The interactions between fire,ecosystems,and climate are complex.Tropical ecosystems have dominated global active fires nowadays,yet its causes,mechanisms,and consequences remain relatively poorly understood.To in-ves...The interactions between fire,ecosystems,and climate are complex.Tropical ecosystems have dominated global active fires nowadays,yet its causes,mechanisms,and consequences remain relatively poorly understood.To in-vestigate temporal response of remotely-sensed active fires to intra-annual climate change,several 1-km datasets,including the Moderate-resolution Imaging Spectroradiometer Collection 6(MODIS C6)active fires and the Cli-matologies at High Resolution for the Earth’s Land Surface Areas(CHELSA)climate variables,were gathered to examine the climatic characteristics of active fire incidences,fire-climate correlations,and the average monthly response of active fire occurrences to climate change using the Geographic Information System(GIS)Fishnet tool,Theil-Sen Median slope estimation,Mann-Kendall significance test,and Pearson’s correlation.We concluded that climate variables’trends of nearly two-decade active fires displayed varied degrees of increment in precipitation(Pre),temperature(Tas),and surface downwelling shortwave radiation(Rsds)and inconsistent decrement in near-surface relative humidity(Hurs)and near-surface wind speed(sfcWind).MODIS multi-year(2003-2018)active fires were moderately to strongly correlated negatively with Pre and Hurs at 10 km grid-resolution but positively with sfcWind and Rsds,showing marked geographical variations in correlation direction and strength.The most significant finding is the newly observed inverse relationship between active fires and precipitation on both sides of the equator.High occurrence areas of active fires regularly appear back and forth along with latitudinal changes(at one-degree intervals)in monthly minimum precipitation between the tropical Northern and Southern Hemispheres.The present study contributes to exploring the underlying mechanism of fire-climate interactions against the backdrop of climate warming.展开更多
During the 36th Chinese National Antarctic Research Expedition,aerosol samples were gathered from the Ross Sea in Antarctic to assess the climatic impact of the Australian fires that occurred in 2019-2020.The chemical...During the 36th Chinese National Antarctic Research Expedition,aerosol samples were gathered from the Ross Sea in Antarctic to assess the climatic impact of the Australian fires that occurred in 2019-2020.The chemical compositions,including levoglucosan(Lev)and its isomers,galactosan(Gan)and mannosan(Man),were analyzed.Principal component analysis helped identify the potential sources of these chemical components.By combining backward trajectories with the ratios of CLev/CMan and CMan/CGan,it was further inferred that Australia might be the potential source region for biomass burning.The radiative forcing resulting from biomass burning was evaluated using the Santa Barbara DISORT Atmospheric Radiative Transfer(SBDART)model,which revealed that black carbon emitted from biomass burning could slightly warm the atmosphere(+0.52 W·m^(-2))while causing slightly cooling at the surface(-0.73 W·m^(-2))and the top of the atmosphere(-0.22 W·m^(-2))over the Ross Sea.展开更多
In high-rise building fires, the most immediate threat to passenger life and safety evacuation is the smoke inhalation. Some traditional models for smoke prevention and exhaust are analyzed and compared with the smoke...In high-rise building fires, the most immediate threat to passenger life and safety evacuation is the smoke inhalation. Some traditional models for smoke prevention and exhaust are analyzed and compared with the smoke-preventing air curtain. The rationality and the feasibility of the air curtain are theoretically expounded. The air volume, tuyere width and jet velocity in the air curtain experiment are designed according to the theoreti- cal calculation model. Experimental results indicate that the effect of air curtain to prevent smoke diffusion is re- markable as the volume ratio of air-smoke is about 0. 6, the jet angle is between 25^o and 35^o, and the jet thickness is between 25 mm and 45 mm. The efficiency of air curtain can reach 98% on the entraining effect. Meanwhile, experiments verify the theorectical calculation.展开更多
Transforming growth factor-beta 1(TGF-β1)has been extensively studied for its pleiotropic effects on central nervous system diseases.The neuroprotective or neurotoxic effects of TGF-β1 in specific brain areas may de...Transforming growth factor-beta 1(TGF-β1)has been extensively studied for its pleiotropic effects on central nervous system diseases.The neuroprotective or neurotoxic effects of TGF-β1 in specific brain areas may depend on the pathological process and cell types involved.Voltage-gated sodium channels(VGSCs)are essential ion channels for the generation of action potentials in neurons,and are involved in various neuroexcitation-related diseases.However,the effects of TGF-β1 on the functional properties of VGSCs and firing properties in cortical neurons remain unclear.In this study,we investigated the effects of TGF-β1 on VGSC function and firing properties in primary cortical neurons from mice.We found that TGF-β1 increased VGSC current density in a dose-and time-dependent manner,which was attributable to the upregulation of Nav1.3 expression.Increased VGSC current density and Nav1.3 expression were significantly abolished by preincubation with inhibitors of mitogen-activated protein kinase kinase(PD98059),p38 mitogen-activated protein kinase(SB203580),and Jun NH2-terminal kinase 1/2 inhibitor(SP600125).Interestingly,TGF-β1 significantly increased the firing threshold of action potentials but did not change their firing rate in cortical neurons.These findings suggest that TGF-β1 can increase Nav1.3 expression through activation of the ERK1/2-JNK-MAPK pathway,which leads to a decrease in the firing threshold of action potentials in cortical neurons under pathological conditions.Thus,this contributes to the occurrence and progression of neuroexcitatory-related diseases of the central nervous system.展开更多
Neural damage or degeneration is at the crux of many diseases,and treatment of these diseases will require the development of therapeutics to enhance and guide neural regeneration.Both intrinsic and extrinsic factors ...Neural damage or degeneration is at the crux of many diseases,and treatment of these diseases will require the development of therapeutics to enhance and guide neural regeneration.Both intrinsic and extrinsic factors dictate a neuron’s ability to regenerate,and the combination of these factors results in the great regenerative capacity of the peripheral nervous system(PNS)and the poor regenerative capacity of the central nervous system(CNS)following injury.At the core of a neuron’s function is its ability to relay electrochemical signals,and a neuron’s excitability is a key factor in its ability to regenerate.Recent works have focused on the changes in neuronal electrophysiological properties,firing patterns,and ion flux after injury,which differentially activate signaling pathways at the core of regeneration.The role of glia in neuron regeneration has long been studied.展开更多
