As an emerging molecular imaging modality,cone-beam X-ray luminescence computed tomog-raphy(CB-XLCT)uses X-ray-excitable probes to produce near-infrared(NIR)luminescence and then reconst ructs three-dimensional(3D)dis...As an emerging molecular imaging modality,cone-beam X-ray luminescence computed tomog-raphy(CB-XLCT)uses X-ray-excitable probes to produce near-infrared(NIR)luminescence and then reconst ructs three-dimensional(3D)distribution of the probes from surface measurements.A proper photon-transportation model is critical to accuracy of XLCT.Here,we presented a systematic comparison between the common-used Monte Carlo model and simplified spherical harmonics(SPN).The performance of the two methods was evaluated over several main spec-trums using a known XLCT material.We designed both a global measurement based on the cosine similarity and a locally-averaged relative error,to quantitatively assess these methods.The results show that the SP_(3) could reach a good balance between the modeling accuracy and computational efficiency for all of the tested emission spectrums.Besides,the SP_(1)(which is equivalent to the difusion equation(DE))can be a reasonable alternative model for emission wavelength over 692nm.In vivo experiment further demonstrates the reconstruction perfor-mance of the SP:and DE.This study would provide a valuable guidance for modeling the photon-transportation in CB-XLCT.展开更多
This paper puts forward a rigorous approach for a sensitivity analysis of stochastic user equilibrium with the elastic demand (SUEED) model. First, proof is given for the existence of derivatives of output variables...This paper puts forward a rigorous approach for a sensitivity analysis of stochastic user equilibrium with the elastic demand (SUEED) model. First, proof is given for the existence of derivatives of output variables with respect to the perturbation parameters for the SUEED model. Then by taking advantage of the gradient-based method for sensitivity analysis of a general nonlinear program, detailed formulae are developed for calculating the derivatives of designed variables with respect to perturbation parameters at the equilibrium state of the SUEED model. This method is not only applicable for a sensitivity analysis of the logit-type SUEED problem, but also for the probit-type SUEED problem. The application of the proposed method in a numerical example shows that the proposed method can be used to approximate the equilibrium link flow solutions for both logit-type SUEED and probit-type SUEED problems when small perturbations are introduced in the input parameters.展开更多
采用假设模态法对旋转运动柔性梁的动力特性进行研究,给出简化的控制模型.首先采用 Hamilton 原理和假设模态离散化方法,在计入柔性梁由于横向变形而引起的轴向变形的二阶耦合量的条件下,推导出基于柔性梁变形位移场一阶完备的一次...采用假设模态法对旋转运动柔性梁的动力特性进行研究,给出简化的控制模型.首先采用 Hamilton 原理和假设模态离散化方法,在计入柔性梁由于横向变形而引起的轴向变形的二阶耦合量的条件下,推导出基于柔性梁变形位移场一阶完备的一次近似耦合模型,然后对该模型进行简化,忽略柔性梁纵向变形的影响,给出一次近似简化模型,最后将采用假设模态离散化方法的结果与采用有限元离散化方法的结果进行了对比研究.研究中考虑了两种情况:非惯性系下的动力特性研究和系统大范围运动为未知豹动力特性研究.研究结果显示,当系统大范运动为高速时,在假设模态离散化方法中应增加模态数目,较少的模态数目将导致较大误差.一次近似简化模型能够较好地反映出系统的动力学行为,可用于主动控制设计的研究.展开更多
The first-order approximation coupling (FOAC) model was proposed recently for dynamics and control of flexible hub-beam systems. This model may deal with system dynamics for both low and high rotation speed, while t...The first-order approximation coupling (FOAC) model was proposed recently for dynamics and control of flexible hub-beam systems. This model may deal with system dynamics for both low and high rotation speed, while the classical zeroth-order approximation coupling (ZOAC) model is only available for low rotation speed. This paper assumes the FOAC model to present experimental study of active positioning control of a flexible hub-beam system. Linearization and nonlinear control strategies are both considered. An experiment system based on a DSP TMS320F2812 board is introduced. The difference between linearization and nonlinear control strategies are studied both numerically and experimentally. Simulation and experimental results indicate that, linearized controller can make the system reach an expected position with suppressed vibration of flexible beam, but the time taken to position is longer than expected, whereas nonlinear controller works well with precise positioning, suppression of vibration and time control.展开更多
基金the School of Life Science and Technology of Xidian University for providing experimental data acquisition system.This work was supported by the National Natural Science Foundation of China under Grant(Nos.61372046,61401264,11571012,61601363,61640418,61572400)the Science and Technology Plan Program in Shaanxi Province of China under Grant(Nos.2013K12-20-12,2015KW-002)+2 种基金the Natural Science Research Plan Program in Shaanxi Province of China under Grant(No.2015JM6322)the Scienti¯c Research Founded by Shaanxi Provincial Education Department under Grant No.16JK1772the Scienti¯c Research Foundation of Northwest University under Grant Nos.338050018 and 338020012.
