Two new versions of accelerated first-order methods for minimizing convex composite functions are proposed. In this paper, we first present an accelerated first-order method which chooses the step size 1/ Lk to be 1/ ...Two new versions of accelerated first-order methods for minimizing convex composite functions are proposed. In this paper, we first present an accelerated first-order method which chooses the step size 1/ Lk to be 1/ L0 at the beginning of each iteration and preserves the computational simplicity of the fast iterative shrinkage-thresholding algorithm. The first proposed algorithm is a non-monotone algorithm. To avoid this behavior, we present another accelerated monotone first-order method. The proposed two accelerated first-order methods are proved to have a better convergence rate for minimizing convex composite functions. Numerical results demonstrate the efficiency of the proposed two accelerated first-order methods.展开更多
Long-term responses of floating structures pose a great concern in their design phase. Existing approaches for addressing long-term extreme responses are extremely cumbersome for adoption. This work aims to develop an...Long-term responses of floating structures pose a great concern in their design phase. Existing approaches for addressing long-term extreme responses are extremely cumbersome for adoption. This work aims to develop an approach for the long-term extreme-response analysis of floating structures. A modified gradient-based retrieval algorithm in conjunction with the inverse first-order reliability method(IFORM) is proposed to enable the use of convolution models in long-term extreme analysis of structures with an analytical formula of response amplitude operator(RAO). The proposed algorithm ensures convergence stability and iteration accuracy and exhibits a higher computational efficiency than the traditional backtracking method. However, when the RAO of general offshore structures cannot be analytically expressed, the convolutional integration method fails to function properly. A numerical discretization approach is further proposed for offshore structures in the case when the analytical expression of the RAO is not feasible. Through iterative discretization of environmental contours(ECs) and RAOs, a detailed procedure is proposed to calculate the long-term response extremes of offshore structures. The validity and accuracy of the proposed approach are tested using a floating offshore wind turbine as a numerical example. The long-term extreme heave responses of various return periods are calculated via the IFORM in conjunction with a numerical discretization approach. The environmental data corresponding to N-year structural responses are located inside the ECs, which indicates that the selection of design points directly along the ECs yields conservative design results.展开更多
This paper introduces a novel approach for parameter sensitivity evaluation and efficient slope reliability analysis based on quantile-based first-order second-moment method(QFOSM).The core principles of the QFOSM are...This paper introduces a novel approach for parameter sensitivity evaluation and efficient slope reliability analysis based on quantile-based first-order second-moment method(QFOSM).The core principles of the QFOSM are elucidated geometrically from the perspective of expanding ellipsoids.Based on this geometric interpretation,the QFOSM is further extended to estimate sensitivity indices and assess the significance of various uncertain parameters involved in the slope system.The proposed method has the advantage of computational simplicity,akin to the conventional first-order second-moment method(FOSM),while providing estimation accuracy close to that of the first-order reliability method(FORM).Its performance is demonstrated with a numerical example and three slope examples.The results show that the proposed method can efficiently estimate the slope reliability and simultaneously evaluate the sensitivity of the uncertain parameters.The proposed method does not involve complex optimization or iteration required by the FORM.It can provide a valuable complement to the existing approximate reliability analysis methods,offering rapid sensitivity evaluation and slope reliability analysis.展开更多
Nowadays,studies on the mechanism of macro-scopic nonlinear behavior of materials by accumulation of micro-scopic degradation are attracting more attention from researchers.Among numerous approaches,multiscale methods...Nowadays,studies on the mechanism of macro-scopic nonlinear behavior of materials by accumulation of micro-scopic degradation are attracting more attention from researchers.Among numerous approaches,multiscale methods have been proved as powerful and practical approaches in predicting macro-scopic material status by averaging and homogenizing physical information from associated micro-scopic mate-rial behavior.Usually in mechanical problem,the stress,consistent material modulus,and possible mate-rial state variables are quantities in interest through the upscaling process.However,the energy-related quantities are not studied much.Some initiative work has been done in the early year including but not limited to the Hill-Mandel condition in multiscale framework,which gives that the macro-scopic elastic strain energy density can be computed by volumetric averaging of that in the micro-scale.However,in the nonlinear analysis,the energy dissipation is an important quantity to measure the degradation status.In this manuscript,two typical multiscale methods,the first-order computational homogenization(FOCH)and reduced-order homogenization(ROH),are adopted to numerically analyze a fiber-reinforced compos-ite material with capability in material nonlinearity.With numerical experiments,it can be shown that energy dissipation is the same for both approaches.展开更多