LONGQUAN,a historic city in east China’s Zhejiang Province,is renowned for its exquisite celadon ware,featuring fine texture and pure,jade-like glaze.The region has a potterymaking tradition that spans over 1,600 yea...LONGQUAN,a historic city in east China’s Zhejiang Province,is renowned for its exquisite celadon ware,featuring fine texture and pure,jade-like glaze.The region has a potterymaking tradition that spans over 1,600 years.Its celadon firing technique originated during the Three Kingdoms Period(220-280)and reached its peak in the Southern Song Dynasty(1127-1279).Since the Song Dynasty(960-1368),Longquan was among the main suppliers of porcelain for the imperial court.From the 12th to the 15th centuries.展开更多
Earthquakes can cause significant damage and loss of life,necessitating immediate assessment of the resulting fatalities.Rapid assessment and timely revision of fatality estimates are crucial for effective emergency d...Earthquakes can cause significant damage and loss of life,necessitating immediate assessment of the resulting fatalities.Rapid assessment and timely revision of fatality estimates are crucial for effective emergency decisionmaking.This study using the February 6,2023,M_(S)8.0 and M_(S)7.9 Kahramanmaras,Türkiye earthquakes as an example to estimate the ultimate number of fatalities.An early Quick Rough Estimate(QRE)based on the number of deaths reported by the Disaster and Emergency Management Presidency of Türkiye(AFAD)is conducted,and it dynamically adjusts these estimates as new data becomes available.The range of estimates of the final number of deaths can be calculated as 31384–56475 based on the"the QRE of the second day multiplied by 2–3" rule,which incorporates the reported final deaths 50500.The Quasi-Linear and Adaptive Estimation(QLAE)method adaptively adjusts the final fatality estimate within two days and predicts subsequent reported deaths.The correct order of magnitude of the final death toll can be estimated as early as 13 hr after the M_(S)8.0 earthquake.In addition,additional earthquakes such as May 12,2008,M_(S)8.1 Wenchuan earthquake(China),September 8,2023,M_(S)7.2 Al Haouz earthquake(Morocco),November 3,2023,M_(S)5.8 Mid-Western Nepal earthquake,December 18,2023,M_(S)6.1 Jishishan earthquake(China),January 1,2024,M_(S)7.2 Noto Peninsula earthquake(Japan)and August 8,2023,Maui,Hawaii,fires are added again to verified the correctness of the model.The fatalities from the Maui fires are found to be approximately equivalent to those resulting from an M_(S)7.4 earthquake.These methods complement existing frameworks such as Quake Loss Assessment for Response and Mitigation(QLARM)and Prompt Assessment of Global.展开更多
Formaldehyde(HCHO)is a high-yield product of the oxidation of volatile organic compounds(VOCs)released by anthropogenic activities,fires,and vegetations.Hence,we examined the spatiotemporal variation trends in HCHO co...Formaldehyde(HCHO)is a high-yield product of the oxidation of volatile organic compounds(VOCs)released by anthropogenic activities,fires,and vegetations.Hence,we examined the spatiotemporal variation trends in HCHO columns observed using the Ozone Monitoring Instrument(OMI)during 2005–2021 across the Fenwei Plain(FWP)and analysed the source and variability of HCHO using multi-source data,such as thermal anomalies.The spatial distribution of the annualmean HCHO in the FWP increased from northwest to southeast during 2005–2021,and the high-value aggregation areas contracted and gradually clustered,forming a belt-shaped distribution area from Xi’an to Baoji,north of the Qinling Mountains.The annual mean HCHO concentration generally showed a two-step increase over the 17 years.Fires showed a single-peak trend in March and a double-peak M-shaped trend in March and October,whereas urban thermal anomalies(UTAs)showed an inverted U-shaped trend over 17 years,with peaks occurring in May.The HCHO peaks are mainly caused by the alternating contributions of fires and UTAs.The fires and UTAs(predominantly industrial heat sources)played a role in controlling the background level of HCHO in the FWP.Precipitation and temperature were also important influencing variables for seasonal variations,and the influence of plant sources on HCHO concentrations had significant regional characteristics and contributions.In addition,the FWP has poor dispersion conditions and is an aggregated area for the long-range transport of air pollutants.展开更多
On 30 September 2024,the UK shuttered its last remaining coal-fired power plant[1].The closure marks a historic milestone,the end of 142 years of coal fueled prosperity.The country opened the world’s first plant to s...On 30 September 2024,the UK shuttered its last remaining coal-fired power plant[1].The closure marks a historic milestone,the end of 142 years of coal fueled prosperity.The country opened the world’s first plant to supply electric streetlamps in 1882,spark-ing a global energy revolution that has led to today’s nearly univer-sally electrified world.展开更多
Since the Industrial Revolution,humanity’s extensive burning of fossil fuels(coal,oil,and natural gas)has led to a continuous rise in the concentration of greenhouse gases,such as carbon dioxide(CO_(2)),in the atmosp...Since the Industrial Revolution,humanity’s extensive burning of fossil fuels(coal,oil,and natural gas)has led to a continuous rise in the concentration of greenhouse gases,such as carbon dioxide(CO_(2)),in the atmosphere.According to data from the World Meteorological Organization(WMO),the global average CO_(2) concentration in 2023 exceeded 420×10^(−6),reaching the highest level in the past 800000 years.This has led to the increasing frequency of extreme climate events-such as glacier melting,sea-level rise,heatwaves,droughts,floods,and hurricanes-posing a severe threat to ecosystems and human society.展开更多
Mt. Qomolangma (also known as Mt. Everest), the world's highest mountain, is situated over the world's highest plateau, the Tibetan Plateau. Because of its height and because of its distance from industrialized a...Mt. Qomolangma (also known as Mt. Everest), the world's highest mountain, is situated over the world's highest plateau, the Tibetan Plateau. Because of its height and because of its distance from industrialized areas, the environmental state of the Mt. Qonlolangma region can normally be considered 'undisturbed'. It is interesting to investigate how this “undisturbed” state has been changing with time and whether it has been influenced by large environmentally disruptive events such as the Kuwait oil fires of 1990 and 1991 (Small, 1991). In order to do this, river water samples were collected from the Rongpu River at Rongpu Temple Station in the summers of 1992 and 1993,as was done in 1975, and aerosol samples were collected in the summer of 1992 at the same station as was done in 1980. River water samples were analyzed using atomic absorption spectroscopy (AAS) at the Chinese Academy of Sciences. Aerosol samples were analyzed using proton-induced x-ray emission (PIXE) at the University of Fudan in Shanghai. The results show that the concentrations of chemical species in the river water at Rongpu Temple Station were much higher in the summer of 1992 than they were in 1975 and 1993, and the concentrations of atmospheric chemical species were much higher in 1992 than they were in 1980. The environment of the north slope of Mt.Qomolangma was therefore heavily polluted before and / or during the summer of 1992, possibly due to the Kuwait oil fires in 1990 and 1991.展开更多
