As a continuate work,ideal-based resolution principle for lattice-valued first-order logic system LF(X) is proposed,which is an extension of α-resolution principle in lattice-valued logic system based on lattice impl...As a continuate work,ideal-based resolution principle for lattice-valued first-order logic system LF(X) is proposed,which is an extension of α-resolution principle in lattice-valued logic system based on lattice implication algebra.In this principle,the resolution level is an ideal of lattice implication algebra,instead of an element in truth-value field.Moreover,the soundness theorem is given.In the light of lifting lemma,the completeness theorem is established.This can provide a new tool for automated reasoning.展开更多
This paper presents 10-elements linguistic truth-valued intuitionistic fuzzy algebra and the properties based on the linguistic truth-valued implication algebra which is fit to express both comparable and incomparable...This paper presents 10-elements linguistic truth-valued intuitionistic fuzzy algebra and the properties based on the linguistic truth-valued implication algebra which is fit to express both comparable and incomparable information.This method can also deal with the uncertain problem which has both positive evidence and negative evidence at the same time.10-elements linguistic truthvalued intuitionistic fuzzy first-order logic system has been established in the intuitionistic fuzzy algebra.展开更多
Based on 6-elements linguistic truth-valued lattice implication algebras this paper discusses 6-elements linguistic truth-valued first-order logic system. With some special properties of 6-elements linguistic truth-va...Based on 6-elements linguistic truth-valued lattice implication algebras this paper discusses 6-elements linguistic truth-valued first-order logic system. With some special properties of 6-elements linguistic truth-valued first-order logic, we discussed the satisfiable problem of 6-elements linguistic truth-valued first-order logic and proposed a resolution method of 6-elements linguistic truth-valued firstorder logic. Then the resolution algorithm is presented and an example illustrates the effectiveness of the proposed method.展开更多
Traditional first-order logic has four definitions for quantifiers,which are defined by universal and existential quantifiers.In L_(3)-valued(three-valued)first-order logic,there are eight kinds of definitions for qua...Traditional first-order logic has four definitions for quantifiers,which are defined by universal and existential quantifiers.In L_(3)-valued(three-valued)first-order logic,there are eight kinds of definitions for quantifiers;and corresponding Gentzen deduction systems will be given and their soundness and completeness theorems will be proved.展开更多
In this paper,we present a novel first-order digitalΣΔconverter tailored for digital-to-analog applications,focusing on achieving both high yield and reduced silicon estate.Our approach incorporates a substantial le...In this paper,we present a novel first-order digitalΣΔconverter tailored for digital-to-analog applications,focusing on achieving both high yield and reduced silicon estate.Our approach incorporates a substantial level of dithering noise into the input signal,strategically aimed at mitigating the spurious frequencies commonly encountered in such converters.Validation of our design is performed through simulations using a high-level simulator specialized in mixed-signal circuit analysis.The results underscore the enhanced performance of our circuit,especially in reducing spurious frequencies,highlighting its efficiency and effectiveness.The final circuit exhibits an effective number of bits of 13.展开更多
Long-term responses of floating structures pose a great concern in their design phase. Existing approaches for addressing long-term extreme responses are extremely cumbersome for adoption. This work aims to develop an...Long-term responses of floating structures pose a great concern in their design phase. Existing approaches for addressing long-term extreme responses are extremely cumbersome for adoption. This work aims to develop an approach for the long-term extreme-response analysis of floating structures. A modified gradient-based retrieval algorithm in conjunction with the inverse first-order reliability method(IFORM) is proposed to enable the use of convolution models in long-term extreme analysis of structures with an analytical formula of response amplitude operator(RAO). The proposed algorithm ensures convergence stability and iteration accuracy and exhibits a higher computational efficiency than the traditional backtracking method. However, when the RAO of general offshore structures cannot be analytically expressed, the convolutional integration method fails to function properly. A numerical discretization approach is further proposed for offshore structures in the case when the analytical expression of the RAO is not feasible. Through iterative discretization of environmental contours(ECs) and RAOs, a detailed procedure is proposed to calculate the long-term response extremes of offshore structures. The validity and accuracy of the proposed approach are tested using a floating offshore wind turbine as a numerical example. The long-term extreme heave responses of various return periods are calculated via the IFORM in conjunction with a numerical discretization approach. The environmental data corresponding to N-year structural responses are located inside the ECs, which indicates that the selection of design points directly along the ECs yields conservative design results.展开更多
Conventional PI control encounters some problems when dealing with large lag process in the presence of parameter uncertainties.For the typical first-order process,an observerbased linear active disturbance rejection ...Conventional PI control encounters some problems when dealing with large lag process in the presence of parameter uncertainties.For the typical first-order process,an observerbased linear active disturbance rejection control(LADRC) scheme is presented to cope with the difficulties,and a reduced-order observer scheme is proposed further.Some quantitative dynamic results with regard to non-overshoot characteristics are obtained.Finally,the performance boundaries of LADRC and PI control are explicitly compared with each other,which shows that the former is more superior in most cases.展开更多
