In order to enhance the accuracy of Air Traffic Control(ATC)cybersecurity attack detection,in this paper,a new clustering detection method is designed for air traffic control network security attacks.The feature set f...In order to enhance the accuracy of Air Traffic Control(ATC)cybersecurity attack detection,in this paper,a new clustering detection method is designed for air traffic control network security attacks.The feature set for ATC cybersecurity attacks is constructed by setting the feature states,adding recursive features,and determining the feature criticality.The expected information gain and entropy of the feature data are computed to determine the information gain of the feature data and reduce the interference of similar feature data.An autoencoder is introduced into the AI(artificial intelligence)algorithm to encode and decode the characteristics of ATC network security attack behavior to reduce the dimensionality of the ATC network security attack behavior data.Based on the above processing,an unsupervised learning algorithm for clustering detection of ATC network security attacks is designed.First,determine the distance between the clustering clusters of ATC network security attack behavior characteristics,calculate the clustering threshold,and construct the initial clustering center.Then,the new average value of all feature objects in each cluster is recalculated as the new cluster center.Second,it traverses all objects in a cluster of ATC network security attack behavior feature data.Finally,the cluster detection of ATC network security attack behavior is completed by the computation of objective functions.The experiment took three groups of experimental attack behavior data sets as the test object,and took the detection rate,false detection rate and recall rate as the test indicators,and selected three similar methods for comparative test.The experimental results show that the detection rate of this method is about 98%,the false positive rate is below 1%,and the recall rate is above 97%.Research shows that this method can improve the detection performance of security attacks in air traffic control network.展开更多
Conflict Detection and Resolution(CD&R) is the key to ensure aviation safety based on Trajectory Prediction(TP). Uncertainties that affect aircraft motions cause difficulty in an accurate prediction of the trajec...Conflict Detection and Resolution(CD&R) is the key to ensure aviation safety based on Trajectory Prediction(TP). Uncertainties that affect aircraft motions cause difficulty in an accurate prediction of the trajectory, especially in the context of four-dimensional(4D) Trajectory-Based Operation(4DTBO), which brings the uncertainty of pilot intent. This study draws on the idea of time geography, and turns the research focus of CD&R from TP to an analysis of the aircraft reachable space constrained by 4D waypoint constraints. The concepts of space–time reachability of aircraft and space–time potential conflict space are proposed. A novel pre-CD&R scheme for multiple aircraft is established. A key advantage of the scheme is that the uncertainty of pilot intent is accounted for via a Space-Time Prism(STP) for aircraft. Conflict detection is performed by verifying whether the STPs of aircraft intersect or not, and conflict resolution is performed by planning a conflict-free space–time trajectory avoiding intersection. Numerical examples are presented to validate the efficiency of the proposed scheme.展开更多
In an effort to maintain safety while satisfying growing air traffic demand,air navigation service providers are considering the inclusion of advisory systems to identify potential conflicts and propose resolution com...In an effort to maintain safety while satisfying growing air traffic demand,air navigation service providers are considering the inclusion of advisory systems to identify potential conflicts and propose resolution commands for the air traffic controller to verify and issue to aircraft.To understand the potential workload implications of introducing advisory conflict-detection and resolution tools,this paper examines a metric of controller taskload:how many resolution commands an air traffic controller issues under the guidance of an advisory system.Through a simulation study,the research presented here evaluates how the underlying protocol of a conflict-resolution tool affects the controller taskload(system demands)associated with the conflict-resolution process,and implicitly the controller workload(physical and psychological demands).Ultimately,evidence indicates that there is significant flexibility in the design of conflict-resolution algorithms supporting an advisory system.展开更多
航路交叉口的管制调配一直是影响空管效率的核心问题,以往研究多是针对少量架次航空器进行分析,本论文在航迹运行(trajectory based operations,TBO)环境下,基于自主改航对航路交叉口处交叉航班流的预先冲突解脱方法进行研究.首先,基于...航路交叉口的管制调配一直是影响空管效率的核心问题,以往研究多是针对少量架次航空器进行分析,本论文在航迹运行(trajectory based operations,TBO)环境下,基于自主改航对航路交叉口处交叉航班流的预先冲突解脱方法进行研究.首先,基于航空器间水平安全间隔,转换计算航空器过交叉口时应保持的最小纵向时间间隔;其次,提出占用时间窗概念,建立基于占用时间窗的冲突检测模型,并考虑航班流通过时间最短制定综合通行原则,判定冲突中需要改航的航空器;最后,针对航班流通行中传统启发式算法时效性不足的问题,利用转弯角限制缩减可行解空间,并建立以改航时间最短为目标的改航点搜索模型,提高求解速度和搜索精度.以我国东北部典型高空扇区为例,验证所提方法在实际交叉航路运行下的有效性.仿真结果表明:所提冲突解脱方法的多米诺效应指数(domino effect parameter,DEP)相较于传统等待解脱方法降低了64.7%,且传统方法的解脱总用时为所提冲突解脱方法的7.6倍,所提解脱方法对空域稳定性的影响更小,解脱效率更高.展开更多
1. Background Driven by ongoing economic expansion and low-altitude aviation development, the global air transportation industry has experienced significant growth in recent decades, resulting in increasing airspace c...1. Background Driven by ongoing economic expansion and low-altitude aviation development, the global air transportation industry has experienced significant growth in recent decades, resulting in increasing airspace complexity, and considerable challenges for Air Traffic Control(ATC). As the fundamental technique of the ATC system, Flight Trajectory Prediction(FTP) forecasts future traffic dynamics to support critical applications(such as conflict detection), and also serves as a cornerstone for future Trajectory-based Operations(TBO).展开更多
基金National Natural Science Foundation of China(U2133208,U20A20161)National Natural Science Foundation of China(No.62273244)Sichuan Science and Technology Program(No.2022YFG0180).