Using Euler’s first-order explicit(EE)method and the peridynamic differential operator(PDDO)to discretize the time and internal crystal-size derivatives,respectively,the Euler’s first-order explicit method–peridyna...Using Euler’s first-order explicit(EE)method and the peridynamic differential operator(PDDO)to discretize the time and internal crystal-size derivatives,respectively,the Euler’s first-order explicit method–peridynamic differential operator(EE–PDDO)was obtained for solving the one-dimensional population balance equation in crystallization.Four different conditions during crystallization were studied:size-independent growth,sizedependent growth in a batch process,nucleation and size-independent growth,and nucleation and size-dependent growth in a continuous process.The high accuracy of the EE–PDDO method was confirmed by comparing it with the numerical results obtained using the second-order upwind and HR-van methods.The method is characterized by non-oscillation and high accuracy,especially in the discontinuous and sharp crystal size distribution.The stability of the EE–PDDO method,choice of weight function in the PDDO method,and optimal time step are also discussed.展开更多
A posteriori error estimate of the discontinuous-streamline diffusion method for first-order hyperbolic equations was presented, which can be used to adjust space mesh reasonably. A numerical example is given to illus...A posteriori error estimate of the discontinuous-streamline diffusion method for first-order hyperbolic equations was presented, which can be used to adjust space mesh reasonably. A numerical example is given to illustrate the accuracy and feasibility of this method.展开更多
In this paper,we present a novel first-order digitalΣΔconverter tailored for digital-to-analog applications,focusing on achieving both high yield and reduced silicon estate.Our approach incorporates a substantial le...In this paper,we present a novel first-order digitalΣΔconverter tailored for digital-to-analog applications,focusing on achieving both high yield and reduced silicon estate.Our approach incorporates a substantial level of dithering noise into the input signal,strategically aimed at mitigating the spurious frequencies commonly encountered in such converters.Validation of our design is performed through simulations using a high-level simulator specialized in mixed-signal circuit analysis.The results underscore the enhanced performance of our circuit,especially in reducing spurious frequencies,highlighting its efficiency and effectiveness.The final circuit exhibits an effective number of bits of 13.展开更多
In this paper,we consider the maximal positive definite solution of the nonlinear matrix equation.By using the idea of Algorithm 2.1 in ZHANG(2013),a new inversion-free method with a stepsize parameter is proposed to ...In this paper,we consider the maximal positive definite solution of the nonlinear matrix equation.By using the idea of Algorithm 2.1 in ZHANG(2013),a new inversion-free method with a stepsize parameter is proposed to obtain the maximal positive definite solution of nonlinear matrix equation X+A^(*)X|^(-α)A=Q with the case 0<α≤1.Based on this method,a new iterative algorithm is developed,and its convergence proof is given.Finally,two numerical examples are provided to show the effectiveness of the proposed method.展开更多
Based on 6-elements linguistic truth-valued lattice implication algebras this paper discusses 6-elements linguistic truth-valued first-order logic system. With some special properties of 6-elements linguistic truth-va...Based on 6-elements linguistic truth-valued lattice implication algebras this paper discusses 6-elements linguistic truth-valued first-order logic system. With some special properties of 6-elements linguistic truth-valued first-order logic, we discussed the satisfiable problem of 6-elements linguistic truth-valued first-order logic and proposed a resolution method of 6-elements linguistic truth-valued firstorder logic. Then the resolution algorithm is presented and an example illustrates the effectiveness of the proposed method.展开更多
This work illustrates the application of the 1<sup>st</sup>-CASAM to a paradigm heat transport model which admits exact closed-form solutions. The closed-form expressions obtained in this work for the sens...This work illustrates the application of the 1<sup>st</sup>-CASAM to a paradigm heat transport model which admits exact closed-form solutions. The closed-form expressions obtained in this work for the sensitivities of the temperature distributions within the model to the model’s parameters, internal interfaces and external boundaries can be used to benchmark commercial and production software packages for simulating heat transport. The 1<sup>st</sup>-CASAM highlights the novel finding that response sensitivities to the imprecisely known domain boundaries and interfaces can arise both from the definition of the system’s response as well as from the equations, interfaces and boundary conditions that characterize the model and its imprecisely known domain. By enabling, in premiere, the exact computations of sensitivities to interface and boundary parameters and conditions, the 1<sup>st</sup>-CASAM enables the quantification of the effects of manufacturing tolerances on the responses of physical and engineering systems.展开更多
Convex feasibility problems are widely used in image reconstruction,sparse signal recovery,and other areas.This paper is devoted to considering a class of convex feasibility problem arising from sparse signal recovery...Convex feasibility problems are widely used in image reconstruction,sparse signal recovery,and other areas.This paper is devoted to considering a class of convex feasibility problem arising from sparse signal recovery.We rst derive the projection formulas for a vector onto the feasible sets.The centralized circumcentered-reection method is designed to solve the convex feasibility problem.Some numerical experiments demonstrate the feasibility and e ectiveness of the proposed algorithm,showing superior performance compared to conventional alternating projection methods.展开更多