Consensus problems of first-order multi-agent systems with multiple time delays are investigated in this paper. We discuss three cases: 1) continuous, 2) discrete, and 3) a continuous system with a proportional pl...Consensus problems of first-order multi-agent systems with multiple time delays are investigated in this paper. We discuss three cases: 1) continuous, 2) discrete, and 3) a continuous system with a proportional plus derivative controller. In each case, the system contains simultaneous communication and input time delays. Supposing a dynamic multi-agent system with directed topology that contains a globally reachable node, the sufficient convergence condition of the system is discussed with respect to each of the three cases based on the generalized Nyquist criterion and the frequency-domain analysis approach, yielding conclusions that are either less conservative than or agree with previously published results. We know that the convergence condition of the system depends mainly on each agent’s input time delay and the adjacent weights but is independent of the communication delay between agents, whether the system is continuous or discrete. Finally, simulation examples are given to verify the theoretical analysis.展开更多
The use of peat for the removal of nickel from aqueous solutions has been investigated at various pH values by means of static conditions. The present research shows that the ability of Ni to bind to peat increases as...The use of peat for the removal of nickel from aqueous solutions has been investigated at various pH values by means of static conditions. The present research shows that the ability of Ni to bind to peat increases as the pH value increases. The solutions reach adsorption equilibrium rapidly. A reasonable kinetic model, first-order in nickel concentration, has been developed and fitted to the adsorption of nickel (Ⅱ) onto peat. The first-order model provides a good correlation to the experimental data. The characteristic parameters of the Langmuir isotherm were determined at various temperatures. The relationship between kinetics and equilibrium isotherms was established through the forward- and backward-rate-constants, k~ and k2, and the equilibrium constant, K.展开更多
This paper introduces a novel approach for parameter sensitivity evaluation and efficient slope reliability analysis based on quantile-based first-order second-moment method(QFOSM).The core principles of the QFOSM are...This paper introduces a novel approach for parameter sensitivity evaluation and efficient slope reliability analysis based on quantile-based first-order second-moment method(QFOSM).The core principles of the QFOSM are elucidated geometrically from the perspective of expanding ellipsoids.Based on this geometric interpretation,the QFOSM is further extended to estimate sensitivity indices and assess the significance of various uncertain parameters involved in the slope system.The proposed method has the advantage of computational simplicity,akin to the conventional first-order second-moment method(FOSM),while providing estimation accuracy close to that of the first-order reliability method(FORM).Its performance is demonstrated with a numerical example and three slope examples.The results show that the proposed method can efficiently estimate the slope reliability and simultaneously evaluate the sensitivity of the uncertain parameters.The proposed method does not involve complex optimization or iteration required by the FORM.It can provide a valuable complement to the existing approximate reliability analysis methods,offering rapid sensitivity evaluation and slope reliability analysis.展开更多
A novel method for the determination of vitamin C(Vc) is proposed in this article. After the reaction with Folin-Ciocalteau reagent at ambient temperature, Vc solution was scanned at 750--1100 nm, and its first-orde...A novel method for the determination of vitamin C(Vc) is proposed in this article. After the reaction with Folin-Ciocalteau reagent at ambient temperature, Vc solution was scanned at 750--1100 nm, and its first-order derivative spectrum were obtained from the original spectrum. The values of derivative selected at 995 nm were used for determination. It was proved that Vc could quickly react with Folin-Ciocalteau reagent within 5 min and the product was quite stable for a long time. The conditions required for this method is not very complicated, its precision and accuracy are similar to those of the iodometric titration described in Chinese Pharmacopoeia, and the limit of detection is 0.312 μg/mL. The determination of the results of vitamin C tablet, pill, and injection demonstrates that this method has wide pharmaceutical applications.展开更多
Neutron computed tomography(NCT)is widely used as a noninvasive measurement technique in nuclear engineering,thermal hydraulics,and cultural heritage.The neutron source intensity of NCT is usually low and the scan tim...Neutron computed tomography(NCT)is widely used as a noninvasive measurement technique in nuclear engineering,thermal hydraulics,and cultural heritage.The neutron source intensity of NCT is usually low and the scan time is long,resulting in a projection image containing severe noise.To reduce the scanning time and increase the image reconstruction quality,an effective reconstruction algorithm must be selected.In CT image reconstruction,the reconstruction algorithms can be divided into three categories:analytical algorithms,iterative algorithms,and deep learning.Because the analytical algorithm requires complete projection data,it is not suitable for reconstruction in harsh environments,such as strong radia-tion,high temperature,and high pressure.Deep learning requires large amounts of data and complex models,which cannot be easily deployed,as well as has a high computational complexity and poor interpretability.Therefore,this paper proposes the OS-SART-PDTV iterative algorithm,which uses the ordered subset simultaneous algebraic reconstruction technique(OS-SART)algorithm to reconstruct the image and the first-order primal–dual algorithm to solve the total variation(PDTV),for sparse-view NCT three-dimensional reconstruction.The novel algorithm was compared with other algorithms(FBP,OS-SART-TV,OS-SART-AwTV,and OS-SART-FGPTV)by simulating the experimental data and actual neutron projection experiments.The reconstruction results demonstrate that the proposed algorithm outperforms the FBP,OS-SART-TV,OS-SART-AwTV,and OS-SART-FGPTV algorithms in terms of preserving edge structure,denoising,and suppressing artifacts.展开更多