文摘As an emerging molecular imaging modality,cone-beam X-ray luminescence computed tomog-raphy(CB-XLCT)uses X-ray-excitable probes to produce near-infrared(NIR)luminescence and then reconst ructs three-dimensional(3D)distribution of the probes from surface measurements.A proper photon-transportation model is critical to accuracy of XLCT.Here,we presented a systematic comparison between the common-used Monte Carlo model and simplified spherical harmonics(SPN).The performance of the two methods was evaluated over several main spec-trums using a known XLCT material.We designed both a global measurement based on the cosine similarity and a locally-averaged relative error,to quantitatively assess these methods.The results show that the SP_(3) could reach a good balance between the modeling accuracy and computational efficiency for all of the tested emission spectrums.Besides,the SP_(1)(which is equivalent to the difusion equation(DE))can be a reasonable alternative model for emission wavelength over 692nm.In vivo experiment further demonstrates the reconstruction perfor-mance of the SP:and DE.This study would provide a valuable guidance for modeling the photon-transportation in CB-XLCT.
基金The Scientific Innovation Research of College Graduates in Jiangsu Province(No.CXLX13_110)the Young Scientists Fund of National Natural Science Foundation of China(No.51408253)the Young Scientists Fund of Huaiyin Institute of Technology(No.491713328)
文摘This paper puts forward a rigorous approach for a sensitivity analysis of stochastic user equilibrium with the elastic demand (SUEED) model. First, proof is given for the existence of derivatives of output variables with respect to the perturbation parameters for the SUEED model. Then by taking advantage of the gradient-based method for sensitivity analysis of a general nonlinear program, detailed formulae are developed for calculating the derivatives of designed variables with respect to perturbation parameters at the equilibrium state of the SUEED model. This method is not only applicable for a sensitivity analysis of the logit-type SUEED problem, but also for the probit-type SUEED problem. The application of the proposed method in a numerical example shows that the proposed method can be used to approximate the equilibrium link flow solutions for both logit-type SUEED and probit-type SUEED problems when small perturbations are introduced in the input parameters.
文摘采用假设模态法对旋转运动柔性梁的动力特性进行研究,给出简化的控制模型.首先采用 Hamilton 原理和假设模态离散化方法,在计入柔性梁由于横向变形而引起的轴向变形的二阶耦合量的条件下,推导出基于柔性梁变形位移场一阶完备的一次近似耦合模型,然后对该模型进行简化,忽略柔性梁纵向变形的影响,给出一次近似简化模型,最后将采用假设模态离散化方法的结果与采用有限元离散化方法的结果进行了对比研究.研究中考虑了两种情况:非惯性系下的动力特性研究和系统大范围运动为未知豹动力特性研究.研究结果显示,当系统大范运动为高速时,在假设模态离散化方法中应增加模态数目,较少的模态数目将导致较大误差.一次近似简化模型能够较好地反映出系统的动力学行为,可用于主动控制设计的研究.
基金supported by the National Natural Science Foundation of China(10772112 and 10472065)the Key Project of Ministry of Education of China(107043)+2 种基金the Key Scientific Project of Shanghai Municipal Education Commission(09ZZ 17)the Specialized Research Fund for the Doctoral Program of Higher Education of China(20070248032)the Research Project of State Key Laboratory of Ocean Engineering of China(GKZD010807)
文摘The first-order approximation coupling (FOAC) model was proposed recently for dynamics and control of flexible hub-beam systems. This model may deal with system dynamics for both low and high rotation speed, while the classical zeroth-order approximation coupling (ZOAC) model is only available for low rotation speed. This paper assumes the FOAC model to present experimental study of active positioning control of a flexible hub-beam system. Linearization and nonlinear control strategies are both considered. An experiment system based on a DSP TMS320F2812 board is introduced. The difference between linearization and nonlinear control strategies are studied both numerically and experimentally. Simulation and experimental results indicate that, linearized controller can make the system reach an expected position with suppressed vibration of flexible beam, but the time taken to position is longer than expected, whereas nonlinear controller works well with precise positioning, suppression of vibration and time control.