be an apparent technological extension.Here,spin-selective modulation of terahertz(THz)beams is realized by assembling a pair of meta-atoms with birefringent effects.The distinct modulation functions arise from geometric phase profiles characterized by multiple rotational properties,which introduce independent parametric factors that elucidate their physical significance.By arranging the key parameters,the proposed design strategy can be employed to realize independent amplitude and phase manipulation.A series of THz metasurface samples with specific modulation functions are characterized,experimentally demonstrating the accuracy of on-demand manipulation.This research paves the way for all-silicon meta-optics that may have great potential in imaging,sensing and detection.
文摘In this paper,we present a novel first-order digitalΣΔconverter tailored for digital-to-analog applications,focusing on achieving both high yield and reduced silicon estate.Our approach incorporates a substantial level of dithering noise into the input signal,strategically aimed at mitigating the spurious frequencies commonly encountered in such converters.Validation of our design is performed through simulations using a high-level simulator specialized in mixed-signal circuit analysis.The results underscore the enhanced performance of our circuit,especially in reducing spurious frequencies,highlighting its efficiency and effectiveness.The final circuit exhibits an effective number of bits of 13.
基金supported by the National Natural Science Foundation of China[Grant Nos.62205367 and 62141506]the Suzhou Basic Research Pilot Project[Grant Nos.SSD2023006 and SJC2021013]the National Key Research and Development Program of China[Grant No.2023YFF1205700].
文摘Maintaining the s-polarization state of laser beams is important to achieve high modulation depth in a laser-interference-based super-resolution structured illumination microscope(SR-SIM).However,the imperfect optical components can depolarize the laser beams hence degenerating the modulation depth.Here,we first presented a direct measurement method designed to estimate the modulation depth more precisely by shifting illumination patterns with equal phase steps.This measurement method greatly reduces the dependence of modulation depths on the samples,and then developed a polarization optimization method to achieve high modulation depth at all orientations by actively and quantitatively compensating for the additional phase difference using a combination of waveplate and a liquid crystal variable retarder(LCVR).Experimental results demonstrate that our method can achieve illumination patterns with modulation depth higher than 0.94 at three orientations with only one LCVR voltage,which enables isotropic resolution improvement.
基金supported by the National Natural Science Foundation of China(Grant Nos.12304220,12174157,12074150,and 12374174)the Natural Science Foundation of Jiangsu Province(Grant No.BK20230518)+2 种基金the China Postdoctoral Science Foundation(Grant No.2023M731383)the College Student Innovation Project(Grant No.202410299946X)the Scientific Research Project of Jiangsu University(Grant No.22A397).
文摘Designing novel two-dimensional structures and precisely modulating their second harmonic generation(SHG)attributes are key to advancing nonlinear photonic technologies.In this work,through first-principles calculations,we propose a novel tetrahedral phase of transition metal dichalcogenides(TMDs)and validate its structural feasibility in a family of compounds,i.e.,ZX_(2)(Z=Ti,Zr,Hf;X=S,Se,Te).Cohesive energy and phonon dispersion calculations further demonstrate that eight of nine possible ZX_(2)monolayers are dynamically stable.All the ZX_(2)monolayers exhibit pronounced out-of-plane SHG with nonlinear susceptibility components reaching the order of 10^(2)pm/V.Strain engineering imposes a profound influence on the SHG response of ZX_(2)monolayers by reducing symmetry and modifying nonlinear susceptibility components.The redshift and significant enhancement of the prominent peak in SHG spectra are also revealed due to strain-induced charge redistribution and band gap reduction.Intriguingly,strain-driven nonlinear optical switching effects are realized in the ZX_(2)monolayers,with a reversible switching of SHG component ordering under tensile and compressive strain.In such a case,the anisotropic SHG pattern transforms from fourfold to twofold symmetry under the strain.Our work demonstrates the efficacy of strain engineering in precisely enhancing SHG,paving the way for the integration of novel TMD structures into tunable and flexible nonlinear optical devices.
基金support from the Funding for School-level Research Projects of Yancheng Institute of Technology(Grant Nos.xjr2020038,xjr2022039,and xjr2022040)。
文摘Owing to their charge-free property,magnons are highly promising for achieving dissipationless transport without Joule heating,and are thus potentially applicable to energy-efficient devices.Here,we investigate valley magnons and associated valley modulations in a kagome ferromagnetic lattice with staggered exchange interaction and Dzyaloshinskii-Moriya interaction.The staggered exchange interaction breaks the spatial inversion symmetry,leading to a valley magnon Hall effect.With nonzero Dzyaloshinskii-Moriya interaction in a staggered kagome lattice,the magnon Hall effect can be observed from only one valley.Moreover,reversing the Dzyaloshinskii-Moriya interaction(D→-D)and exchanging J_(1)and J_(2)(J_(1)■J_(2))can also regulate the position of the unequal valleys.With increasing Dzyaloshinskii-Moriya interaction,a series of topological phase transitions appear when two bands come to touch and split at the valleys.The valley Hall effect and topological phase transitions observed in kagome magnon lattices can be realized in thin films of insulating ferromagnets such as Lu_(2)V_(2)O_(7),and will extend the basis for magnonics applications in the future.