In the period of the first twenty years after World War II the number of fires in Polish hard coal mines reached annually the value of several thousands of cases. About 80% of fires constituted spontaneous fires. Inve...In the period of the first twenty years after World War II the number of fires in Polish hard coal mines reached annually the value of several thousands of cases. About 80% of fires constituted spontaneous fires. Investigations into the development of new methods of fire hazard prediction and implementation of new methods and means of fire prevention as well as the introduction of prohibition concerning the use of products manufactured of combustible organic materials in underground mine workings re-duced considerably the hazard of underground fire rise. The worked out at the Central Mining Institute (GIG) new method of un-derground fire prediction allows the correct selection of fire prevention means. The introduction into common use of fire-resistant conveyor belts, the main factor giving rise to spontaneous fires, and methods of assessment of their fire resistance eliminated prac-tically the fire hazard. These activities contributed in an efficient way to the reduction of the number of underground fires to a sat-isfactory level.展开更多
Underground coal fires are one of the most common and serious geohazards in most coal producing countries in the world. Monitoring their spatio-temporal changes plays an important role in controlling and preventing th...Underground coal fires are one of the most common and serious geohazards in most coal producing countries in the world. Monitoring their spatio-temporal changes plays an important role in controlling and preventing the effects of coal fires, and their environmental impact. In this study, the spatio-temporal changes of underground coal fires in Khanh Hoa coal field(North-East of Viet Nam) were analyzed using Landsat time-series data during the 2008-2016 period. Based on land surface temperatures retrieved from Landsat thermal data, underground coal fires related to thermal anomalies were identified using the MEDIAN+1.5×IQR(IQR: Interquartile range) threshold technique. The locations of underground coal fires were validated using a coal fire map produced by the field survey data and cross-validated using the daytime ASTER thermal infrared imagery. Based on the fires extracted from seven Landsat thermal imageries, the spatiotemporal changes of underground coal fire areas were analyzed. The results showed that the thermalanomalous zones have been correlated with known coal fires. Cross-validation of coal fires using ASTER TIR data showed a high consistency of 79.3%. The largest coal fire area of 184.6 hectares was detected in 2010, followed by 2014(181.1 hectares) and 2016(178.5 hectares). The smaller coal fire areas were extracted with areas of 133.6 and 152.5 hectares in 2011 and 2009 respectively. Underground coal fires were mainly detected in the northern and southern part, and tend to spread to north-west of the coal field.展开更多
Forest ecosystems are our priceless natural resource and are a key component of the global carbon budget. Forest fires can be a hazard to the viability and sustainable management of forests with consequences for natur...Forest ecosystems are our priceless natural resource and are a key component of the global carbon budget. Forest fires can be a hazard to the viability and sustainable management of forests with consequences for natural and cultural environments, economies, and the life quality of local and regional populations. Thus, the selection of strategies to manage forest fires, while considering both functional and economic efficiency, is of primary importance. The use of decision support systems(DSSs) by managers of forest fires has rapidly increased. This has strengthened capacity to prevent and suppress forest fires while protecting human lives and property. DSSs are a tool that can benefit incident management and decision making and policy, especially for emergencies such as natural disasters. In this study we reviewed state-of-the-art DSSs that use: database management systems and mathematical/economic algorithms for spatial optimization of firefighting forces; forest fire simulators and satellite technology for immediate detection and prediction of evolution of forest fires; GIS platforms that incorporate several tools to manipulate, process and analyze geographic data and develop strategic and operational plans.展开更多
Understanding the spatiotemporal links between drought and forest fire occurrence is crucial for improving decision-making in fire management under current and future climatic conditions. We quantified forest fire act...Understanding the spatiotemporal links between drought and forest fire occurrence is crucial for improving decision-making in fire management under current and future climatic conditions. We quantified forest fire activity in Mexico using georeferenced fire records for the period of 2005–2015 and examined its spatial and temporal relationships with a multiscalar drought index, the Standardized Precipitation-Evapotranspiration Index(SPEI). A total of 47975 fire counts were recorded in the 11-year long study period, with the peak in fire frequency occurring in 2011. We identified four fire clusters, i.e., regions where there is a high density of fire records in Mexico using the Getis-Ord G spatial statistic. Then, we examined fire frequency data in the clustered regions and assessed how fire activity related to the SPEI for the entire study period and also for the year 2011. Associations between the SPEI and fire frequency varied across Mexico and fire-SPEI relationships also varied across the months of major fire occurrence and related SPEI temporal scales. In particular, in the two fire clusters located in northern Mexico(Chihuahua, northern Baja California), drier conditions over the previous 5 months triggered fire occurrence. In contrast, we did not observe a significant relationship between drought severity and fire frequency in the central Mexico cluster, which exhibited the highest fire frequency. We also found moderate fire-drought associations in the cluster situated in the tropical southern Chiapas where agriculture activities are the main causes of forest fire occurrence. These results are useful for improving our understanding of the spatiotemporal patterns of fire occurrence as related to drought severity in megadiverse countries hosting many forest types as Mexico.展开更多
