Dear Editor,This letter studies finite-time stability (FTS) of impulsive and switched hybrid systems with delay-dependent impulses. Some conditions, based on Lyapunov method, are proposed for ensuring FTS and estimati...Dear Editor,This letter studies finite-time stability (FTS) of impulsive and switched hybrid systems with delay-dependent impulses. Some conditions, based on Lyapunov method, are proposed for ensuring FTS and estimating settling-time function (STF) of the hybrid systems.When switching dynamics are FTS and impulsive dynamics involve destabilizing delay-dependent impulses, the FTS is retained if the impulses occur infrequently.展开更多
This paper reports that the performance of permanent magnet synchronous motor (PMSM) degrades due to chaos when its systemic parameters fall into a certain area. To control the undesirable chaos in PMSM, a nonlinear...This paper reports that the performance of permanent magnet synchronous motor (PMSM) degrades due to chaos when its systemic parameters fall into a certain area. To control the undesirable chaos in PMSM, a nonlinear controller, which is simple and easy to be constructed, is presented to achieve finite-time chaos control based on the finite-time stability theory. Computer simulation results show that the proposed controller is very effective. The obtained results may help to maintain the industrial servo driven system's security operation.展开更多
Recent investigations show that a power system is a highly nonlinear system and can exhibit chaotic behaviour leading to a voltage collapse, which severely threatens the secure and stable operation of the power system...Recent investigations show that a power system is a highly nonlinear system and can exhibit chaotic behaviour leading to a voltage collapse, which severely threatens the secure and stable operation of the power system. Based on the finite-time stability theory, two control strategies are presented to achieve finite-time chaos control. In addition, the problem of how to stabilize an unstable nonzero equilibrium point in a finite time is solved by coordinate transformation for the first time. Numerical simulations are presented to demonstrate the effectiveness and the robustness of the proposed scheme. The research in this paper may help to maintain the secure operation of power systems.展开更多
This paper discusses the problem of finite-time stability with respect to a closed, but not necessarily compact, invariant set for a class of nonlinear systems with discontinuous right-hand sides in the sense of the F...This paper discusses the problem of finite-time stability with respect to a closed, but not necessarily compact, invariant set for a class of nonlinear systems with discontinuous right-hand sides in the sense of the Filippov solutions. When the Lyapunov function is Lipschitz continuous and regular, the Lyapunov theorem on finite-time stability with respect to a closed invariant set is presented.展开更多
Finite-time stability of a class of fractional-order neural networks is investigated in this paper. By Laplace transform, the generalized Gronwa11 inequality and estimates of Mittag-Leffier functions, sufficient condi...Finite-time stability of a class of fractional-order neural networks is investigated in this paper. By Laplace transform, the generalized Gronwa11 inequality and estimates of Mittag-Leffier functions, sufficient conditions are pre- sented to ensure the finite-time stability of such neural models with the Caputo fractionM derivatives. Furthermore, results about asymptotical stability of fractional-order neural models are also obtained.展开更多
Many practical systems in physics, biology, engineer- ing and information science exhibit impulsive dynamical behaviors due to abrupt changes at certain instants during the dynami- cal processes. The problems of finit...Many practical systems in physics, biology, engineer- ing and information science exhibit impulsive dynamical behaviors due to abrupt changes at certain instants during the dynami- cal processes. The problems of finite-time stab!lity analysis are investigated for a class of Markovian switching stochastic sys- tems, in which exist impulses at the switching instants. Multiple Lyapunov techniques are used to derive sufficient conditions for finite-time stochastic stability of the overall system. Furthermore, a state feedback controller, which stabilizes the closed loop sys- tems in the finite-time sense, is then addressed. Moreover, the controller appears not only in the shift part but also in the diffu- sion part of the underlying stochastic subsystem. The results are reduced to feasibility problems involving linear matrix inequalities (LMIs). A numerical example is presented to illustrate the proposed methodology.展开更多
The finite-time stability and the finite-time contractive stability of solutions for nonlinear fractional differential equations with bounded delay are investigated. The derivative of Lyapunov function along solutions...The finite-time stability and the finite-time contractive stability of solutions for nonlinear fractional differential equations with bounded delay are investigated. The derivative of Lyapunov function along solutions of the considered system is defined in terms of the Caputo fractional Dini derivative. Based on the Lyapunov-Razumikhin method, several sufficient criteria are established to guarantee the finite-time stability and the finite-time contractive stability of solutions for the related systems. An example is provided to illustrate the effectiveness of the obtained results.展开更多
