Intercepting high-maneuverability hypersonic targets in near-space environments poses significant challenges due to their extreme speeds and evasive capabilities.To address these challenges,this study presents an inte...Intercepting high-maneuverability hypersonic targets in near-space environments poses significant challenges due to their extreme speeds and evasive capabilities.To address these challenges,this study presents an integrated approach that combines a Three-Dimensional Finite-Time Optimal Cooperative Guidance Law(FTOC)with an Information Fusion Anti-saturation Predefined-time Observer(IFAPO).The proposed FTOC guidance law employs a nonlinear,non-quadratic finite-time optimal control strategy designed for rapid convergence within the limited timeframes of near-space interceptions,avoiding the need for remaining flight time estimation or linear decoupling inherent in traditional methods.To complement the guidance strategy,the IFAPO leverages multi-source information fusion theory and incorporates anti-saturation mechanisms to enhance target maneuver estimation.This method ensures accurate and real-time prediction of target acceleration while maintaining predefined convergence performance,even under complex interception conditions.By integrating the FTOC guidance law and IFAPO,the approach optimizes cooperative missile positioning,improves interception success rates,and minimizes fuel consumption,addressing practical constraints in military applications.Simulation results and comparative analyses confirm the effectiveness of the integrated approach,demonstrating its capability to achieve cooperative interception of highly maneuvering targets with enhanced efficiency and reduced economic costs,aligning with realistic combat scenarios.展开更多
This paper studies the problem of time-varying formation control with finite-time prescribed performance for nonstrict feedback second-order multi-agent systems with unmeasured states and unknown nonlinearities.To eli...This paper studies the problem of time-varying formation control with finite-time prescribed performance for nonstrict feedback second-order multi-agent systems with unmeasured states and unknown nonlinearities.To eliminate nonlinearities,neural networks are applied to approximate the inherent dynamics of the system.In addition,due to the limitations of the actual working conditions,each follower agent can only obtain the locally measurable partial state information of the leader agent.To address this problem,a neural network state observer based on the leader state information is designed.Then,a finite-time prescribed performance adaptive output feedback control strategy is proposed by restricting the sliding mode surface to a prescribed region,which ensures that the closed-loop system has practical finite-time stability and that formation errors of the multi-agent systems converge to the prescribed performance bound in finite time.Finally,a numerical simulation is provided to demonstrate the practicality and effectiveness of the developed algorithm.展开更多
In this paper, the problem of designing semi-global finite-time observers for a class of nonlinear systems is investigated. Based on the theories of finite-time stability, an approach to designing semi-global finite-t...In this paper, the problem of designing semi-global finite-time observers for a class of nonlinear systems is investigated. Based on the theories of finite-time stability, an approach to designing semi-global finite-time observers for the nonlinear systems is presented. It has been shown that, after the finite time, the designed finite-time observer realizes the accurate reconstruction of the states of the nonlinear system. A numerical example is given to illustrate the effectiveness and validity of the method.展开更多
This work proposes the application of an iterative learning model predictive control(ILMPC)approach based on an adaptive fault observer(FOBILMPC)for fault-tolerant control and trajectory tracking in air-breathing hype...This work proposes the application of an iterative learning model predictive control(ILMPC)approach based on an adaptive fault observer(FOBILMPC)for fault-tolerant control and trajectory tracking in air-breathing hypersonic vehicles.In order to increase the control amount,this online control legislation makes use of model predictive control(MPC)that is based on the concept of iterative learning control(ILC).By using offline data to decrease the linearized model’s faults,the strategy may effectively increase the robustness of the control system and guarantee that disturbances can be suppressed.An adaptive fault observer is created based on the suggested ILMPC approach in order to enhance overall fault tolerance by estimating and compensating for actuator disturbance and fault degree.During the derivation process,a linearized model of longitudinal dynamics is established.The suggested ILMPC approach is likely to be used in the design of hypersonic vehicle control systems since numerical simulations have demonstrated that it can decrease tracking error and speed up convergence when compared to the offline controller.展开更多