Marine thin plates are susceptible to welding deformation owing to their low structural stiffness.Therefore,the efficient and accurate prediction of welding deformation is essential for improving welding quality.The t...Marine thin plates are susceptible to welding deformation owing to their low structural stiffness.Therefore,the efficient and accurate prediction of welding deformation is essential for improving welding quality.The traditional thermal elastic-plastic finite element method(TEP-FEM)can accurately predict welding deformation.However,its efficiency is low because of the complex nonlinear transient computation,making it difficult to meet the needs of rapid engineering evaluation.To address this challenge,this study proposes an efficient prediction method for welding deformation in marine thin plate butt welds.This method is based on the coupled temperature gradient-thermal strain method(TG-TSM)that integrates inherent strain theory with a shell element finite element model.The proposed method first extracts the distribution pattern and characteristic value of welding-induced inherent strain through TEP-FEM analysis.This strain is then converted into the equivalent thermal load applied to the shell element model for rapid computation.The proposed method-particularly,the gradual temperature gradient-thermal strain method(GTG-TSM)-achieved improved computational efficiency and consistent precision.Furthermore,the proposed method required much less computation time than the traditional TEP-FEM.Thus,this study lays the foundation for future prediction of welding deformation in more complex marine thin plates.展开更多
In this article, we use the spin coherent state transformation and the ground state variational method to theoretically calculate the ground function. In order to consider the influence of the atom-atom interaction on...In this article, we use the spin coherent state transformation and the ground state variational method to theoretically calculate the ground function. In order to consider the influence of the atom-atom interaction on the extended Dicke model's ground state properties, the mean photon number, the scaled atomic population and the average ground energy are displayed. Using the self-consistent field theory to solve the atom-atom interaction, we discover the system undergoes a first-order quantum phase transition from the normal phase to the superradiant phase, but a famous Dicke-type second-order quantum phase transition without the atom-atom interaction. Meanwhile, the atom-atom interaction makes the phase transition point shift to the lower atom-photon collective coupling strength.展开更多
Conventional PI control encounters some problems when dealing with large lag process in the presence of parameter uncertainties.For the typical first-order process,an observerbased linear active disturbance rejection ...Conventional PI control encounters some problems when dealing with large lag process in the presence of parameter uncertainties.For the typical first-order process,an observerbased linear active disturbance rejection control(LADRC) scheme is presented to cope with the difficulties,and a reduced-order observer scheme is proposed further.Some quantitative dynamic results with regard to non-overshoot characteristics are obtained.Finally,the performance boundaries of LADRC and PI control are explicitly compared with each other,which shows that the former is more superior in most cases.展开更多
Consensus problems of first-order multi-agent systems with multiple time delays are investigated in this paper. We discuss three cases: 1) continuous, 2) discrete, and 3) a continuous system with a proportional pl...Consensus problems of first-order multi-agent systems with multiple time delays are investigated in this paper. We discuss three cases: 1) continuous, 2) discrete, and 3) a continuous system with a proportional plus derivative controller. In each case, the system contains simultaneous communication and input time delays. Supposing a dynamic multi-agent system with directed topology that contains a globally reachable node, the sufficient convergence condition of the system is discussed with respect to each of the three cases based on the generalized Nyquist criterion and the frequency-domain analysis approach, yielding conclusions that are either less conservative than or agree with previously published results. We know that the convergence condition of the system depends mainly on each agent’s input time delay and the adjacent weights but is independent of the communication delay between agents, whether the system is continuous or discrete. Finally, simulation examples are given to verify the theoretical analysis.展开更多
In order to address the complex uncertainties caused by interfacing between the fuzziness and randomness of the safety problem for embankment engineering projects, and to evaluate the safety of embankment engineering ...In order to address the complex uncertainties caused by interfacing between the fuzziness and randomness of the safety problem for embankment engineering projects, and to evaluate the safety of embankment engineering projects more scientifically and reasonably, this study presents the fuzzy logic modeling of the stochastic finite element method (SFEM) based on the harmonious finite element (HFE) technique using a first-order approximation theorem. Fuzzy mathematical models of safety repertories were introduced into the SFEM to analyze the stability of embankments and foundations in order to describe the fuzzy failure procedure for the random safety performance function. The fuzzy models were developed with membership functions with half depressed gamma distribution, half depressed normal distribution, and half depressed echelon distribution. The fuzzy stochastic mathematical algorithm was used to comprehensively study the local failure mechanism of the main embankment section near Jingnan in the Yangtze River in terms of numerical analysis for the probability integration of reliability on the random field affected by three fuzzy factors. The result shows that the middle region of the embankment is the principal zone of concentrated failure due to local fractures. There is also some local shear failure on the embankment crust. This study provides a referential method for solving complex multi-uncertainty problems in engineering safety analysis.展开更多
