Herein,a ternary supramolecular assembly(BPP-BQ?CB[8]-SCD)is successfully constructed by a bromophenylpyridine-tethered-bromoisoquinoline(BPP-BQ),cucurbit[8]uril(CB[8])and sulfonatedβ-cyclodextrin(SCD)via successive ...Herein,a ternary supramolecular assembly(BPP-BQ?CB[8]-SCD)is successfully constructed by a bromophenylpyridine-tethered-bromoisoquinoline(BPP-BQ),cucurbit[8]uril(CB[8])and sulfonatedβ-cyclodextrin(SCD)via successive assembling way,exhibiting progressively enhanced green roomtemperature phosphorescence(RTP).The self-aggregates of BPP-BQ?CB[8]-SCD accommodate an energy acceptor rhodamine B(Rh B)to form a light-harvesting system(BPP-BQ?CB[8]-SCD@Rh B)with further enhanced yellow long-lifetime luminescence with large Stokes shift based on triplet-singlet F?rster resonance energy transfer(TS-FRET).Crucially,the introduction of a photoactive diarylethene achieves the long-lived photoluminescence of BPP-BQ?CB[8]-SCD@Rh B to be switched with the efficiency of up to98%through logically ordered lowering/enhancing RTP performance of the energy donor and intercepting/restoring TS-FRET pathway,when stimulated by host-vip competition and light illumination in sequence.Moreover,BPP-BQ?CB[8]-SCD@Rh B is evenly doped into polyvinyl alcohol or polyacrylamide to obtain high-performance luminescent films with long afterglow.The abovementioned logically ordered stimulus-switched long-lived emission enables the light-harvesting system in both solution and solid state to be applied in high-security-level information encryption and transformation,and anticounterfeiting.展开更多
By means of Logic symmetric relation,the single neighboring Logic path for Ndimensions Boolean ordered set is solved.A new method of determining any logic neighboringsubset in limited dimension is proposed.Its results...By means of Logic symmetric relation,the single neighboring Logic path for Ndimensions Boolean ordered set is solved.A new method of determining any logic neighboringsubset in limited dimension is proposed.Its results are intuitional and realizable for computer.展开更多
Modal logic characterization in a higher-order setting is usually not a trivial task because higher-order process-passing is quite different from first-order name-passing. We study the logical characterization of high...Modal logic characterization in a higher-order setting is usually not a trivial task because higher-order process-passing is quite different from first-order name-passing. We study the logical characterization of higherorder processes constrained by linearity. Linearity respects resource-sensitiveness and does not allow processes to duplicate themselves arbitrarily. We provide a modal logic that characterizes linear higher-order processes,particularly the bisimulation called local bisimulation over them. More importantly, the logic has modalities for higher-order actions downscaled to resembling first-order ones in Hennessy-Milner logic, based on a formulation exploiting the linearity of processes.展开更多
The design and analysis of a fractional order proportional integral deri-vate(FOPID)controller integrated with an adaptive neuro-fuzzy inference system(ANFIS)is proposed in this study.Afirst order plus delay time plant...The design and analysis of a fractional order proportional integral deri-vate(FOPID)controller integrated with an adaptive neuro-fuzzy inference system(ANFIS)is proposed in this study.Afirst order plus delay time plant model has been used to validate the ANFIS combined FOPID control scheme.In the pro-posed adaptive control structure,the intelligent ANFIS was designed such that it will dynamically adjust the fractional order factors(λandµ)of the FOPID(also known as PIλDµ)controller to achieve better control performance.When the plant experiences uncertainties like external load disturbances or sudden changes in the input parameters,the stability and robustness of the system can be achieved effec-tively with the proposed control scheme.Also,a modified structure of the FOPID controller has been used in the present system to enhance the dynamic perfor-mance of the controller.An extensive MATLAB software simulation study was made to verify the usefulness of the proposed control scheme.The study has been carried out under different operating conditions such as external disturbances and sudden changes in input parameters.The results obtained using the ANFIS-FOPID control scheme are also compared to the classical fractional order PIλDµand conventional PID control schemes to validate the advantages of the control-lers.The simulation results confirm the effectiveness of the ANFIS combined FOPID controller for the chosen plant model.Also,the proposed control scheme outperformed traditional control methods in various performance metrics such as rise time,settling time and error criteria.展开更多