For air-to-air missiles, the terminal guidance’s preci-sion is directly contingent upon the tracking capabilities of the roll-pitch seeker. This paper presents a combined non-singular fast terminal sliding mode contr...For air-to-air missiles, the terminal guidance’s preci-sion is directly contingent upon the tracking capabilities of the roll-pitch seeker. This paper presents a combined non-singular fast terminal sliding mode control method, aimed at resolving the frame control problem of roll-pitch seeker tracking high maneu-vering target. The sliding mode surface is structured around the principle of segmentation, which enables the control system’s rapid attainment of the zero point and ensure global fast conver-gence. The system’s state is more swiftly converged to the slid-ing mode surface through an improved adaptive fast dual power reaching law. Utilizing an extended state observer, the overall disturbance is both identified and compensated. The validation of the system’s stability and its convergence within a finite-time is grounded in Lyapunov’s stability criteria. The performance of the introduced control method is confirmed through roll-pitch seeker tracking control simulation. Data analysis reveals that newly proposed control technique significantly outperforms existing sliding mode control methods by rapidly converging the frame to the target angle, reduce the tracking error of the detec-tor for the target, and bolster tracking precision of the roll-pitch seeker huring disturbed conditions.展开更多
We present a new perspective on the P vs NP problem by demonstrating that its answer is inherently observer-dependent in curved spacetime, revealing an oversight in the classical formulation of computational complexit...We present a new perspective on the P vs NP problem by demonstrating that its answer is inherently observer-dependent in curved spacetime, revealing an oversight in the classical formulation of computational complexity theory. By incorporating general relativistic effects into complexity theory through a gravitational correction factor, we prove that problems can transition between complexity classes depending on the observer’s reference frame and local gravitational environment. This insight emerges from recognizing that the definition of polynomial time implicitly assumes a universal time metric, an assumption that breaks down in curved spacetime due to gravitational time dilation. We demonstrate the existence of gravitational phase transitions in problem complexity, where an NP-complete problem in one reference frame becomes polynomially solvable in another frame experiencing extreme gravitational time dilation. Through rigorous mathematical formulation, we establish a gravitationally modified complexity theory that extends classical complexity classes to incorporate observer-dependent effects, leading to a complete framework for understanding how computational complexity transforms across different spacetime reference frames. This finding parallels other self-referential insights in mathematics and physics, such as Gödel’s incompleteness theorems and Einstein’s relativity, suggesting a deeper connection between computation, gravitation, and the nature of mathematical truth.展开更多
Driven by practical applications, the achievement of distributed observers for nonlinear systems has emerged as a crucial advancement in recent years. However, existing theoretical advancements face certain limitation...Driven by practical applications, the achievement of distributed observers for nonlinear systems has emerged as a crucial advancement in recent years. However, existing theoretical advancements face certain limitations: They either fail to address more complex nonlinear phenomena, rely on hard-to-verify assumptions, or encounter difficulties in solving system parameters.Consequently, this paper aims to address these challenges by investigating distributed observers for nonlinear systems through the full-measured canonical form(FMCF), which is inspired by full-measured system(FMS) theory. To begin with, this study addresses the fact that the FMCF can only be obtained through the observable canonical form(OCF) in existing FMS theories.The paper demonstrates that a class of nonlinear systems can directly obtain FMCF through state space equations, independent of OCF. Also, a general method for solving FMCF in such systems is provided. Furthermore, based on the FMCF, A distributed observer is developed for nonlinear systems under two scenarios: Lipschitz conditions and open-loop bounded conditions.The paper establishes their asymptotic omniscience and demonstrates that the designed distributed observer in this study has fewer design parameters and is more convenient to construct than existing approaches. Finally, the effectiveness of the proposed methods is validated through simulation results on Van der Pol oscillators and microgrid systems.展开更多