Grassland fires results in carbon emissions,which directly affects the carbon cycle of ecosystems and the carbon balance.The grassland area of Inner Mongolia accounts for 22%of the total grassland area in China,and ma...Grassland fires results in carbon emissions,which directly affects the carbon cycle of ecosystems and the carbon balance.The grassland area of Inner Mongolia accounts for 22%of the total grassland area in China,and many fires occur in the area every year.However,there are few models for estimation of carbon emissions from grassland fires.Accurate estimation of direct carbon emissions from grassland fires is critical to quantifying the contribution of grassland fires to the regional balance of atmospheric carbon.In this study,the regression equations for aboveground biomass(AGB)of grassland in growing season and MODIS NDVI(Normalized Difference Vegetation Index)were established through field experiments,then AGB during Nov.–Apr.were retrieved based on that in Oct.and decline rate,finally surface fuel load was obtained for whole year.Based on controlled combustion experiments of different grassland types in Inner Mongolia,the carbon emission rate of grassland fires for each grassland type were determined,then carbon emission was estimated using proposed method and carbon emission rate.Results revealed that annual average surface fuel load of grasslands in Inner Mongolia during 2000–2016 was approximately 1.1978×1012 kg.The total area of grassland which was burned in the Inner Mongolia region over the 17-year period was 5298.75 km2,with the annual average area of 311.69 km2.The spatial distribution of grassland surface fuel loads is characterized by decreasing from northeast to southwest in Inner Mongolia.The total carbon emissions from grassland fires amounted to 2.24×107 kg with an annual average of 1.32×106 for the study area.The areas with most carbon emissions were mainly concentrated in Old Barag Banner and New Barag Right Banner and on the right side of the Oroqin Autonomous Banner.The spatial characteristics of carbon emission depend on the location of grassland fire,mainly in the northeast of Inner Mongolia include Hulunbuir City,Hinggan League,Xilin Gol League and Ulanqab City.The area and spatial location of grassland fires can directly affect the total amount and spatial distribution of carbon emissions.This study provides a reference for estimating carbon emissions from steppe fires.The model and framework for estimation of carbon emissions from grassland fires established can provide a reference value for estimation of carbon emissions from grassland fires in other regions.展开更多
The fire behaviour involving multiple fires in a mine drift with longitudinal ventilation was analysed. The conditions and fire phenomena occurring were described. The analysis was based upon experimental data from mo...The fire behaviour involving multiple fires in a mine drift with longitudinal ventilation was analysed. The conditions and fire phenomena occurring were described. The analysis was based upon experimental data from model-scale fire experiments. A fire involving several fuel items may lead to flames tilted horizontally and filling up the entire cross section, leading to earlier ignition, higher fire growth rates, higher fire spread rate and severe fire behaviour. Longer flame lengths will also result due to decreased air entrainment. A correlation for the continuous flame length was proposed. The results of the analysis will help identifying and preventing potentially dangerous fire situations with several large combustible items distributed along a mine drift.展开更多
Understanding the mechanisms and risks of forest fires by building a spatial prediction model is an important means of controlling forest fires.Non-fire point data are important training data for constructing a model,...Understanding the mechanisms and risks of forest fires by building a spatial prediction model is an important means of controlling forest fires.Non-fire point data are important training data for constructing a model,and their quality significantly impacts the prediction performance of the model.However,non-fire point data obtained using existing sampling methods generally suffer from low representativeness.Therefore,this study proposes a non-fire point data sampling method based on geographical similarity to improve the quality of non-fire point samples.The method is based on the idea that the less similar the geographical environment between a sample point and an already occurred fire point,the greater the confidence in being a non-fire point sample.Yunnan Province,China,with a high frequency of forest fires,was used as the study area.We compared the prediction performance of traditional sampling methods and the proposed method using three commonly used forest fire risk prediction models:logistic regression(LR),support vector machine(SVM),and random forest(RF).The results show that the modeling and prediction accuracies of the forest fire prediction models established based on the proposed sampling method are significantly improved compared with those of the traditional sampling method.Specifically,in 2010,the modeling and prediction accuracies improved by 19.1%and 32.8%,respectively,and in 2020,they improved by 13.1%and 24.3%,respectively.Therefore,we believe that collecting non-fire point samples based on the principle of geographical similarity is an effective way to improve the quality of forest fire samples,and thus enhance the prediction of forest fire risk.展开更多
The objective of this work is to investigate the influence of smoke movement during mine fires on miner evacuation behaviors. A three-dimensional computational fluid dynamics method was conducted to reconstruct the la...The objective of this work is to investigate the influence of smoke movement during mine fires on miner evacuation behaviors. A three-dimensional computational fluid dynamics method was conducted to reconstruct the lane- way conveyor belt fire scenes under two ventilating conditions. The parameters, including temperature-time histories, soot density, carbon monoxide and heat release rate, were simulated to characterize the mine fires at various ventilating speeds. A miner evacuation model affected by fire smoke movement was advanced to describe the miner evacuation behaviors, which can be divided into three stages. Based on the evacuation model coupled with the mine fire smoke movement, the available safety evacuation time for miners involved in coal mine fire located in different sites was estimated. Two evacuation patterns were advanced according to the ventilating speeds combined with the model of miner evacuation behaviors. The results show that the miners located between the inlet-air end and the air door in lane 1 should be evacuated to the inlet-air end and other miners involved in coal mine fire could choose the air door as the escaping destination, when the ventilation speed is greater than 3 m/s. Accordingly, the research can be used as references for the mine safety administration authorities to design the safety evacuation.展开更多