This paper is concerned with fractional-order bidirectional associative memory(BAM) neural networks with time delays. Applying Laplace transform, the generalized Gronwall inequality and estimates of Mittag–Leffler fu...This paper is concerned with fractional-order bidirectional associative memory(BAM) neural networks with time delays. Applying Laplace transform, the generalized Gronwall inequality and estimates of Mittag–Leffler functions, some sufficient conditions which ensure the finite-time stability of fractional-order bidirectional associative memory neural networks with time delays are obtained. Two examples with their simulations are given to illustrate the theoretical findings. Our results are new and complement previously known results.展开更多
A finite-time stabilization controller for the heating furnace temperature control system is proposed.Based on the extended Lyapunov finite-time stability theory and power integral method,a finite-time stable conditio...A finite-time stabilization controller for the heating furnace temperature control system is proposed.Based on the extended Lyapunov finite-time stability theory and power integral method,a finite-time stable condition of the heating furnace temperature control system is given.The temperature of the heating furnace is directed by the finite-time stabilization controller to make it stable in finite time.And the quality and quantity of slabs is improved.The simulation example is presented to illustrate the applicability of the developed results.展开更多
The finite-time stability to linear discontinuous time-varying delayed system was investigated. By applying the method of upper and lower solutions, some sufficient conditions of this kind of stability were obtained. ...The finite-time stability to linear discontinuous time-varying delayed system was investigated. By applying the method of upper and lower solutions, some sufficient conditions of this kind of stability were obtained. Furthermore, it also developed a monotone iterative technique for obtaining solutions which are obtained as limits of monotone sequences展开更多
Switching Markov jump linear system(SMJLS),a special hybrid system,has attracted a lot of studies recently.SMJLS is governed by stochastic and deterministic commutations.This paper focuses on the switching strategy wh...Switching Markov jump linear system(SMJLS),a special hybrid system,has attracted a lot of studies recently.SMJLS is governed by stochastic and deterministic commutations.This paper focuses on the switching strategy which stabilizes the SMJLS in a finite time interval in order to further expand the existing results and investigate new aspects of such systems.Several sufficient conditions for finite-time stability of discrete-time SMJLS are provided,and the numerical problems in these sufficient conditions are solved by solving linear matrix inequalities(LMIs).Finally,numerical examples are given to show the feasibility and effectiveness of the results.展开更多
In this paper,the finite-time stability and instability are studied for nonlinear impulsive systems.There are mainly four concerns.1)For the system with stabilizing impulses,a Lyapunov theorem on global finite-time st...In this paper,the finite-time stability and instability are studied for nonlinear impulsive systems.There are mainly four concerns.1)For the system with stabilizing impulses,a Lyapunov theorem on global finite-time stability is presented.2)When the system without impulsive effects is globally finite-time stable(GFTS)and the settling time is continuous at the origin,it is proved that it is still GFTS over any class of impulse sequences,if the mixed impulsive jumps satisfy some mild conditions.3)For systems with destabilizing impulses,it is shown that to be finite-time stable,the destabilizing impulses should not occur too frequently,otherwise,the origin of the impulsive system is finite-time instable,which are formulated by average dwell time(ADT)conditions respectively.4)A theorem on finite-time instability is provided for system with stabilizing impulses.For each GFTS theorem of impulsive systems considered in this paper,the upper boundedness of settling time is given,which depends on the initial value and impulsive effects.Some numerical examples are given to illustrate the theoretical analysis.展开更多
Dear Editor,This letter considers the finite-time stability(FTS)problem of generalized impulsive stochastic nonlinear systems(ISNS).By employing the stochastic Lyapunov and impulsive control approach,some novel criter...Dear Editor,This letter considers the finite-time stability(FTS)problem of generalized impulsive stochastic nonlinear systems(ISNS).By employing the stochastic Lyapunov and impulsive control approach,some novel criteria on FTS are presented,where both situations of stabilizing and destabilizing impulses are considered.Furthermore,new impulse-dependent estimation strategies of stochastic settling time(SST)are proposed.展开更多
In this paper,we are concerned with a class of fractional-order Lasota-Wazewska red blood ccll modcls.By applying a fixed point theorem on a normal cone,we first obtain the sufficient conditions for the existence of a...In this paper,we are concerned with a class of fractional-order Lasota-Wazewska red blood ccll modcls.By applying a fixed point theorem on a normal cone,we first obtain the sufficient conditions for the existence of a unique almost periodic positive solution of the considered models.Then,considering that all of the red blood cells in animals survive in a finite-time interval,we study the finite-time stability of the almost periodic positive solution by using some inequality techniques.Our results and methods of this paper are new.Finally,we give numerical examples to show the feasibility of the obtained results.展开更多