When the proton exchange membrane fuel cell(PEMFC)system is running,there will be a condition that does not require power output for a short time.In order to achieve zero power output under low power consumption,it is...When the proton exchange membrane fuel cell(PEMFC)system is running,there will be a condition that does not require power output for a short time.In order to achieve zero power output under low power consumption,it is necessary to consider the diversity of control targets and the complexity of dynamic models,which brings the challenge of high-precision tracking control of the stack output power and cathode intake flow.For system idle speed control,a modelbased nonlinear control framework is constructed in this paper.Firstly,the nonlinear dynamic model of output power and cathode intake flow is derived.Secondly,a control scheme combining nonlinear extended Kalman filter observer and state feedback controller is designed.Finally,the control scheme is verified on the PEMFC experimental platform and compared with the proportion-integration-differentiation(PID)controller.The experimental results show that the control strategy proposed in this paper can realize the idle speed control of the fuel cell system and achieve the purpose of zero power output.Compared with PID controller,it has faster response speed and better system dynamics.展开更多
For large-scale heterogeneous multi-agent systems(MASs)with characteristics of dense-sparse mixed distribution,this paper investigates the practical finite-time deployment problem by establishing a novel crossspecies ...For large-scale heterogeneous multi-agent systems(MASs)with characteristics of dense-sparse mixed distribution,this paper investigates the practical finite-time deployment problem by establishing a novel crossspecies bionic analytical framework based on the partial differential equation-ordinary differential equation(PDE-ODE)approach.Specifically,by designing a specialized network communication protocol and employing the spatial continuum method for densely distributed agents,this paper models the tracking errors of densely distributed agents as a PDE equivalent to a human disease transmission model,and that of sparsely distributed agents as several ODEs equivalent to the predator population models.The coupling relationship between the PDE and ODE models is established through boundary conditions of the PDE,thereby forming a PDE-ODE-based tracking error model for the considered MASs.Furthermore,by integrating adaptive neural control scheme with the aforementioned biological models,a“Flexible Neural Network”endowed with adaptive and self-stabilized capabilities is constructed,which acts upon the considered MASs,enabling their practical finite-time deployment.Finally,effectiveness of the developed approach is illustrated through a numerical example.展开更多
In permanent magnet synchronous motor(PMSM)control,the jitter problem affects the system performance,so a novel reaching lawis proposed to construct a non-singular fast terminal slidingmode controller(NFTSMC)to reduce...In permanent magnet synchronous motor(PMSM)control,the jitter problem affects the system performance,so a novel reaching lawis proposed to construct a non-singular fast terminal slidingmode controller(NFTSMC)to reduce the jitter.To enhance the immunity of the system,a disturbance observer is designed to observe and compensate for the disturbance to the sliding mode controller.In addition,considering that the controller parameters are difficult to adjust,and the traditional zebra optimization algorithm(ZOA)is prone to converge prematurely and fall into local optimum when solving the optimal solution,the improved zebra optimization algorithm(IZOA)is proposed,and the ability of the IZOA in practical applications is verified by using international standard test functions.To verify the performance of IZOA,firstly,the adjustment time of IZOA is reduced by 71.67%compared with ZOA through the step response,and secondly,the tracking error of IZOA is reduced by 51.52%compared with ZOA through the sinusoidal signal following.To verify the performance of the designed controller based on disturbance observer,the designed controller reduces the speed overshoot from 2.5%to 0.63%compared with the traditional NFTSMC in the speed mutation experiment,which is a performance improvement of 70.8%,and the designed controller outperforms the traditional NFTSMC in the load mutation experiment,which is a performance improvement of 60.0%in the case of sudden load addition,and a performance improvement of 90.0%in the case of load release,which verifies that the designed controller outperforms the traditional NFTSMC.展开更多