To detect high frequency (HF) first-order sea echo spectra contaminated with ships, ionosphere interference, and other, a new characteristic-knowledge-aided detection method is proposed. With 2-D image features in r...To detect high frequency (HF) first-order sea echo spectra contaminated with ships, ionosphere interference, and other, a new characteristic-knowledge-aided detection method is proposed. With 2-D image features in range-Doppler spectrum, the trend of first-order sea echoes is extracted as indicative information by a multi-scale filter. Detection rules for both single and splitting first-order sea echoes are given based on the characteristic knowledge combining the indicative information with the global characteristics such as amplitude, symmetry, continuity, etc. Compared with the classical algorithms, the proposed method can detect and locate the first-order sea echo in the HF band more accurately especially in the environment with targets/clutters smearing. Experiments with real data verify the validity of the algorithm.展开更多
A new model of a first-order composite beam with flexoelectric and piezomagnetic layers is developed.The new model is under a transverse magnetic field and can capture the couple stress and its flexoelectric effects.T...A new model of a first-order composite beam with flexoelectric and piezomagnetic layers is developed.The new model is under a transverse magnetic field and can capture the couple stress and its flexoelectric effects.The governing equations are obtained through a variational approach.To illustrate the new model,the static bending problem is analytically solved based on a Navier’s technique.The numerical results reveal that the extension,deflection,and shear deformation of the current or couple stress relevant flexoelectric model are always smaller than those of classical models at very small scale.It is also found that the electric potentials only appear with the presence of the flexoelectric effect for this non-piezoelectric composite beam model.Furthermore,various electric potential distributions can be manipulated by the particular magnetic fields,and remote/non-contact control at micro-and nano-scales can be realized by current functional composite beams.展开更多
In this article, we use the spin coherent state transformation and the ground state variational method to theoretically calculate the ground function. In order to consider the influence of the atom-atom interaction on...In this article, we use the spin coherent state transformation and the ground state variational method to theoretically calculate the ground function. In order to consider the influence of the atom-atom interaction on the extended Dicke model's ground state properties, the mean photon number, the scaled atomic population and the average ground energy are displayed. Using the self-consistent field theory to solve the atom-atom interaction, we discover the system undergoes a first-order quantum phase transition from the normal phase to the superradiant phase, but a famous Dicke-type second-order quantum phase transition without the atom-atom interaction. Meanwhile, the atom-atom interaction makes the phase transition point shift to the lower atom-photon collective coupling strength.展开更多
The 1st-order symmetry energy coefficient of nuclear matter induced merely by the neutron-proton (n p) mass difference is derived analytically, which turns out to be completely model-independent. Based on this resul...The 1st-order symmetry energy coefficient of nuclear matter induced merely by the neutron-proton (n p) mass difference is derived analytically, which turns out to be completely model-independent. Based on this result, (npDM) the 1st-order symmetry energy Esym,1 (A) of heavy nuclei such as 2~spb induced by the np mass difference is investigated with the help of a local density approximation combined with the Skyrme energy density functionals. Although /U(npDM) Esym,1 (A) is small compared with the second-order symmetry energy, it cannot be dropped simply for an accurate estimation of nuclear masses as it is still larger than the rms deviation given by some accurate mass formulas. It is therefore suggested that one perhaps needs to distinguish the neutron mass from the proton one in the construction of nuclear density funetionals.展开更多
Accuracy of angle-domain common-image gathers(ADCIGs)is the key to multiwave AVA inversion and migration velocity analysis,and of which Poynting vectors of pure P-and S-wave are the decisive factors in obtaining multi...Accuracy of angle-domain common-image gathers(ADCIGs)is the key to multiwave AVA inversion and migration velocity analysis,and of which Poynting vectors of pure P-and S-wave are the decisive factors in obtaining multi-component seismic data ADCIGs.A Poynting vector can be obtained from conventional velocity-stress elastic wave equations,but it focused on the propagation direction of mixed P-and S-wave fields,and neither on the propagation direction of the P-wave nor the direction of the S-wave.The Poynting vectors of pure P-or pure S-wave can be calculated from first-order velocity-dilatation-rotation equations.This study presents a method of extracting ADCIGs based on first order velocitydilatation-rotation elastic wave equations reverse-time migration algorithm.The method is as follows:calculating the pure P-wave Poynting vector of source and receiver wavefields by multiplication of P-wave particle-velocity vector and dilatation scalar,calculating the pure S-wave Poynting vector by vector multiplying S-wave particle-velocity vector and rotation vector,selecting the Poynting vector at the time of maximum P-wave energy of source wavefield as the propagation direction of incident P-wave,and obtaining the reflected P-wave(or converted S-wave)propagation direction of the receiver wavefield by the Poynting vector at the time of maximum P-(S-)wave energy in each grid point.Then,the P-wave incident angle is computed by the two propagation directions.Thus,the P-and S-wave ADGICs can obtained Numerical tests show that the proposed method can accurately compute the propagation direction and incident angle of the source and receiver wavefields,thereby achieving high-precision extraction of P-and S-wave ADGICs.展开更多