基金the National Natural Science Foundation of China(Nos.21801063,22305070 and U20041101)the Top-Notch Talents Program of Henan Agricultural University(Nos.30501049 and 30501032)for financial support。
文摘Herein,a ternary supramolecular assembly(BPP-BQ?CB[8]-SCD)is successfully constructed by a bromophenylpyridine-tethered-bromoisoquinoline(BPP-BQ),cucurbit[8]uril(CB[8])and sulfonatedβ-cyclodextrin(SCD)via successive assembling way,exhibiting progressively enhanced green roomtemperature phosphorescence(RTP).The self-aggregates of BPP-BQ?CB[8]-SCD accommodate an energy acceptor rhodamine B(Rh B)to form a light-harvesting system(BPP-BQ?CB[8]-SCD@Rh B)with further enhanced yellow long-lifetime luminescence with large Stokes shift based on triplet-singlet F?rster resonance energy transfer(TS-FRET).Crucially,the introduction of a photoactive diarylethene achieves the long-lived photoluminescence of BPP-BQ?CB[8]-SCD@Rh B to be switched with the efficiency of up to98%through logically ordered lowering/enhancing RTP performance of the energy donor and intercepting/restoring TS-FRET pathway,when stimulated by host-vip competition and light illumination in sequence.Moreover,BPP-BQ?CB[8]-SCD@Rh B is evenly doped into polyvinyl alcohol or polyacrylamide to obtain high-performance luminescent films with long afterglow.The abovementioned logically ordered stimulus-switched long-lived emission enables the light-harvesting system in both solution and solid state to be applied in high-security-level information encryption and transformation,and anticounterfeiting.
文摘By means of Logic symmetric relation,the single neighboring Logic path for Ndimensions Boolean ordered set is solved.A new method of determining any logic neighboringsubset in limited dimension is proposed.Its results are intuitional and realizable for computer.
基金the National Natural Science Foundation of China(Nos.61202023,61261130589 and61173048)the PACE Project(No.12IS02001)the Specialized Research Fund for the Doctoral Program of Higher Edueation of China(No.20120073120031)
文摘Modal logic characterization in a higher-order setting is usually not a trivial task because higher-order process-passing is quite different from first-order name-passing. We study the logical characterization of higherorder processes constrained by linearity. Linearity respects resource-sensitiveness and does not allow processes to duplicate themselves arbitrarily. We provide a modal logic that characterizes linear higher-order processes,particularly the bisimulation called local bisimulation over them. More importantly, the logic has modalities for higher-order actions downscaled to resembling first-order ones in Hennessy-Milner logic, based on a formulation exploiting the linearity of processes.
基金The author extends their appreciation to the Deputyship for Research&Innovation,Ministry of Education in Saudi Arabia for funding this research work through the project number(IFPSAU-2021/01/18128).
文摘The design and analysis of a fractional order proportional integral deri-vate(FOPID)controller integrated with an adaptive neuro-fuzzy inference system(ANFIS)is proposed in this study.Afirst order plus delay time plant model has been used to validate the ANFIS combined FOPID control scheme.In the pro-posed adaptive control structure,the intelligent ANFIS was designed such that it will dynamically adjust the fractional order factors(λandµ)of the FOPID(also known as PIλDµ)controller to achieve better control performance.When the plant experiences uncertainties like external load disturbances or sudden changes in the input parameters,the stability and robustness of the system can be achieved effec-tively with the proposed control scheme.Also,a modified structure of the FOPID controller has been used in the present system to enhance the dynamic perfor-mance of the controller.An extensive MATLAB software simulation study was made to verify the usefulness of the proposed control scheme.The study has been carried out under different operating conditions such as external disturbances and sudden changes in input parameters.The results obtained using the ANFIS-FOPID control scheme are also compared to the classical fractional order PIλDµand conventional PID control schemes to validate the advantages of the control-lers.The simulation results confirm the effectiveness of the ANFIS combined FOPID controller for the chosen plant model.Also,the proposed control scheme outperformed traditional control methods in various performance metrics such as rise time,settling time and error criteria.