Coal fires have a very long history in China; the oldest coal fires have being burning for many million years. Up to now more than 56 coal fires spots were distin-guished. They mainly locate in West-North of China, No...Coal fires have a very long history in China; the oldest coal fires have being burning for many million years. Up to now more than 56 coal fires spots were distin-guished. They mainly locate in West-North of China, North of China and East-North of China. About millions of tons of coal have been burned in fires every year. Xinjiang Autonomy is the most serious region in coal fires as it has 38 coal fires spots and about 6.85 million tons of coal was burned every year. Coal fires in China ignited by wildfires, spontaneous combustion and human being during mining activities. These fires have re-leased about 0.9 million tons of gasses (including CO, CO2, SO2, NO2 CH4, CO2, H2S etc.) into the atmosphere every year, most of which are brought to the east by wind and result-ing more heavier air pollution in northern China.展开更多
基金funded by National Natural Science Foundation of China(Grants No.42371282 and 42130508)the Second Ti-betan Plateau Scientific Expedition and Research Program(Grant No.2019QZKK1006)Youth Innovation Promotion Association of the Chinese Academy of Sciences(Grant No.2020055)。
文摘The interactions between fire,ecosystems,and climate are complex.Tropical ecosystems have dominated global active fires nowadays,yet its causes,mechanisms,and consequences remain relatively poorly understood.To in-vestigate temporal response of remotely-sensed active fires to intra-annual climate change,several 1-km datasets,including the Moderate-resolution Imaging Spectroradiometer Collection 6(MODIS C6)active fires and the Cli-matologies at High Resolution for the Earth’s Land Surface Areas(CHELSA)climate variables,were gathered to examine the climatic characteristics of active fire incidences,fire-climate correlations,and the average monthly response of active fire occurrences to climate change using the Geographic Information System(GIS)Fishnet tool,Theil-Sen Median slope estimation,Mann-Kendall significance test,and Pearson’s correlation.We concluded that climate variables’trends of nearly two-decade active fires displayed varied degrees of increment in precipitation(Pre),temperature(Tas),and surface downwelling shortwave radiation(Rsds)and inconsistent decrement in near-surface relative humidity(Hurs)and near-surface wind speed(sfcWind).MODIS multi-year(2003-2018)active fires were moderately to strongly correlated negatively with Pre and Hurs at 10 km grid-resolution but positively with sfcWind and Rsds,showing marked geographical variations in correlation direction and strength.The most significant finding is the newly observed inverse relationship between active fires and precipitation on both sides of the equator.High occurrence areas of active fires regularly appear back and forth along with latitudinal changes(at one-degree intervals)in monthly minimum precipitation between the tropical Northern and Southern Hemispheres.The present study contributes to exploring the underlying mechanism of fire-climate interactions against the backdrop of climate warming.
基金supported by the National Natural Science Foundation of China (Grant nos. 41941014 and 41930532)financially supported by National Polar Special Program “Impact and Response of Antarctic Seas to Climate Change”(Grant no. IRASCC 01-01-02E)。
文摘During the 36th Chinese National Antarctic Research Expedition,aerosol samples were gathered from the Ross Sea in Antarctic to assess the climatic impact of the Australian fires that occurred in 2019-2020.The chemical compositions,including levoglucosan(Lev)and its isomers,galactosan(Gan)and mannosan(Man),were analyzed.Principal component analysis helped identify the potential sources of these chemical components.By combining backward trajectories with the ratios of CLev/CMan and CMan/CGan,it was further inferred that Australia might be the potential source region for biomass burning.The radiative forcing resulting from biomass burning was evaluated using the Santa Barbara DISORT Atmospheric Radiative Transfer(SBDART)model,which revealed that black carbon emitted from biomass burning could slightly warm the atmosphere(+0.52 W·m^(-2))while causing slightly cooling at the surface(-0.73 W·m^(-2))and the top of the atmosphere(-0.22 W·m^(-2))over the Ross Sea.
文摘In high-rise building fires, the most immediate threat to passenger life and safety evacuation is the smoke inhalation. Some traditional models for smoke prevention and exhaust are analyzed and compared with the smoke-preventing air curtain. The rationality and the feasibility of the air curtain are theoretically expounded. The air volume, tuyere width and jet velocity in the air curtain experiment are designed according to the theoreti- cal calculation model. Experimental results indicate that the effect of air curtain to prevent smoke diffusion is re- markable as the volume ratio of air-smoke is about 0. 6, the jet angle is between 25^o and 35^o, and the jet thickness is between 25 mm and 45 mm. The efficiency of air curtain can reach 98% on the entraining effect. Meanwhile, experiments verify the theorectical calculation.
基金supported by the Natural Science Foundation of Guangdong Province,Nos.2019A1515010649(to WC),2022A1515012044(to JS)the China Postdoctoral Science Foundation,No.2018M633091(to JS).
文摘Transforming growth factor-beta 1(TGF-β1)has been extensively studied for its pleiotropic effects on central nervous system diseases.The neuroprotective or neurotoxic effects of TGF-β1 in specific brain areas may depend on the pathological process and cell types involved.Voltage-gated sodium channels(VGSCs)are essential ion channels for the generation of action potentials in neurons,and are involved in various neuroexcitation-related diseases.However,the effects of TGF-β1 on the functional properties of VGSCs and firing properties in cortical neurons remain unclear.In this study,we investigated the effects of TGF-β1 on VGSC function and firing properties in primary cortical neurons from mice.We found that TGF-β1 increased VGSC current density in a dose-and time-dependent manner,which was attributable to the upregulation of Nav1.3 expression.Increased VGSC current density and Nav1.3 expression were significantly abolished by preincubation with inhibitors of mitogen-activated protein kinase kinase(PD98059),p38 mitogen-activated protein kinase(SB203580),and Jun NH2-terminal kinase 1/2 inhibitor(SP600125).Interestingly,TGF-β1 significantly increased the firing threshold of action potentials but did not change their firing rate in cortical neurons.These findings suggest that TGF-β1 can increase Nav1.3 expression through activation of the ERK1/2-JNK-MAPK pathway,which leads to a decrease in the firing threshold of action potentials in cortical neurons under pathological conditions.Thus,this contributes to the occurrence and progression of neuroexcitatory-related diseases of the central nervous system.