A class of time-varying delay impulsive reaction-diffusion tree grass-water-nitrogen system driven by Levy jump process is considered.First,we prove the existence and uniqueness of the global positive solution of the ...A class of time-varying delay impulsive reaction-diffusion tree grass-water-nitrogen system driven by Levy jump process is considered.First,we prove the existence and uniqueness of the global positive solution of the model by constructing the Lyapunov function.Secondly,several sufficient conditions for finite-time stability are given by using comparison theorem and mean impulse interval method.Finally,numerical simulations are carried out to verify the effectiveness of the theoretical analysis.展开更多
In this paper, using finite-time control method, we consider the disturbance analysis of a second-order system with unknown but bounded disturbance. We show that the states of the second-order system will be stabilize...In this paper, using finite-time control method, we consider the disturbance analysis of a second-order system with unknown but bounded disturbance. We show that the states of the second-order system will be stabilized to a region containing the origin. The radius of this region is determined by the control parameters and can be rendered as small as desired. The rigorous stability analysis is also given. Compared with the conventional PD control law, the finite-time control law yields a better disturbance rejection performance. Numerical simulation results show the effectiveness of the method.展开更多
The problem of finite-time practical stability (FTPS) for time-varying polytopic systems is discussed. Three equivalent conditions for FTPS are first proposed. To facilitate the system analysis, a sufficient linear ...The problem of finite-time practical stability (FTPS) for time-varying polytopic systems is discussed. Three equivalent conditions for FTPS are first proposed. To facilitate the system analysis, a sufficient linear matrix inequality (LMI) criterion on the FTPS is further provided. The definition of finite-time practical boundedness and a sufficient LMI criterion are also provided to overcome the exogenous disturbance. A numerical example is used to illustrate the effect of the proposed approach.展开更多
This paper deals with the problem of finite-time boundedness and fin计e-time stabilization boundedness of frax?tional-order switched nonlinear systems with exogenous inputs.By constructing a simple Lyapunov-like funct...This paper deals with the problem of finite-time boundedness and fin计e-time stabilization boundedness of frax?tional-order switched nonlinear systems with exogenous inputs.By constructing a simple Lyapunov-like function and using some properties of Caputo derivative,the authors obtain some new sufficient conditions for the problem via linear matrix inequalities,which can be efficiently solved by using existing convex algorithms.A constructive geometric is used to design switching laws amongst the subsystems.The obtained results are more general and useful than some existing works,and cover them as special cases,in which only linear fractional-order systems were presented.Numerical examples are provided to demonstrate the effectiveness of the proposed results.展开更多
This work focuses on the design of a sliding mode controller for a class of continuoustime interval type-2 fuzzy-model-based nonlinear systems with unmeasurable state information over a finite-time interval.Aiming at ...This work focuses on the design of a sliding mode controller for a class of continuoustime interval type-2 fuzzy-model-based nonlinear systems with unmeasurable state information over a finite-time interval.Aiming at describing the nonlinearities containing parameter uncertainties that inevitably appear in practice,the interval type-2 fuzzy sets are employed to model the studied system.To improve the designing flexibility,a fuzzy observer model non-parallel distribution compensation scheme is designed to estimate the state information of the plant,i.e.,the observer is allowed to have a mismatching premise structure from the system.On this basis,the appropriate fuzzy sliding surface and fuzzy controller are constructed by following the same premise variables as the designed fuzzy observer.Then,by means of the sliding mode control theory and the Lyapunov function method,some novel sufficient criteria are established to ensure the finite-time boundedness for the studied systems via a partitioning strategy including the reaching phase,the sliding motion phase and the whole time interval.Furthermore,the designed gains are acquired by solving the matrix convex optimization problem.Finally,the effectiveness of the developed method is demonstrated by two simulation examples.展开更多
The problem of finite-time stabilization for uncertain nonlinear systems is investigated.It is proved that a class of high-order nonlinear systems in the lower-triangular form is globally stabilized via non-Lipschitz ...The problem of finite-time stabilization for uncertain nonlinear systems is investigated.It is proved that a class of high-order nonlinear systems in the lower-triangular form is globally stabilized via non-Lipschitz continuous state feedback.By using the finite-time Lyapunov stability theorem and the method of non-smooth feedback design,a recursive design procedure is provided,which guarantees the finite-time stability of the closed-loop system.The simulation results show the effectiveness of the theoretical results.展开更多
基金supported by the National Natural Science Foundation of China(61833005)
文摘Dear Editor,This letter studies finite-time stability (FTS) of impulsive and switched hybrid systems with delay-dependent impulses. Some conditions, based on Lyapunov method, are proposed for ensuring FTS and estimating settling-time function (STF) of the hybrid systems.When switching dynamics are FTS and impulsive dynamics involve destabilizing delay-dependent impulses, the FTS is retained if the impulses occur infrequently.
