In this paper,based on the topological description method,the kinematic and dynamic equations of the projectile flight and projectile-artillery coupling system during the whole process of firing are constructed.The fa...In this paper,based on the topological description method,the kinematic and dynamic equations of the projectile flight and projectile-artillery coupling system during the whole process of firing are constructed.The factors that can affect the projectile burst points,namely the state parameters of the projectile on the muzzle and state parameters of the barrel muzzle,as well as the factors that affect the barrel muzzle state parameters,are analyzed.On this basis,the design principle of artillery firing accuracy is proposed.The error analysis and the corresponding inverse problem,the extraction method of key parameters affecting artillery implicated motion,the conformal and control method of rotating band are analyzed and presented.Finally,the presented method is verified through a vehicle mounted howitzer case,and the muzzle state parameter interval is obtained meeting the given firing accuracy.In addition,the sensitivity analysis of artillery parameters shows that the less the correlation between the parameters and the barrel,the less the influence on the projectile implicated motion.The analysis of the coupling effect between rifling and the rotating band shows that the uniform rifling is the optimal form for the conformal of the rotating band during firing.展开更多
In this paper, the system and subsystem forecast models for firing accuracy have been built by means of theory of Grey System Forecast. It has provided a scientific forecasting method for micro-error-control and macro...In this paper, the system and subsystem forecast models for firing accuracy have been built by means of theory of Grey System Forecast. It has provided a scientific forecasting method for micro-error-control and macro-error-control and improving the firing accuracy.展开更多
As an army main battle equipment, it is required that the tank should have high firing accuracy and high first round hit probability during marching. The initial disturbance of the projectile is the premier factor tha...As an army main battle equipment, it is required that the tank should have high firing accuracy and high first round hit probability during marching. The initial disturbance of the projectile is the premier factor that takes effect on the marching fire accuracy of the tank. And the marching fire accuracy of the tank depends on the launch dynamics behaviors of the tank. In this paper, the launch dynamics theory of a tank marching fire is studied, and its launch dynamics model is established. Based on the transfer matrix method for multibody system(MSTMM) and the automatic deduction theorem of overall transfer equations, the overall transfer equation and the overall transfer matrix of a tank multibody system are deduced; the launch dynamics equations of the tank marching fire are deduced, and the dynamic response of the tank system, the motion of projectile in barrel, the initial disturbance of the projectile and the vertical target dispersion are exactly simulated; meanwhile, the results of simulation are verified by tests. This work provides both theoretical foundation and simulation approaches for improving the marching fire accuracy of the tank.展开更多
基金This work was supported by the Natural Science Foundation of China(Grant No.11472137)the Fundamental Research Funds for the Central University(Grant No.309181A880 and 30919011204).
文摘In this paper,based on the topological description method,the kinematic and dynamic equations of the projectile flight and projectile-artillery coupling system during the whole process of firing are constructed.The factors that can affect the projectile burst points,namely the state parameters of the projectile on the muzzle and state parameters of the barrel muzzle,as well as the factors that affect the barrel muzzle state parameters,are analyzed.On this basis,the design principle of artillery firing accuracy is proposed.The error analysis and the corresponding inverse problem,the extraction method of key parameters affecting artillery implicated motion,the conformal and control method of rotating band are analyzed and presented.Finally,the presented method is verified through a vehicle mounted howitzer case,and the muzzle state parameter interval is obtained meeting the given firing accuracy.In addition,the sensitivity analysis of artillery parameters shows that the less the correlation between the parameters and the barrel,the less the influence on the projectile implicated motion.The analysis of the coupling effect between rifling and the rotating band shows that the uniform rifling is the optimal form for the conformal of the rotating band during firing.
文摘In this paper, the system and subsystem forecast models for firing accuracy have been built by means of theory of Grey System Forecast. It has provided a scientific forecasting method for micro-error-control and macro-error-control and improving the firing accuracy.
基金the National Natural Science Foundation of China(No.61304137)the Equipment Preresearch Mutual Application Techniques Foundation of China(No.9140A10041013BQ02143)
文摘As an army main battle equipment, it is required that the tank should have high firing accuracy and high first round hit probability during marching. The initial disturbance of the projectile is the premier factor that takes effect on the marching fire accuracy of the tank. And the marching fire accuracy of the tank depends on the launch dynamics behaviors of the tank. In this paper, the launch dynamics theory of a tank marching fire is studied, and its launch dynamics model is established. Based on the transfer matrix method for multibody system(MSTMM) and the automatic deduction theorem of overall transfer equations, the overall transfer equation and the overall transfer matrix of a tank multibody system are deduced; the launch dynamics equations of the tank marching fire are deduced, and the dynamic response of the tank system, the motion of projectile in barrel, the initial disturbance of the projectile and the vertical target dispersion are exactly simulated; meanwhile, the results of simulation are verified by tests. This work provides both theoretical foundation and simulation approaches for improving the marching fire accuracy of the tank.