The use of peat for the removal of nickel from aqueous solutions has been investigated at various pH values by means of static conditions. The present research shows that the ability of Ni to bind to peat increases as...The use of peat for the removal of nickel from aqueous solutions has been investigated at various pH values by means of static conditions. The present research shows that the ability of Ni to bind to peat increases as the pH value increases. The solutions reach adsorption equilibrium rapidly. A reasonable kinetic model, first-order in nickel concentration, has been developed and fitted to the adsorption of nickel (Ⅱ) onto peat. The first-order model provides a good correlation to the experimental data. The characteristic parameters of the Langmuir isotherm were determined at various temperatures. The relationship between kinetics and equilibrium isotherms was established through the forward- and backward-rate-constants, k~ and k2, and the equilibrium constant, K.展开更多
A novel method for the determination of vitamin C(Vc) is proposed in this article. After the reaction with Folin-Ciocalteau reagent at ambient temperature, Vc solution was scanned at 750--1100 nm, and its first-orde...A novel method for the determination of vitamin C(Vc) is proposed in this article. After the reaction with Folin-Ciocalteau reagent at ambient temperature, Vc solution was scanned at 750--1100 nm, and its first-order derivative spectrum were obtained from the original spectrum. The values of derivative selected at 995 nm were used for determination. It was proved that Vc could quickly react with Folin-Ciocalteau reagent within 5 min and the product was quite stable for a long time. The conditions required for this method is not very complicated, its precision and accuracy are similar to those of the iodometric titration described in Chinese Pharmacopoeia, and the limit of detection is 0.312 μg/mL. The determination of the results of vitamin C tablet, pill, and injection demonstrates that this method has wide pharmaceutical applications.展开更多
Neutron computed tomography(NCT)is widely used as a noninvasive measurement technique in nuclear engineering,thermal hydraulics,and cultural heritage.The neutron source intensity of NCT is usually low and the scan tim...Neutron computed tomography(NCT)is widely used as a noninvasive measurement technique in nuclear engineering,thermal hydraulics,and cultural heritage.The neutron source intensity of NCT is usually low and the scan time is long,resulting in a projection image containing severe noise.To reduce the scanning time and increase the image reconstruction quality,an effective reconstruction algorithm must be selected.In CT image reconstruction,the reconstruction algorithms can be divided into three categories:analytical algorithms,iterative algorithms,and deep learning.Because the analytical algorithm requires complete projection data,it is not suitable for reconstruction in harsh environments,such as strong radia-tion,high temperature,and high pressure.Deep learning requires large amounts of data and complex models,which cannot be easily deployed,as well as has a high computational complexity and poor interpretability.Therefore,this paper proposes the OS-SART-PDTV iterative algorithm,which uses the ordered subset simultaneous algebraic reconstruction technique(OS-SART)algorithm to reconstruct the image and the first-order primal–dual algorithm to solve the total variation(PDTV),for sparse-view NCT three-dimensional reconstruction.The novel algorithm was compared with other algorithms(FBP,OS-SART-TV,OS-SART-AwTV,and OS-SART-FGPTV)by simulating the experimental data and actual neutron projection experiments.The reconstruction results demonstrate that the proposed algorithm outperforms the FBP,OS-SART-TV,OS-SART-AwTV,and OS-SART-FGPTV algorithms in terms of preserving edge structure,denoising,and suppressing artifacts.展开更多
The free vibration of functionally graded material (FGM) beams is studied based on both the classical and the first-order shear deformation beam theories. The equations of motion for the FGM beams are derived by con...The free vibration of functionally graded material (FGM) beams is studied based on both the classical and the first-order shear deformation beam theories. The equations of motion for the FGM beams are derived by considering the shear deforma- tion and the axial, transversal, rotational, and axial-rotational coupling inertia forces on the assumption that the material properties vary arbitrarily in the thickness direction. By using the numerical shooting method to solve the eigenvalue problem of the coupled ordinary differential equations with different boundary conditions, the natural frequen- cies of the FGM Timoshenko beams are obtained numerically. In a special case of the classical beam theory, a proportional transformation between the natural frequencies of the FGM and the reference homogenous beams is obtained by using the mathematical similarity between the mathematical formulations. This formula provides a simple and useful approach to evaluate the natural frequencies of the FGM beams without dealing with the tension-bending coupling problem. Approximately, this analogous transition can also be extended to predict the frequencies of the FGM Timoshenko beams. The numerical results obtained by the shooting method and those obtained by the analogous transformation are presented to show the effects of the material gradient, the slenderness ratio, and the boundary conditions on the natural frequencies in detail.展开更多
基金Sponsored by the National Natural Science Foundation of China(Grant No.11461021)the Natural Science Basic Research Plan in Shaanxi Province of China(Grant No.2017JM1014)
文摘Two new versions of accelerated first-order methods for minimizing convex composite functions are proposed. In this paper, we first present an accelerated first-order method which chooses the step size 1/ Lk to be 1/ L0 at the beginning of each iteration and preserves the computational simplicity of the fast iterative shrinkage-thresholding algorithm. The first proposed algorithm is a non-monotone algorithm. To avoid this behavior, we present another accelerated monotone first-order method. The proposed two accelerated first-order methods are proved to have a better convergence rate for minimizing convex composite functions. Numerical results demonstrate the efficiency of the proposed two accelerated first-order methods.