This paper presents a robust finite-time visual servo control strategy for the tracking problem of omni-directional mobile manipulators(OMMs)subject to mismatched disturbances.First,the nonlinear kinematic model of vi...This paper presents a robust finite-time visual servo control strategy for the tracking problem of omni-directional mobile manipulators(OMMs)subject to mismatched disturbances.First,the nonlinear kinematic model of visual servoing for OMMs with mismatched disturbances is explicitly presented to solve the whole-body inverse kinematic problem.Second,a sliding mode observer augmented with an integral terminal sliding mode controller is proposed to handle these uncertainties and ensure that the system converges to a small region around the equilibrium point.The boundary layer technique is employed to mitigate the chattering phenomenon.Furthermore,a strict finite-time Lyapunov stability analysis is conducted.An experimental comparison between the proposed algorithm and a traditional position-based visual servo controller is carried out,and the results demonstrate the superiority of the proposed control algorithm.展开更多
This paper presents a novel active disturbance rejection control(ADRC)scheme based on a cascade connection of generalized proportional integral observers(GPIOs)with internal models designed to estimate both polynomial...This paper presents a novel active disturbance rejection control(ADRC)scheme based on a cascade connection of generalized proportional integral observers(GPIOs)with internal models designed to estimate both polynomial and resonant disturbances.In this estimator structure,referred to as Cascade GPIO(CGPIO),the total disturbance sensitivity is the product of the sensitivities at each cascade level.This approach improves system performance against both periodic and non-periodic disturbances and enhances robustness under frequency variations in harmonic components.Additionally,the decoupled nature of the estimator reduces the order of the GPIOs,thereby simplifying tuning and limiting observer gains.The proposed control scheme is supported by a frequency-domain analysis and is experimentally validated in the current control of a grid-connected converter subject to control gain uncertainties,harmonic distortion,frequency deviations,and measurement noise.Experimental results demonstrate that the CGPIO-based ADRC outperforms benchmark solutions,including proportional-integral(PI)and proportional-resonant(PR)controllers.展开更多
This study offers an empirical comparison of the Linear Quadratic Regulator(LQR)and Fractional Order LQR(FOLQR)controllers that were implemented on a two-degrees-offreedom(2-DOF)Quanser Aero 2 helicopter platform.It e...This study offers an empirical comparison of the Linear Quadratic Regulator(LQR)and Fractional Order LQR(FOLQR)controllers that were implemented on a two-degrees-offreedom(2-DOF)Quanser Aero 2 helicopter platform.It employs both full and reduced-order observer designs to facilitate trajectory monitoring and stabilisation.The Aero 2 platform is dynamically modelled using Euler-Lagrange equations to develop a multi-input multi-output(MIMO)system.This system comprises two inputs and four state equations.In collaboration with observers,the LQR and FOLQR controllers approximate states that are not directly measurable by utilising the system model and available data.This procedure effectively overcomes the practical limitations of sensors.The enhanced performance of FOLQR in terms of tracking precision and stability has been depicted from the experimental results,showing real-time execution on the Aero 2 platform.This paper provides rigorous insights into control engineering and advanced observer-based control design for underactuated systems.展开更多
Automated valet parking systems based on parking automated guided vehicles(P-AGVs)are effective for improving parking convenience and increasing parking density.The ability of P-AGVs to move towards any position and a...Automated valet parking systems based on parking automated guided vehicles(P-AGVs)are effective for improving parking convenience and increasing parking density.The ability of P-AGVs to move towards any position and attain any orientation simultaneously due to their mecanum wheels makes it convenient to transport vehicles in a parking lot.In this study,a nonlinear disturbance observer-based sliding mode controller for the trajectory tracking problem of a P-AGV is proposed.The kinematic and dynamic models for a P-AGV tracking trajectory are first analyzed in sequence and the influences of disturbing forces considered.Subsequently,a nonlinear disturbance observer(NDO)is designed to estimate the disturbing forces and torques generated by the caster wheels.Based on the designed NDO,a robust nonsingular terminal sliding-mode(NTSM)controller is used to track reference trajectories.The stabilities of the NDO and NDO-NTSM control systems are theoretically verified using their Lyapunov functions.Finally,simulations and experiments are performed to verify the effectiveness of the proposed control scheme.The experimental results show that the proposed NDO-NTSM controller can improve the trajectory tracking stability by 42-68%compared to a traditional NTSM controller.The NDO-based sliding mode controller for trajectory tracking proposed in this study can effectively reduce the impact of disturbances on trajectory tracking accuracy.展开更多