基金Project supported by the Hi-Tech Research and Development Program of China (863) (Grant No 2007AA05Z229)National Natural Science Foundation of China (Grant Nos 50877028, 60774069 and 10862001)Science Foundation of Guangdong Province (Grant No 8251064101000014)
文摘This paper reports that the performance of permanent magnet synchronous motor (PMSM) degrades due to chaos when its systemic parameters fall into a certain area. To control the undesirable chaos in PMSM, a nonlinear controller, which is simple and easy to be constructed, is presented to achieve finite-time chaos control based on the finite-time stability theory. Computer simulation results show that the proposed controller is very effective. The obtained results may help to maintain the industrial servo driven system's security operation.
基金supported by the National High Technology Research and Development Program of China (Grant No. 2007AA041401)Tianjin Natural Science Foundation,China (Grant Nos. 08JCZDJC18600 and 09JCZDJC23900)the University Science and Technology Development Foundation of Tianjin City,China (Grant No. 2006ZD32)
文摘Recent investigations show that a power system is a highly nonlinear system and can exhibit chaotic behaviour leading to a voltage collapse, which severely threatens the secure and stable operation of the power system. Based on the finite-time stability theory, two control strategies are presented to achieve finite-time chaos control. In addition, the problem of how to stabilize an unstable nonzero equilibrium point in a finite time is solved by coordinate transformation for the first time. Numerical simulations are presented to demonstrate the effectiveness and the robustness of the proposed scheme. The research in this paper may help to maintain the secure operation of power systems.
基金supported by the Mathematical Tianyuan Foundation (No. 10826078)the National Natural Science Foundation of China (No. 60874006)
文摘This paper discusses the problem of finite-time stability with respect to a closed, but not necessarily compact, invariant set for a class of nonlinear systems with discontinuous right-hand sides in the sense of the Filippov solutions. When the Lyapunov function is Lipschitz continuous and regular, the Lyapunov theorem on finite-time stability with respect to a closed invariant set is presented.
基金Supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant No.20093401120001the Natural Science Foundation of Anhui Province under Grant No.11040606M12+1 种基金the Natural Science Foundation of Anhui Education Bureau under Grant No.KJ2010A035the 211 Project of Anhui University under Grant No.KJJQ1102
文摘Finite-time stability of a class of fractional-order neural networks is investigated in this paper. By Laplace transform, the generalized Gronwa11 inequality and estimates of Mittag-Leffier functions, sufficient conditions are pre- sented to ensure the finite-time stability of such neural models with the Caputo fractionM derivatives. Furthermore, results about asymptotical stability of fractional-order neural models are also obtained.
基金supported in part by the National Natural Science Foundation of China(60374015)
文摘Many practical systems in physics, biology, engineer- ing and information science exhibit impulsive dynamical behaviors due to abrupt changes at certain instants during the dynami- cal processes. The problems of finite-time stab!lity analysis are investigated for a class of Markovian switching stochastic sys- tems, in which exist impulses at the switching instants. Multiple Lyapunov techniques are used to derive sufficient conditions for finite-time stochastic stability of the overall system. Furthermore, a state feedback controller, which stabilizes the closed loop sys- tems in the finite-time sense, is then addressed. Moreover, the controller appears not only in the shift part but also in the diffu- sion part of the underlying stochastic subsystem. The results are reduced to feasibility problems involving linear matrix inequalities (LMIs). A numerical example is presented to illustrate the proposed methodology.
基金Natural Science Foundation of Shanghai,China (No.19ZR1400500)。
文摘The finite-time stability and the finite-time contractive stability of solutions for nonlinear fractional differential equations with bounded delay are investigated. The derivative of Lyapunov function along solutions of the considered system is defined in terms of the Caputo fractional Dini derivative. Based on the Lyapunov-Razumikhin method, several sufficient criteria are established to guarantee the finite-time stability and the finite-time contractive stability of solutions for the related systems. An example is provided to illustrate the effectiveness of the obtained results.