基金Supported by the National Natural Science Foundation of China (Grant Nos.52088102 and 51879287)National Key Research and Development Program of China (Grant No.2022YFB2602301)。
文摘Long-term responses of floating structures pose a great concern in their design phase. Existing approaches for addressing long-term extreme responses are extremely cumbersome for adoption. This work aims to develop an approach for the long-term extreme-response analysis of floating structures. A modified gradient-based retrieval algorithm in conjunction with the inverse first-order reliability method(IFORM) is proposed to enable the use of convolution models in long-term extreme analysis of structures with an analytical formula of response amplitude operator(RAO). The proposed algorithm ensures convergence stability and iteration accuracy and exhibits a higher computational efficiency than the traditional backtracking method. However, when the RAO of general offshore structures cannot be analytically expressed, the convolutional integration method fails to function properly. A numerical discretization approach is further proposed for offshore structures in the case when the analytical expression of the RAO is not feasible. Through iterative discretization of environmental contours(ECs) and RAOs, a detailed procedure is proposed to calculate the long-term response extremes of offshore structures. The validity and accuracy of the proposed approach are tested using a floating offshore wind turbine as a numerical example. The long-term extreme heave responses of various return periods are calculated via the IFORM in conjunction with a numerical discretization approach. The environmental data corresponding to N-year structural responses are located inside the ECs, which indicates that the selection of design points directly along the ECs yields conservative design results.
基金supported by the National Natural Science Foundation of China(Grant Nos.52109144,52025094 and 52222905).
文摘This paper introduces a novel approach for parameter sensitivity evaluation and efficient slope reliability analysis based on quantile-based first-order second-moment method(QFOSM).The core principles of the QFOSM are elucidated geometrically from the perspective of expanding ellipsoids.Based on this geometric interpretation,the QFOSM is further extended to estimate sensitivity indices and assess the significance of various uncertain parameters involved in the slope system.The proposed method has the advantage of computational simplicity,akin to the conventional first-order second-moment method(FOSM),while providing estimation accuracy close to that of the first-order reliability method(FORM).Its performance is demonstrated with a numerical example and three slope examples.The results show that the proposed method can efficiently estimate the slope reliability and simultaneously evaluate the sensitivity of the uncertain parameters.The proposed method does not involve complex optimization or iteration required by the FORM.It can provide a valuable complement to the existing approximate reliability analysis methods,offering rapid sensitivity evaluation and slope reliability analysis.
基金the National Natural Science Foundation of China(Grant No.11988102)is gratefully acknowledged.
文摘Nowadays,studies on the mechanism of macro-scopic nonlinear behavior of materials by accumulation of micro-scopic degradation are attracting more attention from researchers.Among numerous approaches,multiscale methods have been proved as powerful and practical approaches in predicting macro-scopic material status by averaging and homogenizing physical information from associated micro-scopic mate-rial behavior.Usually in mechanical problem,the stress,consistent material modulus,and possible mate-rial state variables are quantities in interest through the upscaling process.However,the energy-related quantities are not studied much.Some initiative work has been done in the early year including but not limited to the Hill-Mandel condition in multiscale framework,which gives that the macro-scopic elastic strain energy density can be computed by volumetric averaging of that in the micro-scale.However,in the nonlinear analysis,the energy dissipation is an important quantity to measure the degradation status.In this manuscript,two typical multiscale methods,the first-order computational homogenization(FOCH)and reduced-order homogenization(ROH),are adopted to numerically analyze a fiber-reinforced compos-ite material with capability in material nonlinearity.With numerical experiments,it can be shown that energy dissipation is the same for both approaches.
文摘Using Euler’s first-order explicit(EE)method and the peridynamic differential operator(PDDO)to discretize the time and internal crystal-size derivatives,respectively,the Euler’s first-order explicit method–peridynamic differential operator(EE–PDDO)was obtained for solving the one-dimensional population balance equation in crystallization.Four different conditions during crystallization were studied:size-independent growth,sizedependent growth in a batch process,nucleation and size-independent growth,and nucleation and size-dependent growth in a continuous process.The high accuracy of the EE–PDDO method was confirmed by comparing it with the numerical results obtained using the second-order upwind and HR-van methods.The method is characterized by non-oscillation and high accuracy,especially in the discontinuous and sharp crystal size distribution.The stability of the EE–PDDO method,choice of weight function in the PDDO method,and optimal time step are also discussed.