In semiconductor precision packaging and other applications involving alignment of automated equipment,the nonlinear motion caused by structural characteristics and friction effects on torque-type rotating motion stag...In semiconductor precision packaging and other applications involving alignment of automated equipment,the nonlinear motion caused by structural characteristics and friction effects on torque-type rotating motion stages seriously affects output accuracy and stability.To solve this problem,the motion characteristics of a rotating stage and the mechanism by which friction nonlinearity influences accuracy are analyzed in detail.In addition,a compound control strategy based on a kinematic model and the Stribeck friction model is designed.A friction disturbance observer based on output position feedback is improved for simple parameter tuning.Finally,an experimental system is constructed to carry out validation tests,including identification of nonlinear characteristics and performance comparisons.The experimental results show that the linear tracking error of the torque-type rotating stage is less than 1.47µm after adoption of the proposed model-based composite control strategy,and the corresponding rotary angle deviation is less than 0.0153°.The linearity of output motion is increased to 97.59%and the error compensation effect is improved by 51.6%compared with the PID control method.The experimental results confirm that the analysis method adopted here and the proposed compensation strategy can effectively reduce frictional nonlinearity and improve motion accuracy.The proposed method can also be applied to other precision electromechanical systems.展开更多
In order to enhance the dynamic control precision of inertial stabilization platform(ISP),a disturbance sliding mode observer(DSMO)is proposed in this paper suppressing disturbance torques inherent within the system.T...In order to enhance the dynamic control precision of inertial stabilization platform(ISP),a disturbance sliding mode observer(DSMO)is proposed in this paper suppressing disturbance torques inherent within the system.The control accuracy of ISP is fundamentally circumscribed by various disturbance torques in rotating shaft.Therefore,a dynamic model of ISP incorporating composite perturbations is established with regard to the stabilization of axis in the inertial reference frame.Subsequently,an online estimator for control loop uncertainties based on the sliding mode control algorithm is designed to estimate the aggregate disturbances of various parameters uncertainties and other unmodeled disturbances that cannot be accurately calibrated.Finally,the proposed DSMO is integrated into a classical proportional-integral-derivative(PID)control scheme,utilizing feedforward approach to compensate the composite disturbance in the control loop online.The effectiveness of the proposed disturbance observer is validated through simulation and hardware experimentation,demonstrating a significant improvement in the dynamic control performance and robustness of the classical PID controller extensively utilized in the field of engineering.展开更多
This paper investigates the observer-based prescribed-time time-varying output formation-containment(PT-TV-OFC)control problem for heterogeneous multi-agent systems in which the different agents have different state d...This paper investigates the observer-based prescribed-time time-varying output formation-containment(PT-TV-OFC)control problem for heterogeneous multi-agent systems in which the different agents have different state dimensions.The system comprises one tracking leader,multiple formation leaders,and followers,where two types of leaders are used to generate a reference trajectory for movement and achieve specific formation,respectively.Firstly,a prescribed-time dynamics observer is constructed for the formation leaders to estimate the tracking leader's dynamic model and state.On this basis,a prescribed-time control protocol is designed for the formation leaders to achieve time-varying output formation.Then,a prescribed-time convex hull observer is designed for the followers to estimate information regarding the convex hull formed by the formation leaders.Using the estimated convex hull information,a prescribed-time containment control protocol is designed to ensure the followers converge into the convex hull.Furthermore,using Lyapunov stability theory,the stability of systems is proved in detail,which implies that the heterogeneous multi-agent systems can achieve PT-TV-OFC control.Finally,numerical simulations validate the feasibility of the theoretical results.展开更多
Accurate trajectory tracking in lower-limb exoskeletons is challenged by the nonlinear,time-varying dynamics of human-robot interaction,limited sensor availability,and unknown external disturbances.This study proposes...Accurate trajectory tracking in lower-limb exoskeletons is challenged by the nonlinear,time-varying dynamics of human-robot interaction,limited sensor availability,and unknown external disturbances.This study proposes a novel control strategy that combines flatness-based control with two cascaded observers:a high-gain observer to estimate unmeasured joint velocities,and a nonlinear disturbance observer to reconstruct external torque disturbances in real time.These estimates are integrated into the control law to enable robust,state-feedback-based trajectory tracking.The approach is validated through simulation scenarios involving partial state measurements and abrupt external torque perturbations,reflecting realistic rehabilitation conditions.Results confirm that the proposed method significantly enhances tracking accuracy and disturbance rejection capability,demonstrating its strong potential for reliable and adaptive rehabilitation assistance.展开更多