基金supported by National Natural Science Foundation of China(No.62171445)。
文摘Directional modulation(DM)is one of the most promising secure communication techniques.However,when the eavesdropper is co-located with the legitimate receiver,the conventional DM has the disadvantages of weak anti-scanning capability,anti-deciphering capability,and low secrecy rate.In response to these problems,we propose a twodimensional multi-term weighted fractional Fourier transform aided DM scheme,in which the legitimate receiver and the transmitter use different transform terms and transform orders to encrypt and decrypt the confidential information.In order to further lower the probability of being deciphered by an eavesdropper,we use the subblock partition method to convert the one-dimensional modulated signal vector into a twodimensional signal matrix,increasing the confusion of the useful information.Numerical results demonstrate that the proposed DM scheme not only provides stronger anti-deciphering and anti-scanning capabilities but also improves the secrecy rate performance of the system.
基金Project supported by the National Natural Science Foundation of China(Grant No.11305020)the Science and Technology Research Projects of the Education Department of Jilin Province,China(Grant No.2016-354)the Science and Technology Development Project of Jilin Province,China(Grant No.20180520165JH)
文摘In this paper, we investigated phase modulation-based computational ghost imaging. According to the results of numerical simulations, we found that the range of the random phase affects the quality of the reconstructed image. Besides,compared with those amplitude modulation-based computational ghost imaging schemes, introducing random phase modulation into the computational ghost imaging scheme could significantly improve the spatial resolution of the reconstructed image, and also extend the field of view.
基金Acknowledgements This work was financially supported by the Joint Fund of Iron and Steel Research (No.U1660103) and National Natural Science Foundation of China (No. 51574162). XRD, SEM and EBSD tests were conducted in the Instrumental Analysis & Research Center at Shanghai University. The authors would like to express sincere thanks to the staff support at the Center. We thank Dr. Tyler for editing. Part of the work was undertaken in the US National High Magnetic Field Laboratory, which is supported by NSF DMR- 1157490, the State of Florida, and DOE.
文摘High-entropy alloys (HEAs) usually contain more than five alloying elements. The ductility of a body-centered cubic (bcc)- type HEA typically is lower than that of their face-centered cubic (fcc) counterpart. And low ductility restricts engineering applications of the bcc-structured HEAs. In engineering materials, improvement in ductility usually results in deduction of mechanical strength. A method to improve both mechanical strength and ductility in a bcc-structured HEA was proposed by adding interstitial carbon. Experimental results showed that replacement of 5 at.% Cr with 5 at.% C in a bcc-structured Fe35Mn25Al15Cr10Ni15 HEA resulted in an increase in fcc phase from 0.3 to 93.7 vol.%. Strength and ductility increased at the same time. The transition of bcc-structure to fcc-structure along with a remaining small amount of bcc phase improved mechanical properties. This work indicates that interstitial carbon can be employed to modulate the fraction of constituent phases in a bcc-structured HEA to enhance engineering mechanical properties.
基金Project supported by the National Key Research and Development Program of China(Grant Nos.2017YFA0304900 and 2017YFA0402300)the Beijing Natural Science Foundation(Grant No.1212014)+3 种基金the National Natural Science Foundation of China(Grant Nos.11604334,11604177,and U2031125)the Key Research Program of the Chinese Academy of Sciences(Grant No.XDPB08-3)the Open Research Fund Program of the State Key Laboratory of Low-Dimensional Quantum Physics(Grant No.KF201807)the Fundamental Research Funds for the Central Universities,and Youth Innovation Promotion Association CAS.