文摘A posteriori error estimate of the discontinuous-streamline diffusion method for first-order hyperbolic equations was presented, which can be used to adjust space mesh reasonably. A numerical example is given to illustrate the accuracy and feasibility of this method.
文摘In this paper,we present a novel first-order digitalΣΔconverter tailored for digital-to-analog applications,focusing on achieving both high yield and reduced silicon estate.Our approach incorporates a substantial level of dithering noise into the input signal,strategically aimed at mitigating the spurious frequencies commonly encountered in such converters.Validation of our design is performed through simulations using a high-level simulator specialized in mixed-signal circuit analysis.The results underscore the enhanced performance of our circuit,especially in reducing spurious frequencies,highlighting its efficiency and effectiveness.The final circuit exhibits an effective number of bits of 13.
基金Supported in part by Natural Science Foundation of Guangxi(2023GXNSFAA026246)in part by the Central Government's Guide to Local Science and Technology Development Fund(GuikeZY23055044)in part by the National Natural Science Foundation of China(62363003)。
文摘In this paper,we consider the maximal positive definite solution of the nonlinear matrix equation.By using the idea of Algorithm 2.1 in ZHANG(2013),a new inversion-free method with a stepsize parameter is proposed to obtain the maximal positive definite solution of nonlinear matrix equation X+A^(*)X|^(-α)A=Q with the case 0<α≤1.Based on this method,a new iterative algorithm is developed,and its convergence proof is given.Finally,two numerical examples are provided to show the effectiveness of the proposed method.
基金This work is partly supported by National Nature Science Foundation of China (Grant No.61105059,61175055,61173100), International Cooperation and Exchange of the National Natural Science Foundation of China (Grant No.61210306079), Sichuan Key Technology Research and Development Program (Grant No.2011FZ0051), Radio Administration Bureau of MIIT of China (Grant No.[2011]146), China Institution of Communications (Grant No.[2011]051), and Sichuan Key Laboratory of Intelligent Network Information Processing (Grant No.SGXZD1002-10),Liaoning Excellent Talents in University (LJQ2011116).
文摘Based on 6-elements linguistic truth-valued lattice implication algebras this paper discusses 6-elements linguistic truth-valued first-order logic system. With some special properties of 6-elements linguistic truth-valued first-order logic, we discussed the satisfiable problem of 6-elements linguistic truth-valued first-order logic and proposed a resolution method of 6-elements linguistic truth-valued firstorder logic. Then the resolution algorithm is presented and an example illustrates the effectiveness of the proposed method.
文摘This work illustrates the application of the 1<sup>st</sup>-CASAM to a paradigm heat transport model which admits exact closed-form solutions. The closed-form expressions obtained in this work for the sensitivities of the temperature distributions within the model to the model’s parameters, internal interfaces and external boundaries can be used to benchmark commercial and production software packages for simulating heat transport. The 1<sup>st</sup>-CASAM highlights the novel finding that response sensitivities to the imprecisely known domain boundaries and interfaces can arise both from the definition of the system’s response as well as from the equations, interfaces and boundary conditions that characterize the model and its imprecisely known domain. By enabling, in premiere, the exact computations of sensitivities to interface and boundary parameters and conditions, the 1<sup>st</sup>-CASAM enables the quantification of the effects of manufacturing tolerances on the responses of physical and engineering systems.
基金Supported by the Natural Science Foundation of Guangxi Province(Grant Nos.2023GXNSFAA026067,2024GXN SFAA010521)the National Natural Science Foundation of China(Nos.12361079,12201149,12261026).
文摘Convex feasibility problems are widely used in image reconstruction,sparse signal recovery,and other areas.This paper is devoted to considering a class of convex feasibility problem arising from sparse signal recovery.We rst derive the projection formulas for a vector onto the feasible sets.The centralized circumcentered-reection method is designed to solve the convex feasibility problem.Some numerical experiments demonstrate the feasibility and e ectiveness of the proposed algorithm,showing superior performance compared to conventional alternating projection methods.
基金Supported by the National Natural Science Foundation of China under Grant No.51975138the High-Tech Ship Scientific Research Project from the Ministry of Industry and Information Technology under Grant No.CJ05N20the National Defense Basic Research Project under Grant No.JCKY2023604C006.