To overcome external environmental disturbances,inertial parameter uncertainties and vibration of flexible modes in the process of attitude tracking,a comprehensively effective predefined-time guaranteed performance c...To overcome external environmental disturbances,inertial parameter uncertainties and vibration of flexible modes in the process of attitude tracking,a comprehensively effective predefined-time guaranteed performance controller based on multi⁃observers for flexible spacecraft is proposed.First,to prevent unwinding phenomenon in attitude description,the rotation matrix is used to represent the spacecraft’s attitude.Second,the flexible modes observer which can guarantee predefined⁃time convergence is designed,for the case where flexible vibrations are unmeasurable in practice.What’s more,the disturbance observer is applied to estimate and compensate the lumped disturbances to improve the robustness of attitude control.A predefined-time controller is proposed to satisfy the prescribed performance and stabilize the attitude tracking system via barrier Lyapunov function.Finally,through comparative numerical simulations,the proposed controller can achieve high-precision convergence compared with the existing finite-time attitude tracking controller.This paper provides certain references for the high-precision predefined-time prescribed performance attitude tracking of flexible spacecraft with multi-disturbance.展开更多
This paper introduces an optimized backstepping control method for Flexible Airbreathing Hypersonic Vehicles(FAHVs).The approach incorporates nonlinear disturbance observation and reinforcement learning to address com...This paper introduces an optimized backstepping control method for Flexible Airbreathing Hypersonic Vehicles(FAHVs).The approach incorporates nonlinear disturbance observation and reinforcement learning to address complex control challenges.The Minimal Learning Parameter(MLP)technique is applied to manage unknown nonlinear dynamics,significantly reducing the computational load usually associated with Neural Network(NN)weight updates.To improve the control system robustness,an MLP-based nonlinear disturbance observer is designed,which estimates lumped disturbances,including flexibility effects,model uncertainties,and external disruptions within the FAHVs.In parallel,the control strategy integrates reinforcement learning using an MLP-based actor-critic framework within the backstepping design to achieve both optimality and robustness.The actor performs control actions,while the critic assesses the optimal performance index function.To minimize this index function,an adaptive gradient descent method constructs both the actor and critic.Lyapunov analysis is employed to demonstrate that all signals in the closed-loop system are semiglobally uniformly ultimately bounded.Simulation results confirm that the proposed control strategy delivers high control performance,marked by improved accuracy and reduced energy consumption.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.61773142).
文摘Intercepting high-maneuverability hypersonic targets in near-space environments poses significant challenges due to their extreme speeds and evasive capabilities.To address these challenges,this study presents an integrated approach that combines a Three-Dimensional Finite-Time Optimal Cooperative Guidance Law(FTOC)with an Information Fusion Anti-saturation Predefined-time Observer(IFAPO).The proposed FTOC guidance law employs a nonlinear,non-quadratic finite-time optimal control strategy designed for rapid convergence within the limited timeframes of near-space interceptions,avoiding the need for remaining flight time estimation or linear decoupling inherent in traditional methods.To complement the guidance strategy,the IFAPO leverages multi-source information fusion theory and incorporates anti-saturation mechanisms to enhance target maneuver estimation.This method ensures accurate and real-time prediction of target acceleration while maintaining predefined convergence performance,even under complex interception conditions.By integrating the FTOC guidance law and IFAPO,the approach optimizes cooperative missile positioning,improves interception success rates,and minimizes fuel consumption,addressing practical constraints in military applications.Simulation results and comparative analyses confirm the effectiveness of the integrated approach,demonstrating its capability to achieve cooperative interception of highly maneuvering targets with enhanced efficiency and reduced economic costs,aligning with realistic combat scenarios.