文摘Recently,a Rydberg atom-based mixer was developed to measure the phase of a radio frequency(RF)field.The phase of the signal RF(SIG RF)field is down-converted directly to the phase of a beat signal created by the presence of a local RF(LO RF)field.In this study,we propose that the Rydberg atom-based mixer can be converted to an all-optical phase detector by amplitude modulation(AM)of the LO RF field;that is,the phase of the SIG RF field is related to both the amplitude and phase of the beat signal.When the AM frequency of the LO RF field is the same as the frequency of the beat signal,the beat signal will further interfere with the AM of the LO RF field inside the atom,and then the amplitude of the beat signal is related to the phase of the SIG RF field.The amplitude of the beat signal and the phase of the SIG RF field show a linear relationship within the range of 0 toπ/2 when the phase of the AM is set with a differenceπ/4 from the phase of the LO RF field.The minimum phase resolution can be as small as 0.6°by optimizing the experimental conditions according to a simple theoretical model.This study will expand and contribute to the development of RF measurement devices based on Rydberg atoms.
基金Project supported by the National Natural Science Foundation of China (Grant No. 61177073)the Specialized Research Fundfor the Doctoral Program of Higher Education of China (Grant No.20104307110020)+1 种基金the Fund of Innovation of Graduate School of National University of Defense Technology, China (Grant No.B110703)the Hunan Provincial Innovation Foundation for Postgraduate, China (Grant No. CX2011B033)
文摘Four-wave mixing induced by modulation instability in a single-mode fiber is analyzed from the phase-matching point of view. For the two-channel transmission, a method is proposed to select the four-wave-mixing-induced sidebands, which is based on the proper use of a continuous-wave and a pulse as light sources. We find that a mass of sidebands are generated in the modulation instability resonance region, and the power of the sideband increases with not only the peak power of the pump pulse but also the continuous-wave power which acts as a seed. The research will provide guidance for fiber communication and sensing systems using wavelength division multiplexing technology.
基金Supported by the National Natural Science Foundation of China under Grant Nos.11275118,11404198,91430109,61505100,51502189the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi Province(STIP)under Grant No.2014102+2 种基金the Launch of the Scientific Research of Shanxi University under Grant No.011151801004the National Fundamental Fund of Personnel Training under Grant No.J1103210The Natural Science Foundation of Shanxi Province under Grant No.2015011008
文摘In this article, we use the spin coherent state transformation and the ground state variational method to theoretically calculate the ground function. In order to consider the influence of the atom-atom interaction on the extended Dicke model's ground state properties, the mean photon number, the scaled atomic population and the average ground energy are displayed. Using the self-consistent field theory to solve the atom-atom interaction, we discover the system undergoes a first-order quantum phase transition from the normal phase to the superradiant phase, but a famous Dicke-type second-order quantum phase transition without the atom-atom interaction. Meanwhile, the atom-atom interaction makes the phase transition point shift to the lower atom-photon collective coupling strength.
基金This research was supported by the National Key Research and Development Program of China(Grant Nos.2017YFC1502102,2017YFC1502103,2018YFC1506100,and 2018YFC1506102)the National Natural Science Foundation of China(Grant No.41430427).
文摘For pulse Doppler radars,the widely used method for identifying second-trip echoes(STs)in the signal processing level yields significant misidentification in regions of high turbulence and severe wind shear.In the data processing level,although the novel algorithm for ST identification does not yield significant misidentification in specific regions,its overall identification performance is not ideal.Therefore,this paper proposes a hybrid method for the identification of STs using phase modulation(signal processing)and polarimetric technology(data processing).Through this approach,most of the STs are removed,whereas most of the first-trip echoes(FTs)remain untouched.Compared with the existing method using a signal quality index filter with an optimized threshold,the hybrid method exhibits superior performance(Heidke skill scores of 0.98 versus 0.88)on independent test datasets,especially in high-turbulence and severe-wind-shear regions,for which misidentification is significantly reduced.
文摘This paper presents an equalization algorithm for continuous phase modulation (CPM) over frequency-selective channels. A specific training sequence is first embedded in each data packet. By recursive least-squares (RLS) estimation, the channel information parameters can be acquired, and a fractionally Simulation results show that the proposed algorithm can acquire the spaced equalizer performs joint decoding and equalization. channel information parameters rapidly and accurately, and that the fractionally spaced equalizer can eliminate the intersymbol interference (ISI) effectively, and is not sensitive to timing inaccuracy, so this algorithm can be exploited for demodulation system in burst mode.
基金Supported in part by the National Natural Science Foundation of China Grant Nos.10975054,60925021,11104210,and 61108016the Department of Education of China Grant No.200804870051
文摘A four-level quantum dot (QD) nanostructure interacting with four fields (two weak near-infrared (NIR) pulses and two control fields) forms the well-known double-cascade configuration.We investigate the cross-phase modulation (XPM) between the two NIR pulses.The results show,in such a closed-loop scheme,that the XPM can be greatly enhanced,while the linear absorption and two-photon absorption (gain) can be efficiently depressed by tuning the relative phase among the applied fields.This protocol may have potential applications in NIR all-optical switch design and quantum information processing with the solid-state materials.