Nowadays,studies on the mechanism of macro-scopic nonlinear behavior of materials by accumulation of micro-scopic degradation are attracting more attention from researchers.Among numerous approaches,multiscale methods...Nowadays,studies on the mechanism of macro-scopic nonlinear behavior of materials by accumulation of micro-scopic degradation are attracting more attention from researchers.Among numerous approaches,multiscale methods have been proved as powerful and practical approaches in predicting macro-scopic material status by averaging and homogenizing physical information from associated micro-scopic mate-rial behavior.Usually in mechanical problem,the stress,consistent material modulus,and possible mate-rial state variables are quantities in interest through the upscaling process.However,the energy-related quantities are not studied much.Some initiative work has been done in the early year including but not limited to the Hill-Mandel condition in multiscale framework,which gives that the macro-scopic elastic strain energy density can be computed by volumetric averaging of that in the micro-scale.However,in the nonlinear analysis,the energy dissipation is an important quantity to measure the degradation status.In this manuscript,two typical multiscale methods,the first-order computational homogenization(FOCH)and reduced-order homogenization(ROH),are adopted to numerically analyze a fiber-reinforced compos-ite material with capability in material nonlinearity.With numerical experiments,it can be shown that energy dissipation is the same for both approaches.展开更多
In the present work,the magnetization reversal behavior for the melt spinning(Nd_(0.8)Ce_(0.2))_(2)Fe_(12)Co_(2-x)Zr_(x)B(x=0,0.5)permanent alloys with high coercivity was investigated by analyzing the hysteresis curv...In the present work,the magnetization reversal behavior for the melt spinning(Nd_(0.8)Ce_(0.2))_(2)Fe_(12)Co_(2-x)Zr_(x)B(x=0,0.5)permanent alloys with high coercivity was investigated by analyzing the hysteresis curves and the recoil loops.Compared to the Zr-free alloy,the Zr-doped sample obtains higher magnetic properties:coercivity of H_(cj)=650.5 kA·m^(-1),squareness of H_(k)/H_(cj)=0.76 and maximum energy product of(BH)_(max)=131.0 kJ·m^(-3).The first-order reversal curves(FORCs)analysis was taken to identify optimal conditions of exchange coupling for the Zr-free and Zr-doped alloys.The coercivity mechanism of theα-Fe/Nd_(2)Fe_(14)B nanocomposite alloys was analyzed by the angular dependence of the coercive field as measured for the Zr-doped sample.The results show that the magnetic reverse process of the Zr-doped sample can be explained by the pinning model.展开更多
Investigating natural-inspired applications is a perennially appealing subject for scientists. The current increase in the speed of natural-origin structure growth may be linked to their superior mechanical properties...Investigating natural-inspired applications is a perennially appealing subject for scientists. The current increase in the speed of natural-origin structure growth may be linked to their superior mechanical properties and environmental resilience. Biological composite structures with helicoidal schemes and designs have remarkable capacities to absorb impact energy and withstand damage. However, there is a dearth of extensive study on the influence of fiber redirection and reorientation inside the matrix of a helicoid structure on its mechanical performance and reactivity. The present study aimed to explore the static and transient responses of a bio-inspired helicoid laminated composite(B-iHLC) shell under the influence of an explosive load using an isomorphic method. The structural integrity of the shell is maintained by a viscoelastic basis known as the Pasternak foundation, which encompasses two coefficients of stiffness and one coefficient of damping. The equilibrium equations governing shell dynamics are obtained by using Hamilton's principle and including the modified first-order shear theory,therefore obviating the need to employ a shear correction factor. The paper's model and approach are validated by doing numerical comparisons with respected publications. The findings of this study may be used in the construction of military and civilian infrastructure in situations when the structure is subjected to severe stresses that might potentially result in catastrophic collapse. The findings of this paper serve as the foundation for several other issues, including geometric optimization and the dynamic response of similar mechanical structures.展开更多
基金the National Natural Science Foundation of China(No.61175055)the Sichuan Key Technology Research and Development Program(No.2011FZ0051)
文摘As a continuate work,ideal-based resolution principle for lattice-valued first-order logic system LF(X) is proposed,which is an extension of α-resolution principle in lattice-valued logic system based on lattice implication algebra.In this principle,the resolution level is an ideal of lattice implication algebra,instead of an element in truth-value field.Moreover,the soundness theorem is given.In the light of lifting lemma,the completeness theorem is established.This can provide a new tool for automated reasoning.