文摘Neural damage or degeneration is at the crux of many diseases,and treatment of these diseases will require the development of therapeutics to enhance and guide neural regeneration.Both intrinsic and extrinsic factors dictate a neuron’s ability to regenerate,and the combination of these factors results in the great regenerative capacity of the peripheral nervous system(PNS)and the poor regenerative capacity of the central nervous system(CNS)following injury.At the core of a neuron’s function is its ability to relay electrochemical signals,and a neuron’s excitability is a key factor in its ability to regenerate.Recent works have focused on the changes in neuronal electrophysiological properties,firing patterns,and ion flux after injury,which differentially activate signaling pathways at the core of regeneration.The role of glia in neuron regeneration has long been studied.
文摘LONGQUAN,a historic city in east China’s Zhejiang Province,is renowned for its exquisite celadon ware,featuring fine texture and pure,jade-like glaze.The region has a potterymaking tradition that spans over 1,600 years.Its celadon firing technique originated during the Three Kingdoms Period(220-280)and reached its peak in the Southern Song Dynasty(1127-1279).Since the Song Dynasty(960-1368),Longquan was among the main suppliers of porcelain for the imperial court.From the 12th to the 15th centuries.
基金supported by the National Natural Science Foundation of China(NSFC,grant number U2039207).
文摘Earthquakes can cause significant damage and loss of life,necessitating immediate assessment of the resulting fatalities.Rapid assessment and timely revision of fatality estimates are crucial for effective emergency decisionmaking.This study using the February 6,2023,M_(S)8.0 and M_(S)7.9 Kahramanmaras,Türkiye earthquakes as an example to estimate the ultimate number of fatalities.An early Quick Rough Estimate(QRE)based on the number of deaths reported by the Disaster and Emergency Management Presidency of Türkiye(AFAD)is conducted,and it dynamically adjusts these estimates as new data becomes available.The range of estimates of the final number of deaths can be calculated as 31384–56475 based on the"the QRE of the second day multiplied by 2–3" rule,which incorporates the reported final deaths 50500.The Quasi-Linear and Adaptive Estimation(QLAE)method adaptively adjusts the final fatality estimate within two days and predicts subsequent reported deaths.The correct order of magnitude of the final death toll can be estimated as early as 13 hr after the M_(S)8.0 earthquake.In addition,additional earthquakes such as May 12,2008,M_(S)8.1 Wenchuan earthquake(China),September 8,2023,M_(S)7.2 Al Haouz earthquake(Morocco),November 3,2023,M_(S)5.8 Mid-Western Nepal earthquake,December 18,2023,M_(S)6.1 Jishishan earthquake(China),January 1,2024,M_(S)7.2 Noto Peninsula earthquake(Japan)and August 8,2023,Maui,Hawaii,fires are added again to verified the correctness of the model.The fatalities from the Maui fires are found to be approximately equivalent to those resulting from an M_(S)7.4 earthquake.These methods complement existing frameworks such as Quake Loss Assessment for Response and Mitigation(QLARM)and Prompt Assessment of Global.
基金supported by the National Natural Science Foundation of China(No.41571062)the Fundamental Research Funds for the Central Universities(No.2021TS014)the Natural Science Basic Research Plan in Shaanxi Province of China(No.2023-JC-YB-259).
文摘Formaldehyde(HCHO)is a high-yield product of the oxidation of volatile organic compounds(VOCs)released by anthropogenic activities,fires,and vegetations.Hence,we examined the spatiotemporal variation trends in HCHO columns observed using the Ozone Monitoring Instrument(OMI)during 2005–2021 across the Fenwei Plain(FWP)and analysed the source and variability of HCHO using multi-source data,such as thermal anomalies.The spatial distribution of the annualmean HCHO in the FWP increased from northwest to southeast during 2005–2021,and the high-value aggregation areas contracted and gradually clustered,forming a belt-shaped distribution area from Xi’an to Baoji,north of the Qinling Mountains.The annual mean HCHO concentration generally showed a two-step increase over the 17 years.Fires showed a single-peak trend in March and a double-peak M-shaped trend in March and October,whereas urban thermal anomalies(UTAs)showed an inverted U-shaped trend over 17 years,with peaks occurring in May.The HCHO peaks are mainly caused by the alternating contributions of fires and UTAs.The fires and UTAs(predominantly industrial heat sources)played a role in controlling the background level of HCHO in the FWP.Precipitation and temperature were also important influencing variables for seasonal variations,and the influence of plant sources on HCHO concentrations had significant regional characteristics and contributions.In addition,the FWP has poor dispersion conditions and is an aggregated area for the long-range transport of air pollutants.
文摘On 30 September 2024,the UK shuttered its last remaining coal-fired power plant[1].The closure marks a historic milestone,the end of 142 years of coal fueled prosperity.The country opened the world’s first plant to supply electric streetlamps in 1882,spark-ing a global energy revolution that has led to today’s nearly univer-sally electrified world.
文摘Since the Industrial Revolution,humanity’s extensive burning of fossil fuels(coal,oil,and natural gas)has led to a continuous rise in the concentration of greenhouse gases,such as carbon dioxide(CO_(2)),in the atmosphere.According to data from the World Meteorological Organization(WMO),the global average CO_(2) concentration in 2023 exceeded 420×10^(−6),reaching the highest level in the past 800000 years.This has led to the increasing frequency of extreme climate events-such as glacier melting,sea-level rise,heatwaves,droughts,floods,and hurricanes-posing a severe threat to ecosystems and human society.