基金Supported by NSFC & Microsoft Asia (60372048)China TRAPOYT, NSFC key project (60496316)+2 种基金863 Project (2005AA123910)RFDP (20050701007)MOE Key Project (104171).
文摘A reduced state Soft Input Soft Output (SISO) a posteriori probability algorithm for Seri-ally Concatenated Continuous Phase Modulation (SCCPM) is proposed in this paper. Based on the Reduced State Sequence Detection (RSSD),it has more general form compared with other reduced state SISO algorithms. The proposed algorithm can greatly reduce the state number,thus leads to the computation complexity reduction. It also minimizes the degradation in Euclidean distance with decision feedback in the reduced state trellis. Analysis and simulation results show that the perform-ance degradation is little with proper reduction scheme.
基金supported by the National Natural Science Foundation of China under Grant 62071364 and 62231027in part by the Key Research and Development Program of Shaanxi under Grant 2023-YBGY-249+1 种基金in part by the Key Research and Development Program of Guangxi under Grant 2022AB46002in part by the Fundamental Research Funds for the Central Universities under Grant KYFZ23001.
文摘Modulation recognition becomes unreliable at low signal-to-noise ratio(SNR)over fading channel.A novel method is proposed to recognize the digital modulated signals with frequency and phase offsets over multi-path fading channels in this paper.This method can overcome the effects of phase offset,Gaussian noise and multi-path fading.To achieve this,firstly,the characteristic parameters search is constructed based on the cyclostationarity of received signals,to overcome the phase offset,Gaussian white noise,and influence caused by multi-path fading.Then,the carrier frequency of the received signal is estimated,and the maximum characteristic parameter is searched around the integer multiple carriers and their vicinities.Finally,the modulation types of the received signal with frequency and phase offsets are classified using decision thresholds.Simulation results demonstrate that the performance of the proposed method is better than the traditional methods when SNR is over 5dB,and that the proposed method is robust to frequency and phase offsets over multipath channels.
基金This work was supported in part by the National Natural Science Foundation of China(61771109,U19B2017,61871080,61701088)the China Postdoctoral Science Foundation(2020M68147)。
文摘This paper proposes a new information modulation resorting to orthogonal signal and its phase for dual-function radar communication(DFRC)systems.Focusing on the standardized linear frequency modulation(LFM)signal by additional phase,a bank of signals enjoying satisfactory autocorrelation and cross-correlation characteristics,are generated.Then,these signals map the different information as well as their phases are also modulated to increase the communication bit rate,thus yielding a series of dual-use signals.Finally,the radar detection and communication performance of dual-use signals are also provided through numerical simulation and half-physical platform verification,confirming the effectiveness of the designed signals compared with the existing design strategy.
基金Project supported by the Fundamental Application Research Project of the Department of Science & Technology of Sichuan Province (Grant Nos 05JY029-084 and 04JY029-103), the Key Program of Natural Science Foundation of Educational Commission of Sichuan Province (Grant No 2006A124), and the Foundation of Science & Technology Development of Chengdu University of Information Technology (Grant No KYTZ20060604).
文摘This paper investigates the effects of walk-off among optical pulses on cross-phase modulation induced modulation instability in the normal dispersion region of an optical fibre with high-order dispersion. The results indicate that, in the case of high-order dispersion, the walk-off effect takes on new characteristics and will influence considerably the shape, position and especially the number of the spectral regions of the gain spectra of modulation instability. Not only the group-velocity mismatch, but also the difference of the third-order dispersion of two optical waves will alter the gain spectra of modulation instability but in different ways. Depending on the values of the walk-off parameters, the number of the spectral regions may increase from two to at most four, and the spectral shape and position may change too.
基金Project supported by the National Science and Technology Major Project of Science and Technology of China(Grant No.2011ZX02708)the National Natural Science Foundation of China(Grant No.61504137)
文摘This letter reports the nanoscale spatial phase modulation of GaAs growth in V-grooved trenches fabricated on a Si (001) substrate by metal-organic vapor-phase epitaxy, Two hexagonal GaAs regions with high density of stacking faults parallel to Si {111 } surfaces are observed. A strain-relieved and defect-free cubic phase GaAs was achieved above these highly defective regions. High-resolution transmission electron microscopy and fast Fourier transforms analysis were performed to characterize these regions of GaAs/Si interface. We also discussed the strain relaxation mechanism and phase structure modulation of GaAs selectively grown on this artificially manipulated surface.