基金This work is partly supported by National Nature Science Foundation of China (Grant No.61105059,61175055,61173100), International Cooperation and Exchangeof the National Natural Science Foundation of China (Grant No.61210306079),Sichuan Key Technology Research and Development Program (Grant No.2011FZ0051),Radio Administration Bureau of MIIT of China (Grant No.[2011]146), China Institution of Communications (Grant No.[2011]051), and Sichuan Key Laboratory of Intelligent Network Information Processing (Grant No.SGXZD1002-10),Liaoning Excellent Talents in University (LJQ2011116).
文摘This paper presents 10-elements linguistic truth-valued intuitionistic fuzzy algebra and the properties based on the linguistic truth-valued implication algebra which is fit to express both comparable and incomparable information.This method can also deal with the uncertain problem which has both positive evidence and negative evidence at the same time.10-elements linguistic truthvalued intuitionistic fuzzy first-order logic system has been established in the intuitionistic fuzzy algebra.
基金This work is partly supported by National Nature Science Foundation of China (Grant No.61105059,61175055,61173100), International Cooperation and Exchange of the National Natural Science Foundation of China (Grant No.61210306079), Sichuan Key Technology Research and Development Program (Grant No.2011FZ0051), Radio Administration Bureau of MIIT of China (Grant No.[2011]146), China Institution of Communications (Grant No.[2011]051), and Sichuan Key Laboratory of Intelligent Network Information Processing (Grant No.SGXZD1002-10),Liaoning Excellent Talents in University (LJQ2011116).
文摘Based on 6-elements linguistic truth-valued lattice implication algebras this paper discusses 6-elements linguistic truth-valued first-order logic system. With some special properties of 6-elements linguistic truth-valued first-order logic, we discussed the satisfiable problem of 6-elements linguistic truth-valued first-order logic and proposed a resolution method of 6-elements linguistic truth-valued firstorder logic. Then the resolution algorithm is presented and an example illustrates the effectiveness of the proposed method.
基金the Open Fund of the State Key Laboratory of Software Development Environment(SKLSDE-2010KF-06)Beijing University of Aeronautics and Astronautics,and by the National Basic Research Program of China(973 Program)(2005CB321901).
文摘Traditional first-order logic has four definitions for quantifiers,which are defined by universal and existential quantifiers.In L_(3)-valued(three-valued)first-order logic,there are eight kinds of definitions for quantifiers;and corresponding Gentzen deduction systems will be given and their soundness and completeness theorems will be proved.
文摘In this paper,we present a novel first-order digitalΣΔconverter tailored for digital-to-analog applications,focusing on achieving both high yield and reduced silicon estate.Our approach incorporates a substantial level of dithering noise into the input signal,strategically aimed at mitigating the spurious frequencies commonly encountered in such converters.Validation of our design is performed through simulations using a high-level simulator specialized in mixed-signal circuit analysis.The results underscore the enhanced performance of our circuit,especially in reducing spurious frequencies,highlighting its efficiency and effectiveness.The final circuit exhibits an effective number of bits of 13.
基金Supported by the National Natural Science Foundation of China (Grant Nos.52088102 and 51879287)National Key Research and Development Program of China (Grant No.2022YFB2602301)。
文摘Long-term responses of floating structures pose a great concern in their design phase. Existing approaches for addressing long-term extreme responses are extremely cumbersome for adoption. This work aims to develop an approach for the long-term extreme-response analysis of floating structures. A modified gradient-based retrieval algorithm in conjunction with the inverse first-order reliability method(IFORM) is proposed to enable the use of convolution models in long-term extreme analysis of structures with an analytical formula of response amplitude operator(RAO). The proposed algorithm ensures convergence stability and iteration accuracy and exhibits a higher computational efficiency than the traditional backtracking method. However, when the RAO of general offshore structures cannot be analytically expressed, the convolutional integration method fails to function properly. A numerical discretization approach is further proposed for offshore structures in the case when the analytical expression of the RAO is not feasible. Through iterative discretization of environmental contours(ECs) and RAOs, a detailed procedure is proposed to calculate the long-term response extremes of offshore structures. The validity and accuracy of the proposed approach are tested using a floating offshore wind turbine as a numerical example. The long-term extreme heave responses of various return periods are calculated via the IFORM in conjunction with a numerical discretization approach. The environmental data corresponding to N-year structural responses are located inside the ECs, which indicates that the selection of design points directly along the ECs yields conservative design results.
基金supported by the National Natural Science Foundation of China(60774088)the National High Technology Research and Development Program of China(863 Program)(2009AA04Z132)the Specialized Research Fund for the Doctoral Program of Higher Education of China(20090031110029)
文摘Conventional PI control encounters some problems when dealing with large lag process in the presence of parameter uncertainties.For the typical first-order process,an observerbased linear active disturbance rejection control(LADRC) scheme is presented to cope with the difficulties,and a reduced-order observer scheme is proposed further.Some quantitative dynamic results with regard to non-overshoot characteristics are obtained.Finally,the performance boundaries of LADRC and PI control are explicitly compared with each other,which shows that the former is more superior in most cases.