基金Supported by National Natural Science Foundation of China under Grant Nos.61673008,11261010,11101126Project of High–Level Innovative Talents of Guizhou Province([2016]5651)+2 种基金Natural Science and Technology Foundation of Guizhou Province(J[2015]2025 and J[2015]2026)125 Special Major Science and Technology of Department of Education of Guizhou Province([2012]011)Natural Science Foundation of the Education Department of Guizhou Province(KY[2015]482)
文摘This paper is concerned with fractional-order bidirectional associative memory(BAM) neural networks with time delays. Applying Laplace transform, the generalized Gronwall inequality and estimates of Mittag–Leffler functions, some sufficient conditions which ensure the finite-time stability of fractional-order bidirectional associative memory neural networks with time delays are obtained. Two examples with their simulations are given to illustrate the theoretical findings. Our results are new and complement previously known results.
文摘A finite-time stabilization controller for the heating furnace temperature control system is proposed.Based on the extended Lyapunov finite-time stability theory and power integral method,a finite-time stable condition of the heating furnace temperature control system is given.The temperature of the heating furnace is directed by the finite-time stabilization controller to make it stable in finite time.And the quality and quantity of slabs is improved.The simulation example is presented to illustrate the applicability of the developed results.
基金National Natural Science Foundation ofChina( No.1983 10 3 0 and No.10 0 0 10 2 4
文摘The finite-time stability to linear discontinuous time-varying delayed system was investigated. By applying the method of upper and lower solutions, some sufficient conditions of this kind of stability were obtained. Furthermore, it also developed a monotone iterative technique for obtaining solutions which are obtained as limits of monotone sequences
基金the National Natural Science Foundation of China(No.61573237)the“111 Project”(No.D18003)the Program of China Scholarship Council(No.201906895021)。
文摘Switching Markov jump linear system(SMJLS),a special hybrid system,has attracted a lot of studies recently.SMJLS is governed by stochastic and deterministic commutations.This paper focuses on the switching strategy which stabilizes the SMJLS in a finite time interval in order to further expand the existing results and investigate new aspects of such systems.Several sufficient conditions for finite-time stability of discrete-time SMJLS are provided,and the numerical problems in these sufficient conditions are solved by solving linear matrix inequalities(LMIs).Finally,numerical examples are given to show the feasibility and effectiveness of the results.
基金National Natural Science Foundation of China(No.61807017)the National Natural Science Foundation of China(Nos.12171122,11771128)+3 种基金Shenzhen Science and Technology Program(Grant No.RCJC20210609103755110)Fundamental Research Project of Shenzhen(No.JCYJ20190806143201649)Project(HIT.NSRIF.2020056)Supported by Natural Scientific Research Innovation Foundation in Harbin Institute of TechnologyResearch start-up fund Foundation in Harbin Institute of Technology(No.20190019)。
文摘In this paper,the finite-time stability and instability are studied for nonlinear impulsive systems.There are mainly four concerns.1)For the system with stabilizing impulses,a Lyapunov theorem on global finite-time stability is presented.2)When the system without impulsive effects is globally finite-time stable(GFTS)and the settling time is continuous at the origin,it is proved that it is still GFTS over any class of impulse sequences,if the mixed impulsive jumps satisfy some mild conditions.3)For systems with destabilizing impulses,it is shown that to be finite-time stable,the destabilizing impulses should not occur too frequently,otherwise,the origin of the impulsive system is finite-time instable,which are formulated by average dwell time(ADT)conditions respectively.4)A theorem on finite-time instability is provided for system with stabilizing impulses.For each GFTS theorem of impulsive systems considered in this paper,the upper boundedness of settling time is given,which depends on the initial value and impulsive effects.Some numerical examples are given to illustrate the theoretical analysis.
文摘Dear Editor,This letter considers the finite-time stability(FTS)problem of generalized impulsive stochastic nonlinear systems(ISNS).By employing the stochastic Lyapunov and impulsive control approach,some novel criteria on FTS are presented,where both situations of stabilizing and destabilizing impulses are considered.Furthermore,new impulse-dependent estimation strategies of stochastic settling time(SST)are proposed.
基金the National Natural Sciences Foundation of People's Republic of China under Grants Nos.11861072 and 11361072the Applied Basic Research Programs of Science and Technology Department of Yunnan Province under Grant No.2019FBO03.