文摘Marine thin plates are susceptible to welding deformation owing to their low structural stiffness.Therefore,the efficient and accurate prediction of welding deformation is essential for improving welding quality.The traditional thermal elastic-plastic finite element method(TEP-FEM)can accurately predict welding deformation.However,its efficiency is low because of the complex nonlinear transient computation,making it difficult to meet the needs of rapid engineering evaluation.To address this challenge,this study proposes an efficient prediction method for welding deformation in marine thin plate butt welds.This method is based on the coupled temperature gradient-thermal strain method(TG-TSM)that integrates inherent strain theory with a shell element finite element model.The proposed method first extracts the distribution pattern and characteristic value of welding-induced inherent strain through TEP-FEM analysis.This strain is then converted into the equivalent thermal load applied to the shell element model for rapid computation.The proposed method-particularly,the gradual temperature gradient-thermal strain method(GTG-TSM)-achieved improved computational efficiency and consistent precision.Furthermore,the proposed method required much less computation time than the traditional TEP-FEM.Thus,this study lays the foundation for future prediction of welding deformation in more complex marine thin plates.
基金Supported by the National Natural Science Foundation of China under Grant Nos.11275118,11404198,91430109,61505100,51502189the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi Province(STIP)under Grant No.2014102+2 种基金the Launch of the Scientific Research of Shanxi University under Grant No.011151801004the National Fundamental Fund of Personnel Training under Grant No.J1103210The Natural Science Foundation of Shanxi Province under Grant No.2015011008
文摘In this article, we use the spin coherent state transformation and the ground state variational method to theoretically calculate the ground function. In order to consider the influence of the atom-atom interaction on the extended Dicke model's ground state properties, the mean photon number, the scaled atomic population and the average ground energy are displayed. Using the self-consistent field theory to solve the atom-atom interaction, we discover the system undergoes a first-order quantum phase transition from the normal phase to the superradiant phase, but a famous Dicke-type second-order quantum phase transition without the atom-atom interaction. Meanwhile, the atom-atom interaction makes the phase transition point shift to the lower atom-photon collective coupling strength.
基金supported by the National Natural Science Foundation of China(60774088)the National High Technology Research and Development Program of China(863 Program)(2009AA04Z132)the Specialized Research Fund for the Doctoral Program of Higher Education of China(20090031110029)
文摘Conventional PI control encounters some problems when dealing with large lag process in the presence of parameter uncertainties.For the typical first-order process,an observerbased linear active disturbance rejection control(LADRC) scheme is presented to cope with the difficulties,and a reduced-order observer scheme is proposed further.Some quantitative dynamic results with regard to non-overshoot characteristics are obtained.Finally,the performance boundaries of LADRC and PI control are explicitly compared with each other,which shows that the former is more superior in most cases.
基金Project supported in part by the National Natural Science Foundation of China (Grant Nos. 60973114 and 61170249)in part by the Natural Science Foundation of CQCSTC (Grant Nos. 2009BA2024 and cstc2011jjA1320)in part by the State Key Laboratory of Power Transmission Equipment & System Securityand New Technology, Chongqing University (Grant No. 2007DA10512711206)
文摘Consensus problems of first-order multi-agent systems with multiple time delays are investigated in this paper. We discuss three cases: 1) continuous, 2) discrete, and 3) a continuous system with a proportional plus derivative controller. In each case, the system contains simultaneous communication and input time delays. Supposing a dynamic multi-agent system with directed topology that contains a globally reachable node, the sufficient convergence condition of the system is discussed with respect to each of the three cases based on the generalized Nyquist criterion and the frequency-domain analysis approach, yielding conclusions that are either less conservative than or agree with previously published results. We know that the convergence condition of the system depends mainly on each agent’s input time delay and the adjacent weights but is independent of the communication delay between agents, whether the system is continuous or discrete. Finally, simulation examples are given to verify the theoretical analysis.
基金supported by the National Natural Science Foundation of China(Grant No.50379046)the Doctoral Fund of the Ministry of Education of China(Grant No.A50221)
文摘In order to address the complex uncertainties caused by interfacing between the fuzziness and randomness of the safety problem for embankment engineering projects, and to evaluate the safety of embankment engineering projects more scientifically and reasonably, this study presents the fuzzy logic modeling of the stochastic finite element method (SFEM) based on the harmonious finite element (HFE) technique using a first-order approximation theorem. Fuzzy mathematical models of safety repertories were introduced into the SFEM to analyze the stability of embankments and foundations in order to describe the fuzzy failure procedure for the random safety performance function. The fuzzy models were developed with membership functions with half depressed gamma distribution, half depressed normal distribution, and half depressed echelon distribution. The fuzzy stochastic mathematical algorithm was used to comprehensively study the local failure mechanism of the main embankment section near Jingnan in the Yangtze River in terms of numerical analysis for the probability integration of reliability on the random field affected by three fuzzy factors. The result shows that the middle region of the embankment is the principal zone of concentrated failure due to local fractures. There is also some local shear failure on the embankment crust. This study provides a referential method for solving complex multi-uncertainty problems in engineering safety analysis.