基金Project supported in part by the National Natural Science Foundation of China (Grant Nos. 60973114 and 61170249)in part by the Natural Science Foundation of CQCSTC (Grant Nos. 2009BA2024 and cstc2011jjA1320)in part by the State Key Laboratory of Power Transmission Equipment & System Securityand New Technology, Chongqing University (Grant No. 2007DA10512711206)
文摘Consensus problems of first-order multi-agent systems with multiple time delays are investigated in this paper. We discuss three cases: 1) continuous, 2) discrete, and 3) a continuous system with a proportional plus derivative controller. In each case, the system contains simultaneous communication and input time delays. Supposing a dynamic multi-agent system with directed topology that contains a globally reachable node, the sufficient convergence condition of the system is discussed with respect to each of the three cases based on the generalized Nyquist criterion and the frequency-domain analysis approach, yielding conclusions that are either less conservative than or agree with previously published results. We know that the convergence condition of the system depends mainly on each agent’s input time delay and the adjacent weights but is independent of the communication delay between agents, whether the system is continuous or discrete. Finally, simulation examples are given to verify the theoretical analysis.
基金Projects [2006]331 supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholars070712 by the Key Laboratory ofNuclear Resources and Environment,Ministry of Education of China
文摘The use of peat for the removal of nickel from aqueous solutions has been investigated at various pH values by means of static conditions. The present research shows that the ability of Ni to bind to peat increases as the pH value increases. The solutions reach adsorption equilibrium rapidly. A reasonable kinetic model, first-order in nickel concentration, has been developed and fitted to the adsorption of nickel (Ⅱ) onto peat. The first-order model provides a good correlation to the experimental data. The characteristic parameters of the Langmuir isotherm were determined at various temperatures. The relationship between kinetics and equilibrium isotherms was established through the forward- and backward-rate-constants, k~ and k2, and the equilibrium constant, K.
基金supported by the National Natural Science Foundation of China(Grant Nos.52109144,52025094 and 52222905).
文摘This paper introduces a novel approach for parameter sensitivity evaluation and efficient slope reliability analysis based on quantile-based first-order second-moment method(QFOSM).The core principles of the QFOSM are elucidated geometrically from the perspective of expanding ellipsoids.Based on this geometric interpretation,the QFOSM is further extended to estimate sensitivity indices and assess the significance of various uncertain parameters involved in the slope system.The proposed method has the advantage of computational simplicity,akin to the conventional first-order second-moment method(FOSM),while providing estimation accuracy close to that of the first-order reliability method(FORM).Its performance is demonstrated with a numerical example and three slope examples.The results show that the proposed method can efficiently estimate the slope reliability and simultaneously evaluate the sensitivity of the uncertain parameters.The proposed method does not involve complex optimization or iteration required by the FORM.It can provide a valuable complement to the existing approximate reliability analysis methods,offering rapid sensitivity evaluation and slope reliability analysis.
基金Natural Science Foundation of Jilin Province, China(No.200305502)
文摘A novel method for the determination of vitamin C(Vc) is proposed in this article. After the reaction with Folin-Ciocalteau reagent at ambient temperature, Vc solution was scanned at 750--1100 nm, and its first-order derivative spectrum were obtained from the original spectrum. The values of derivative selected at 995 nm were used for determination. It was proved that Vc could quickly react with Folin-Ciocalteau reagent within 5 min and the product was quite stable for a long time. The conditions required for this method is not very complicated, its precision and accuracy are similar to those of the iodometric titration described in Chinese Pharmacopoeia, and the limit of detection is 0.312 μg/mL. The determination of the results of vitamin C tablet, pill, and injection demonstrates that this method has wide pharmaceutical applications.
基金supported by the National Key Research and Development Program of China(No.2022YFB1902700)the Joint Fund of Ministry of Education for Equipment Pre-research(No.8091B042203)+5 种基金the National Natural Science Foundation of China(No.11875129)the Fund of the State Key Laboratory of Intense Pulsed Radiation Simulation and Effect(No.SKLIPR1810)the Fund of Innovation Center of Radiation Application(No.KFZC2020020402)the Fund of the State Key Laboratory of Nuclear Physics and Technology,Peking University(No.NPT2023KFY06)the Joint Innovation Fund of China National Uranium Co.,Ltd.,State Key Laboratory of Nuclear Resources and Environment,East China University of Technology(No.2022NRE-LH-02)the Fundamental Research Funds for the Central Universities(No.2023JG001).