文摘In order to enhance the accuracy of Air Traffic Control(ATC)cybersecurity attack detection,in this paper,a new clustering detection method is designed for air traffic control network security attacks.The feature set for ATC cybersecurity attacks is constructed by setting the feature states,adding recursive features,and determining the feature criticality.The expected information gain and entropy of the feature data are computed to determine the information gain of the feature data and reduce the interference of similar feature data.An autoencoder is introduced into the AI(artificial intelligence)algorithm to encode and decode the characteristics of ATC network security attack behavior to reduce the dimensionality of the ATC network security attack behavior data.Based on the above processing,an unsupervised learning algorithm for clustering detection of ATC network security attacks is designed.First,determine the distance between the clustering clusters of ATC network security attack behavior characteristics,calculate the clustering threshold,and construct the initial clustering center.Then,the new average value of all feature objects in each cluster is recalculated as the new cluster center.Second,it traverses all objects in a cluster of ATC network security attack behavior feature data.Finally,the cluster detection of ATC network security attack behavior is completed by the computation of objective functions.The experiment took three groups of experimental attack behavior data sets as the test object,and took the detection rate,false detection rate and recall rate as the test indicators,and selected three similar methods for comparative test.The experimental results show that the detection rate of this method is about 98%,the false positive rate is below 1%,and the recall rate is above 97%.Research shows that this method can improve the detection performance of security attacks in air traffic control network.
基金financial support from the Civil Aviation Joint Funds of the National Natural Science Foundation of China (No’s.U1533203,61179069)
文摘Conflict Detection and Resolution(CD&R) is the key to ensure aviation safety based on Trajectory Prediction(TP). Uncertainties that affect aircraft motions cause difficulty in an accurate prediction of the trajectory, especially in the context of four-dimensional(4D) Trajectory-Based Operation(4DTBO), which brings the uncertainty of pilot intent. This study draws on the idea of time geography, and turns the research focus of CD&R from TP to an analysis of the aircraft reachable space constrained by 4D waypoint constraints. The concepts of space–time reachability of aircraft and space–time potential conflict space are proposed. A novel pre-CD&R scheme for multiple aircraft is established. A key advantage of the scheme is that the uncertainty of pilot intent is accounted for via a Space-Time Prism(STP) for aircraft. Conflict detection is performed by verifying whether the STPs of aircraft intersect or not, and conflict resolution is performed by planning a conflict-free space–time trajectory avoiding intersection. Numerical examples are presented to validate the efficiency of the proposed scheme.
基金funded by NASA(No.NNX08AY52A)FAA Award(No.07-C-NEGIT)+1 种基金Amendment(Nos.005,010,020)Air Force Contract(No.FA9550-08-1-0375)。
文摘In an effort to maintain safety while satisfying growing air traffic demand,air navigation service providers are considering the inclusion of advisory systems to identify potential conflicts and propose resolution commands for the air traffic controller to verify and issue to aircraft.To understand the potential workload implications of introducing advisory conflict-detection and resolution tools,this paper examines a metric of controller taskload:how many resolution commands an air traffic controller issues under the guidance of an advisory system.Through a simulation study,the research presented here evaluates how the underlying protocol of a conflict-resolution tool affects the controller taskload(system demands)associated with the conflict-resolution process,and implicitly the controller workload(physical and psychological demands).Ultimately,evidence indicates that there is significant flexibility in the design of conflict-resolution algorithms supporting an advisory system.
文摘航路交叉口的管制调配一直是影响空管效率的核心问题,以往研究多是针对少量架次航空器进行分析,本论文在航迹运行(trajectory based operations,TBO)环境下,基于自主改航对航路交叉口处交叉航班流的预先冲突解脱方法进行研究.首先,基于航空器间水平安全间隔,转换计算航空器过交叉口时应保持的最小纵向时间间隔;其次,提出占用时间窗概念,建立基于占用时间窗的冲突检测模型,并考虑航班流通过时间最短制定综合通行原则,判定冲突中需要改航的航空器;最后,针对航班流通行中传统启发式算法时效性不足的问题,利用转弯角限制缩减可行解空间,并建立以改航时间最短为目标的改航点搜索模型,提高求解速度和搜索精度.以我国东北部典型高空扇区为例,验证所提方法在实际交叉航路运行下的有效性.仿真结果表明:所提冲突解脱方法的多米诺效应指数(domino effect parameter,DEP)相较于传统等待解脱方法降低了64.7%,且传统方法的解脱总用时为所提冲突解脱方法的7.6倍,所提解脱方法对空域稳定性的影响更小,解脱效率更高.
文摘1. Background Driven by ongoing economic expansion and low-altitude aviation development, the global air transportation industry has experienced significant growth in recent decades, resulting in increasing airspace complexity, and considerable challenges for Air Traffic Control(ATC). As the fundamental technique of the ATC system, Flight Trajectory Prediction(FTP) forecasts future traffic dynamics to support critical applications(such as conflict detection), and also serves as a cornerstone for future Trajectory-based Operations(TBO).