文摘In this paper,we are concerned with a class of fractional-order Lasota-Wazewska red blood ccll modcls.By applying a fixed point theorem on a normal cone,we first obtain the sufficient conditions for the existence of a unique almost periodic positive solution of the considered models.Then,considering that all of the red blood cells in animals survive in a finite-time interval,we study the finite-time stability of the almost periodic positive solution by using some inequality techniques.Our results and methods of this paper are new.Finally,we give numerical examples to show the feasibility of the obtained results.
文摘A class of time-varying delay impulsive reaction-diffusion tree grass-water-nitrogen system driven by Levy jump process is considered.First,we prove the existence and uniqueness of the global positive solution of the model by constructing the Lyapunov function.Secondly,several sufficient conditions for finite-time stability are given by using comparison theorem and mean impulse interval method.Finally,numerical simulations are carried out to verify the effectiveness of the theoretical analysis.
基金supported by National Natural Science Foundation of China (No.60504007)the PhD Programs Foundation of Ministry of Educationof China (No.20070286040)the Scientific Research Foundation of Graduate School of Southeast University
文摘In this paper, using finite-time control method, we consider the disturbance analysis of a second-order system with unknown but bounded disturbance. We show that the states of the second-order system will be stabilized to a region containing the origin. The radius of this region is determined by the control parameters and can be rendered as small as desired. The rigorous stability analysis is also given. Compared with the conventional PD control law, the finite-time control law yields a better disturbance rejection performance. Numerical simulation results show the effectiveness of the method.
基金partially supported by Major Program of National Natural Science Foundation of China(60710002)Program for Changjiang Scholar and Innovative Research Team in University(PCSIRT).
文摘The problem of finite-time practical stability (FTPS) for time-varying polytopic systems is discussed. Three equivalent conditions for FTPS are first proposed. To facilitate the system analysis, a sufficient linear matrix inequality (LMI) criterion on the FTPS is further provided. The definition of finite-time practical boundedness and a sufficient LMI criterion are also provided to overcome the exogenous disturbance. A numerical example is used to illustrate the effect of the proposed approach.
基金funded by the Ministry of Education and Training of Vietnam under Grant No.TN-487,led by Assoc.Prof.Phan Thanh Nam,Quy Nhon University,Decision number 5650/QDBGDDT 28/12/2018
文摘This paper deals with the problem of finite-time boundedness and fin计e-time stabilization boundedness of frax?tional-order switched nonlinear systems with exogenous inputs.By constructing a simple Lyapunov-like function and using some properties of Caputo derivative,the authors obtain some new sufficient conditions for the problem via linear matrix inequalities,which can be efficiently solved by using existing convex algorithms.A constructive geometric is used to design switching laws amongst the subsystems.The obtained results are more general and useful than some existing works,and cover them as special cases,in which only linear fractional-order systems were presented.Numerical examples are provided to demonstrate the effectiveness of the proposed results.
基金the National Natural Science Foundation of China under Grant Nos.61873002,62173001。
文摘This work focuses on the design of a sliding mode controller for a class of continuoustime interval type-2 fuzzy-model-based nonlinear systems with unmeasurable state information over a finite-time interval.Aiming at describing the nonlinearities containing parameter uncertainties that inevitably appear in practice,the interval type-2 fuzzy sets are employed to model the studied system.To improve the designing flexibility,a fuzzy observer model non-parallel distribution compensation scheme is designed to estimate the state information of the plant,i.e.,the observer is allowed to have a mismatching premise structure from the system.On this basis,the appropriate fuzzy sliding surface and fuzzy controller are constructed by following the same premise variables as the designed fuzzy observer.Then,by means of the sliding mode control theory and the Lyapunov function method,some novel sufficient criteria are established to ensure the finite-time boundedness for the studied systems via a partitioning strategy including the reaching phase,the sliding motion phase and the whole time interval.Furthermore,the designed gains are acquired by solving the matrix convex optimization problem.Finally,the effectiveness of the developed method is demonstrated by two simulation examples.
基金Sponsored by the National Natural Science Foundation of China (Grant No. 61174001)
文摘The problem of finite-time stabilization for uncertain nonlinear systems is investigated.It is proved that a class of high-order nonlinear systems in the lower-triangular form is globally stabilized via non-Lipschitz continuous state feedback.By using the finite-time Lyapunov stability theorem and the method of non-smooth feedback design,a recursive design procedure is provided,which guarantees the finite-time stability of the closed-loop system.The simulation results show the effectiveness of the theoretical results.