We develop first order optimality conditions for constrained vector optimization. The partial orders for the objective and the constraints are induced by closed and convex cones with nonempty interior. After presentin...We develop first order optimality conditions for constrained vector optimization. The partial orders for the objective and the constraints are induced by closed and convex cones with nonempty interior. After presenting some well known existence results for these problems, based on a scalarization approach, we establish necessity of the optimality conditions under a Slater-like constraint qualification, and then sufficiency for the K-convex case. We present two alternative sets of optimality conditions, with the same properties in connection with necessity and sufficiency, but which are different with respect to the dimension of the spaces to which the dual multipliers belong. We introduce a duality scheme, with a point-to-set dual objective, for which strong duality holds. Some examples and open problems for future research are also presented.展开更多
This paper aims to study the optimal control and algorithm implementation of a generalized epidemic model governed by reaction-diffusion equations.Considering individual mobility,this paper first proposes a reaction-d...This paper aims to study the optimal control and algorithm implementation of a generalized epidemic model governed by reaction-diffusion equations.Considering individual mobility,this paper first proposes a reaction-diffusion epidemic model with two strains.Furthermore,applying vaccines as a control strategy in the model,an optimal control problem is proposed to increase the number of healthy individuals while reducing control costs.By applying the truncation function technique and the operator semigroup methods,we prove the existence and uniqueness of a globally positive strong solution for the control model.The existence of the optimal control strategy is proven by using functional analysis theory and minimum sequence methods.The first-order necessary condition satisfied by the optimal control is established by employing the dual techniques.Finally,a specific example and its algorithm are provided.展开更多
基金a post-doctoral fellowship within the Department of Mathematics of the University of Haifa and by FAPERJ (Grant No.E-26/152.107/1990-Bolsa)Partially supported by CNP_q (Grant No.301280/86).Partially supported by CNP_q (Grant No.3002748/2002-4)
文摘We develop first order optimality conditions for constrained vector optimization. The partial orders for the objective and the constraints are induced by closed and convex cones with nonempty interior. After presenting some well known existence results for these problems, based on a scalarization approach, we establish necessity of the optimality conditions under a Slater-like constraint qualification, and then sufficiency for the K-convex case. We present two alternative sets of optimality conditions, with the same properties in connection with necessity and sufficiency, but which are different with respect to the dimension of the spaces to which the dual multipliers belong. We introduce a duality scheme, with a point-to-set dual objective, for which strong duality holds. Some examples and open problems for future research are also presented.
基金Supported by the National Natural Science Foundation of China(Grant Nos.125610811246108612271147)。
文摘This paper aims to study the optimal control and algorithm implementation of a generalized epidemic model governed by reaction-diffusion equations.Considering individual mobility,this paper first proposes a reaction-diffusion epidemic model with two strains.Furthermore,applying vaccines as a control strategy in the model,an optimal control problem is proposed to increase the number of healthy individuals while reducing control costs.By applying the truncation function technique and the operator semigroup methods,we prove the existence and uniqueness of a globally positive strong solution for the control model.The existence of the optimal control strategy is proven by using functional analysis theory and minimum sequence methods.The first-order necessary condition satisfied by the optimal control is established by employing the dual techniques.Finally,a specific example and its algorithm are provided.