文摘Mt. Qomolangma (also known as Mt. Everest), the world's highest mountain, is situated over the world's highest plateau, the Tibetan Plateau. Because of its height and because of its distance from industrialized areas, the environmental state of the Mt. Qonlolangma region can normally be considered 'undisturbed'. It is interesting to investigate how this “undisturbed” state has been changing with time and whether it has been influenced by large environmentally disruptive events such as the Kuwait oil fires of 1990 and 1991 (Small, 1991). In order to do this, river water samples were collected from the Rongpu River at Rongpu Temple Station in the summers of 1992 and 1993,as was done in 1975, and aerosol samples were collected in the summer of 1992 at the same station as was done in 1980. River water samples were analyzed using atomic absorption spectroscopy (AAS) at the Chinese Academy of Sciences. Aerosol samples were analyzed using proton-induced x-ray emission (PIXE) at the University of Fudan in Shanghai. The results show that the concentrations of chemical species in the river water at Rongpu Temple Station were much higher in the summer of 1992 than they were in 1975 and 1993, and the concentrations of atmospheric chemical species were much higher in 1992 than they were in 1980. The environment of the north slope of Mt.Qomolangma was therefore heavily polluted before and / or during the summer of 1992, possibly due to the Kuwait oil fires in 1990 and 1991.
文摘In the period of the first twenty years after World War II the number of fires in Polish hard coal mines reached annually the value of several thousands of cases. About 80% of fires constituted spontaneous fires. Investigations into the development of new methods of fire hazard prediction and implementation of new methods and means of fire prevention as well as the introduction of prohibition concerning the use of products manufactured of combustible organic materials in underground mine workings re-duced considerably the hazard of underground fire rise. The worked out at the Central Mining Institute (GIG) new method of un-derground fire prediction allows the correct selection of fire prevention means. The introduction into common use of fire-resistant conveyor belts, the main factor giving rise to spontaneous fires, and methods of assessment of their fire resistance eliminated prac-tically the fire hazard. These activities contributed in an efficient way to the reduction of the number of underground fires to a sat-isfactory level.
基金funded by the Ministry-level Scientific and Technological Key Programs of Ministry of Natural Resources and Environment of Viet Nam "Application of thermal infrared remote sensing and GIS for mapping underground coal fires in Quang Ninh coal basin" (Grant No. TNMT.2017.08.06)
文摘Underground coal fires are one of the most common and serious geohazards in most coal producing countries in the world. Monitoring their spatio-temporal changes plays an important role in controlling and preventing the effects of coal fires, and their environmental impact. In this study, the spatio-temporal changes of underground coal fires in Khanh Hoa coal field(North-East of Viet Nam) were analyzed using Landsat time-series data during the 2008-2016 period. Based on land surface temperatures retrieved from Landsat thermal data, underground coal fires related to thermal anomalies were identified using the MEDIAN+1.5×IQR(IQR: Interquartile range) threshold technique. The locations of underground coal fires were validated using a coal fire map produced by the field survey data and cross-validated using the daytime ASTER thermal infrared imagery. Based on the fires extracted from seven Landsat thermal imageries, the spatiotemporal changes of underground coal fire areas were analyzed. The results showed that the thermalanomalous zones have been correlated with known coal fires. Cross-validation of coal fires using ASTER TIR data showed a high consistency of 79.3%. The largest coal fire area of 184.6 hectares was detected in 2010, followed by 2014(181.1 hectares) and 2016(178.5 hectares). The smaller coal fire areas were extracted with areas of 133.6 and 152.5 hectares in 2011 and 2009 respectively. Underground coal fires were mainly detected in the northern and southern part, and tend to spread to north-west of the coal field.
基金co-financed by the European Union(European Social Fund-ESF)and Greek national funds through the Operational Program‘‘Education and Lifelong Learning’’of the National Strategic Reference Framework(NSRF)-Research Funding Program:Thales.Investing in knowledge society through the European Social Fund
文摘Forest ecosystems are our priceless natural resource and are a key component of the global carbon budget. Forest fires can be a hazard to the viability and sustainable management of forests with consequences for natural and cultural environments, economies, and the life quality of local and regional populations. Thus, the selection of strategies to manage forest fires, while considering both functional and economic efficiency, is of primary importance. The use of decision support systems(DSSs) by managers of forest fires has rapidly increased. This has strengthened capacity to prevent and suppress forest fires while protecting human lives and property. DSSs are a tool that can benefit incident management and decision making and policy, especially for emergencies such as natural disasters. In this study we reviewed state-of-the-art DSSs that use: database management systems and mathematical/economic algorithms for spatial optimization of firefighting forces; forest fire simulators and satellite technology for immediate detection and prediction of evolution of forest fires; GIS platforms that incorporate several tools to manipulate, process and analyze geographic data and develop strategic and operational plans.
基金Under the auspices of Universidad Juárez del Estado de Durango,Project PRODEP 2017(No.120418)
文摘Understanding the spatiotemporal links between drought and forest fire occurrence is crucial for improving decision-making in fire management under current and future climatic conditions. We quantified forest fire activity in Mexico using georeferenced fire records for the period of 2005–2015 and examined its spatial and temporal relationships with a multiscalar drought index, the Standardized Precipitation-Evapotranspiration Index(SPEI). A total of 47975 fire counts were recorded in the 11-year long study period, with the peak in fire frequency occurring in 2011. We identified four fire clusters, i.e., regions where there is a high density of fire records in Mexico using the Getis-Ord G spatial statistic. Then, we examined fire frequency data in the clustered regions and assessed how fire activity related to the SPEI for the entire study period and also for the year 2011. Associations between the SPEI and fire frequency varied across Mexico and fire-SPEI relationships also varied across the months of major fire occurrence and related SPEI temporal scales. In particular, in the two fire clusters located in northern Mexico(Chihuahua, northern Baja California), drier conditions over the previous 5 months triggered fire occurrence. In contrast, we did not observe a significant relationship between drought severity and fire frequency in the central Mexico cluster, which exhibited the highest fire frequency. We also found moderate fire-drought associations in the cluster situated in the tropical southern Chiapas where agriculture activities are the main causes of forest fire occurrence. These results are useful for improving our understanding of the spatiotemporal patterns of fire occurrence as related to drought severity in megadiverse countries hosting many forest types as Mexico.