基金Projects [2006]331 supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholars070712 by the Key Laboratory ofNuclear Resources and Environment,Ministry of Education of China
文摘The use of peat for the removal of nickel from aqueous solutions has been investigated at various pH values by means of static conditions. The present research shows that the ability of Ni to bind to peat increases as the pH value increases. The solutions reach adsorption equilibrium rapidly. A reasonable kinetic model, first-order in nickel concentration, has been developed and fitted to the adsorption of nickel (Ⅱ) onto peat. The first-order model provides a good correlation to the experimental data. The characteristic parameters of the Langmuir isotherm were determined at various temperatures. The relationship between kinetics and equilibrium isotherms was established through the forward- and backward-rate-constants, k~ and k2, and the equilibrium constant, K.
基金Natural Science Foundation of Jilin Province, China(No.200305502)
文摘A novel method for the determination of vitamin C(Vc) is proposed in this article. After the reaction with Folin-Ciocalteau reagent at ambient temperature, Vc solution was scanned at 750--1100 nm, and its first-order derivative spectrum were obtained from the original spectrum. The values of derivative selected at 995 nm were used for determination. It was proved that Vc could quickly react with Folin-Ciocalteau reagent within 5 min and the product was quite stable for a long time. The conditions required for this method is not very complicated, its precision and accuracy are similar to those of the iodometric titration described in Chinese Pharmacopoeia, and the limit of detection is 0.312 μg/mL. The determination of the results of vitamin C tablet, pill, and injection demonstrates that this method has wide pharmaceutical applications.
基金supported by the National Key Research and Development Program of China(No.2022YFB1902700)the Joint Fund of Ministry of Education for Equipment Pre-research(No.8091B042203)+5 种基金the National Natural Science Foundation of China(No.11875129)the Fund of the State Key Laboratory of Intense Pulsed Radiation Simulation and Effect(No.SKLIPR1810)the Fund of Innovation Center of Radiation Application(No.KFZC2020020402)the Fund of the State Key Laboratory of Nuclear Physics and Technology,Peking University(No.NPT2023KFY06)the Joint Innovation Fund of China National Uranium Co.,Ltd.,State Key Laboratory of Nuclear Resources and Environment,East China University of Technology(No.2022NRE-LH-02)the Fundamental Research Funds for the Central Universities(No.2023JG001).
文摘Neutron computed tomography(NCT)is widely used as a noninvasive measurement technique in nuclear engineering,thermal hydraulics,and cultural heritage.The neutron source intensity of NCT is usually low and the scan time is long,resulting in a projection image containing severe noise.To reduce the scanning time and increase the image reconstruction quality,an effective reconstruction algorithm must be selected.In CT image reconstruction,the reconstruction algorithms can be divided into three categories:analytical algorithms,iterative algorithms,and deep learning.Because the analytical algorithm requires complete projection data,it is not suitable for reconstruction in harsh environments,such as strong radia-tion,high temperature,and high pressure.Deep learning requires large amounts of data and complex models,which cannot be easily deployed,as well as has a high computational complexity and poor interpretability.Therefore,this paper proposes the OS-SART-PDTV iterative algorithm,which uses the ordered subset simultaneous algebraic reconstruction technique(OS-SART)algorithm to reconstruct the image and the first-order primal–dual algorithm to solve the total variation(PDTV),for sparse-view NCT three-dimensional reconstruction.The novel algorithm was compared with other algorithms(FBP,OS-SART-TV,OS-SART-AwTV,and OS-SART-FGPTV)by simulating the experimental data and actual neutron projection experiments.The reconstruction results demonstrate that the proposed algorithm outperforms the FBP,OS-SART-TV,OS-SART-AwTV,and OS-SART-FGPTV algorithms in terms of preserving edge structure,denoising,and suppressing artifacts.
基金Project supported by the National Natural Science Foundation of China(No.11272278)
文摘The free vibration of functionally graded material (FGM) beams is studied based on both the classical and the first-order shear deformation beam theories. The equations of motion for the FGM beams are derived by considering the shear deforma- tion and the axial, transversal, rotational, and axial-rotational coupling inertia forces on the assumption that the material properties vary arbitrarily in the thickness direction. By using the numerical shooting method to solve the eigenvalue problem of the coupled ordinary differential equations with different boundary conditions, the natural frequen- cies of the FGM Timoshenko beams are obtained numerically. In a special case of the classical beam theory, a proportional transformation between the natural frequencies of the FGM and the reference homogenous beams is obtained by using the mathematical similarity between the mathematical formulations. This formula provides a simple and useful approach to evaluate the natural frequencies of the FGM beams without dealing with the tension-bending coupling problem. Approximately, this analogous transition can also be extended to predict the frequencies of the FGM Timoshenko beams. The numerical results obtained by the shooting method and those obtained by the analogous transformation are presented to show the effects of the material gradient, the slenderness ratio, and the boundary conditions on the natural frequencies in detail.