文摘Neutron computed tomography(NCT)is widely used as a noninvasive measurement technique in nuclear engineering,thermal hydraulics,and cultural heritage.The neutron source intensity of NCT is usually low and the scan time is long,resulting in a projection image containing severe noise.To reduce the scanning time and increase the image reconstruction quality,an effective reconstruction algorithm must be selected.In CT image reconstruction,the reconstruction algorithms can be divided into three categories:analytical algorithms,iterative algorithms,and deep learning.Because the analytical algorithm requires complete projection data,it is not suitable for reconstruction in harsh environments,such as strong radia-tion,high temperature,and high pressure.Deep learning requires large amounts of data and complex models,which cannot be easily deployed,as well as has a high computational complexity and poor interpretability.Therefore,this paper proposes the OS-SART-PDTV iterative algorithm,which uses the ordered subset simultaneous algebraic reconstruction technique(OS-SART)algorithm to reconstruct the image and the first-order primal–dual algorithm to solve the total variation(PDTV),for sparse-view NCT three-dimensional reconstruction.The novel algorithm was compared with other algorithms(FBP,OS-SART-TV,OS-SART-AwTV,and OS-SART-FGPTV)by simulating the experimental data and actual neutron projection experiments.The reconstruction results demonstrate that the proposed algorithm outperforms the FBP,OS-SART-TV,OS-SART-AwTV,and OS-SART-FGPTV algorithms in terms of preserving edge structure,denoising,and suppressing artifacts.
文摘To detect high frequency (HF) first-order sea echo spectra contaminated with ships, ionosphere interference, and other, a new characteristic-knowledge-aided detection method is proposed. With 2-D image features in range-Doppler spectrum, the trend of first-order sea echoes is extracted as indicative information by a multi-scale filter. Detection rules for both single and splitting first-order sea echoes are given based on the characteristic knowledge combining the indicative information with the global characteristics such as amplitude, symmetry, continuity, etc. Compared with the classical algorithms, the proposed method can detect and locate the first-order sea echo in the HF band more accurately especially in the environment with targets/clutters smearing. Experiments with real data verify the validity of the algorithm.
基金This work was supported by the National Natural Science Foundation of China(Grants 12002086 and 12072253).
文摘A new model of a first-order composite beam with flexoelectric and piezomagnetic layers is developed.The new model is under a transverse magnetic field and can capture the couple stress and its flexoelectric effects.The governing equations are obtained through a variational approach.To illustrate the new model,the static bending problem is analytically solved based on a Navier’s technique.The numerical results reveal that the extension,deflection,and shear deformation of the current or couple stress relevant flexoelectric model are always smaller than those of classical models at very small scale.It is also found that the electric potentials only appear with the presence of the flexoelectric effect for this non-piezoelectric composite beam model.Furthermore,various electric potential distributions can be manipulated by the particular magnetic fields,and remote/non-contact control at micro-and nano-scales can be realized by current functional composite beams.
基金Supported by the National Natural Science Foundation of China under Grant Nos.11275118,11404198,91430109,61505100,51502189the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi Province(STIP)under Grant No.2014102+2 种基金the Launch of the Scientific Research of Shanxi University under Grant No.011151801004the National Fundamental Fund of Personnel Training under Grant No.J1103210The Natural Science Foundation of Shanxi Province under Grant No.2015011008
文摘In this article, we use the spin coherent state transformation and the ground state variational method to theoretically calculate the ground function. In order to consider the influence of the atom-atom interaction on the extended Dicke model's ground state properties, the mean photon number, the scaled atomic population and the average ground energy are displayed. Using the self-consistent field theory to solve the atom-atom interaction, we discover the system undergoes a first-order quantum phase transition from the normal phase to the superradiant phase, but a famous Dicke-type second-order quantum phase transition without the atom-atom interaction. Meanwhile, the atom-atom interaction makes the phase transition point shift to the lower atom-photon collective coupling strength.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11405223,11175219,11275271 and 11435014the National Basic Research Program of China under Grant No 2013CB834405+3 种基金the Knowledge Innovation Project of Chinese Academy of Sciences under Grant No KJCX2-EW-N01the Funds for Creative Research Groups of China under Grant No 11321064the Youth Innovation Promotion Association of Chinese Academy of Sciencesthe K.C.Wong Education Foundation
文摘The 1st-order symmetry energy coefficient of nuclear matter induced merely by the neutron-proton (n p) mass difference is derived analytically, which turns out to be completely model-independent. Based on this result, (npDM) the 1st-order symmetry energy Esym,1 (A) of heavy nuclei such as 2~spb induced by the np mass difference is investigated with the help of a local density approximation combined with the Skyrme energy density functionals. Although /U(npDM) Esym,1 (A) is small compared with the second-order symmetry energy, it cannot be dropped simply for an accurate estimation of nuclear masses as it is still larger than the rms deviation given by some accurate mass formulas. It is therefore suggested that one perhaps needs to distinguish the neutron mass from the proton one in the construction of nuclear density funetionals.