基金Under the auspices of National Natural Science Foundation of China (No. 4176110141771450+2 种基金41871330)National Natural Science Foundation of Inner Mongolia (No. 2017MS0409)Fundamental Research Funds for the Central Universities (No. 2412019BJ001)
文摘Grassland fires results in carbon emissions,which directly affects the carbon cycle of ecosystems and the carbon balance.The grassland area of Inner Mongolia accounts for 22%of the total grassland area in China,and many fires occur in the area every year.However,there are few models for estimation of carbon emissions from grassland fires.Accurate estimation of direct carbon emissions from grassland fires is critical to quantifying the contribution of grassland fires to the regional balance of atmospheric carbon.In this study,the regression equations for aboveground biomass(AGB)of grassland in growing season and MODIS NDVI(Normalized Difference Vegetation Index)were established through field experiments,then AGB during Nov.–Apr.were retrieved based on that in Oct.and decline rate,finally surface fuel load was obtained for whole year.Based on controlled combustion experiments of different grassland types in Inner Mongolia,the carbon emission rate of grassland fires for each grassland type were determined,then carbon emission was estimated using proposed method and carbon emission rate.Results revealed that annual average surface fuel load of grasslands in Inner Mongolia during 2000–2016 was approximately 1.1978×1012 kg.The total area of grassland which was burned in the Inner Mongolia region over the 17-year period was 5298.75 km2,with the annual average area of 311.69 km2.The spatial distribution of grassland surface fuel loads is characterized by decreasing from northeast to southwest in Inner Mongolia.The total carbon emissions from grassland fires amounted to 2.24×107 kg with an annual average of 1.32×106 for the study area.The areas with most carbon emissions were mainly concentrated in Old Barag Banner and New Barag Right Banner and on the right side of the Oroqin Autonomous Banner.The spatial characteristics of carbon emission depend on the location of grassland fire,mainly in the northeast of Inner Mongolia include Hulunbuir City,Hinggan League,Xilin Gol League and Ulanqab City.The area and spatial location of grassland fires can directly affect the total amount and spatial distribution of carbon emissions.This study provides a reference for estimating carbon emissions from steppe fires.The model and framework for estimation of carbon emissions from grassland fires established can provide a reference value for estimation of carbon emissions from grassland fires in other regions.
文摘The fire behaviour involving multiple fires in a mine drift with longitudinal ventilation was analysed. The conditions and fire phenomena occurring were described. The analysis was based upon experimental data from model-scale fire experiments. A fire involving several fuel items may lead to flames tilted horizontally and filling up the entire cross section, leading to earlier ignition, higher fire growth rates, higher fire spread rate and severe fire behaviour. Longer flame lengths will also result due to decreased air entrainment. A correlation for the continuous flame length was proposed. The results of the analysis will help identifying and preventing potentially dangerous fire situations with several large combustible items distributed along a mine drift.
基金financially supported by the National Natural Science Fundation of China(Grant Nos.42161065 and 41461038)。
文摘Understanding the mechanisms and risks of forest fires by building a spatial prediction model is an important means of controlling forest fires.Non-fire point data are important training data for constructing a model,and their quality significantly impacts the prediction performance of the model.However,non-fire point data obtained using existing sampling methods generally suffer from low representativeness.Therefore,this study proposes a non-fire point data sampling method based on geographical similarity to improve the quality of non-fire point samples.The method is based on the idea that the less similar the geographical environment between a sample point and an already occurred fire point,the greater the confidence in being a non-fire point sample.Yunnan Province,China,with a high frequency of forest fires,was used as the study area.We compared the prediction performance of traditional sampling methods and the proposed method using three commonly used forest fire risk prediction models:logistic regression(LR),support vector machine(SVM),and random forest(RF).The results show that the modeling and prediction accuracies of the forest fire prediction models established based on the proposed sampling method are significantly improved compared with those of the traditional sampling method.Specifically,in 2010,the modeling and prediction accuracies improved by 19.1%and 32.8%,respectively,and in 2020,they improved by 13.1%and 24.3%,respectively.Therefore,we believe that collecting non-fire point samples based on the principle of geographical similarity is an effective way to improve the quality of forest fire samples,and thus enhance the prediction of forest fire risk.
基金National Natural Science Foundation of China (51274205), the Doctoral Program Foundation of Ministry of Education the New Teacher Project (20070290022) and the Open Project of China University of Mining and Technology Resources and Mine Safety State Key Laboratory (S KLCRSM 10KFB 13).
文摘The objective of this work is to investigate the influence of smoke movement during mine fires on miner evacuation behaviors. A three-dimensional computational fluid dynamics method was conducted to reconstruct the lane- way conveyor belt fire scenes under two ventilating conditions. The parameters, including temperature-time histories, soot density, carbon monoxide and heat release rate, were simulated to characterize the mine fires at various ventilating speeds. A miner evacuation model affected by fire smoke movement was advanced to describe the miner evacuation behaviors, which can be divided into three stages. Based on the evacuation model coupled with the mine fire smoke movement, the available safety evacuation time for miners involved in coal mine fire located in different sites was estimated. Two evacuation patterns were advanced according to the ventilating speeds combined with the model of miner evacuation behaviors. The results show that the miners located between the inlet-air end and the air door in lane 1 should be evacuated to the inlet-air end and other miners involved in coal mine fire could choose the air door as the escaping destination, when the ventilation speed is greater than 3 m/s. Accordingly, the research can be used as references for the mine safety administration authorities to design the safety evacuation.
基金Supported by National Natural Science Foundation of China (40272124)
文摘Coal fires have a very long history in China; the oldest coal fires have being burning for many million years. Up to now more than 56 coal fires spots were distin-guished. They mainly locate in West-North of China, North of China and East-North of China. About millions of tons of coal have been burned in fires every year. Xinjiang Autonomy is the most serious region in coal fires as it has 38 coal fires spots and about 6.85 million tons of coal was burned every year. Coal fires in China ignited by wildfires, spontaneous combustion and human being during mining activities. These fires have re-leased about 0.9 million tons of gasses (including CO, CO2, SO2, NO2 CH4, CO2, H2S etc.) into the atmosphere every year, most of which are brought to the east by wind and result-ing more heavier air pollution in northern China.