基金financially supported by the Fundamental Research Funds for the Central Universities(No.201822011)the National Key R&D Program of China(No.2018YFC1405900)+1 种基金the National Natural Science Foundation of China(Nos.41674118 and 41574105)the National Science and Technology Major Project(No.2016ZX05027002)。
文摘Accuracy of angle-domain common-image gathers(ADCIGs)is the key to multiwave AVA inversion and migration velocity analysis,and of which Poynting vectors of pure P-and S-wave are the decisive factors in obtaining multi-component seismic data ADCIGs.A Poynting vector can be obtained from conventional velocity-stress elastic wave equations,but it focused on the propagation direction of mixed P-and S-wave fields,and neither on the propagation direction of the P-wave nor the direction of the S-wave.The Poynting vectors of pure P-or pure S-wave can be calculated from first-order velocity-dilatation-rotation equations.This study presents a method of extracting ADCIGs based on first order velocitydilatation-rotation elastic wave equations reverse-time migration algorithm.The method is as follows:calculating the pure P-wave Poynting vector of source and receiver wavefields by multiplication of P-wave particle-velocity vector and dilatation scalar,calculating the pure S-wave Poynting vector by vector multiplying S-wave particle-velocity vector and rotation vector,selecting the Poynting vector at the time of maximum P-wave energy of source wavefield as the propagation direction of incident P-wave,and obtaining the reflected P-wave(or converted S-wave)propagation direction of the receiver wavefield by the Poynting vector at the time of maximum P-(S-)wave energy in each grid point.Then,the P-wave incident angle is computed by the two propagation directions.Thus,the P-and S-wave ADGICs can obtained Numerical tests show that the proposed method can accurately compute the propagation direction and incident angle of the source and receiver wavefields,thereby achieving high-precision extraction of P-and S-wave ADGICs.
基金the National Natural Science Foundation of China(Grant No.11988102)is gratefully acknowledged.
文摘Nowadays,studies on the mechanism of macro-scopic nonlinear behavior of materials by accumulation of micro-scopic degradation are attracting more attention from researchers.Among numerous approaches,multiscale methods have been proved as powerful and practical approaches in predicting macro-scopic material status by averaging and homogenizing physical information from associated micro-scopic mate-rial behavior.Usually in mechanical problem,the stress,consistent material modulus,and possible mate-rial state variables are quantities in interest through the upscaling process.However,the energy-related quantities are not studied much.Some initiative work has been done in the early year including but not limited to the Hill-Mandel condition in multiscale framework,which gives that the macro-scopic elastic strain energy density can be computed by volumetric averaging of that in the micro-scale.However,in the nonlinear analysis,the energy dissipation is an important quantity to measure the degradation status.In this manuscript,two typical multiscale methods,the first-order computational homogenization(FOCH)and reduced-order homogenization(ROH),are adopted to numerically analyze a fiber-reinforced compos-ite material with capability in material nonlinearity.With numerical experiments,it can be shown that energy dissipation is the same for both approaches.
基金supported by Zhejiang Provincial Natural Science Foundation of China(No.LGC20E010004)the Science Foundation for Distinguished Young Scholars of Zhejiang Province(No.LR15E010001)+2 种基金the National Natural Science Foundation of China(No.51871205)the Key R&D Program of Zhejiang Province of China(No.2017C01004)the National Key Research and Development Project(No.2019YFF0217205)。
文摘In the present work,the magnetization reversal behavior for the melt spinning(Nd_(0.8)Ce_(0.2))_(2)Fe_(12)Co_(2-x)Zr_(x)B(x=0,0.5)permanent alloys with high coercivity was investigated by analyzing the hysteresis curves and the recoil loops.Compared to the Zr-free alloy,the Zr-doped sample obtains higher magnetic properties:coercivity of H_(cj)=650.5 kA·m^(-1),squareness of H_(k)/H_(cj)=0.76 and maximum energy product of(BH)_(max)=131.0 kJ·m^(-3).The first-order reversal curves(FORCs)analysis was taken to identify optimal conditions of exchange coupling for the Zr-free and Zr-doped alloys.The coercivity mechanism of theα-Fe/Nd_(2)Fe_(14)B nanocomposite alloys was analyzed by the angular dependence of the coercive field as measured for the Zr-doped sample.The results show that the magnetic reverse process of the Zr-doped sample can be explained by the pinning model.
文摘Investigating natural-inspired applications is a perennially appealing subject for scientists. The current increase in the speed of natural-origin structure growth may be linked to their superior mechanical properties and environmental resilience. Biological composite structures with helicoidal schemes and designs have remarkable capacities to absorb impact energy and withstand damage. However, there is a dearth of extensive study on the influence of fiber redirection and reorientation inside the matrix of a helicoid structure on its mechanical performance and reactivity. The present study aimed to explore the static and transient responses of a bio-inspired helicoid laminated composite(B-iHLC) shell under the influence of an explosive load using an isomorphic method. The structural integrity of the shell is maintained by a viscoelastic basis known as the Pasternak foundation, which encompasses two coefficients of stiffness and one coefficient of damping. The equilibrium equations governing shell dynamics are obtained by using Hamilton's principle and including the modified first-order shear theory,therefore obviating the need to employ a shear correction factor. The paper's model and approach are validated by doing numerical comparisons with respected publications. The findings of this study may be used in the construction of military and civilian infrastructure in situations when the structure is subjected to severe stresses that might potentially result in catastrophic collapse. The findings of this paper serve as the foundation for several other issues, including geometric optimization and the dynamic response of similar mechanical structures.