基金the National Natural Science Foundation of China(62203356)Fundamental Research Funds for the Central Universities of China(31020210502002)。
文摘This paper studies the problem of time-varying formation control with finite-time prescribed performance for nonstrict feedback second-order multi-agent systems with unmeasured states and unknown nonlinearities.To eliminate nonlinearities,neural networks are applied to approximate the inherent dynamics of the system.In addition,due to the limitations of the actual working conditions,each follower agent can only obtain the locally measurable partial state information of the leader agent.To address this problem,a neural network state observer based on the leader state information is designed.Then,a finite-time prescribed performance adaptive output feedback control strategy is proposed by restricting the sliding mode surface to a prescribed region,which ensures that the closed-loop system has practical finite-time stability and that formation errors of the multi-agent systems converge to the prescribed performance bound in finite time.Finally,a numerical simulation is provided to demonstrate the practicality and effectiveness of the developed algorithm.
基金Supported by the National Natural Science Foundation of China (Grant No. 50779029)the Natural Science Foundation of Hubei Province(Grant No. 2008CDZ046)+1 种基金the Scientific Innovation Team Project of Hubei Provincial Department of Education (Grant No. T200809)the Science Foundation of Education Commission of Hubei Province (Grant No. D20091305)
文摘In this paper, the problem of designing semi-global finite-time observers for a class of nonlinear systems is investigated. Based on the theories of finite-time stability, an approach to designing semi-global finite-time observers for the nonlinear systems is presented. It has been shown that, after the finite time, the designed finite-time observer realizes the accurate reconstruction of the states of the nonlinear system. A numerical example is given to illustrate the effectiveness and validity of the method.
基金supported by the National Natural Science Foundation of China(12072090).
文摘This work proposes the application of an iterative learning model predictive control(ILMPC)approach based on an adaptive fault observer(FOBILMPC)for fault-tolerant control and trajectory tracking in air-breathing hypersonic vehicles.In order to increase the control amount,this online control legislation makes use of model predictive control(MPC)that is based on the concept of iterative learning control(ILC).By using offline data to decrease the linearized model’s faults,the strategy may effectively increase the robustness of the control system and guarantee that disturbances can be suppressed.An adaptive fault observer is created based on the suggested ILMPC approach in order to enhance overall fault tolerance by estimating and compensating for actuator disturbance and fault degree.During the derivation process,a linearized model of longitudinal dynamics is established.The suggested ILMPC approach is likely to be used in the design of hypersonic vehicle control systems since numerical simulations have demonstrated that it can decrease tracking error and speed up convergence when compared to the offline controller.
文摘For air-to-air missiles, the terminal guidance’s preci-sion is directly contingent upon the tracking capabilities of the roll-pitch seeker. This paper presents a combined non-singular fast terminal sliding mode control method, aimed at resolving the frame control problem of roll-pitch seeker tracking high maneu-vering target. The sliding mode surface is structured around the principle of segmentation, which enables the control system’s rapid attainment of the zero point and ensure global fast conver-gence. The system’s state is more swiftly converged to the slid-ing mode surface through an improved adaptive fast dual power reaching law. Utilizing an extended state observer, the overall disturbance is both identified and compensated. The validation of the system’s stability and its convergence within a finite-time is grounded in Lyapunov’s stability criteria. The performance of the introduced control method is confirmed through roll-pitch seeker tracking control simulation. Data analysis reveals that newly proposed control technique significantly outperforms existing sliding mode control methods by rapidly converging the frame to the target angle, reduce the tracking error of the detec-tor for the target, and bolster tracking precision of the roll-pitch seeker huring disturbed conditions.
文摘We present a new perspective on the P vs NP problem by demonstrating that its answer is inherently observer-dependent in curved spacetime, revealing an oversight in the classical formulation of computational complexity theory. By incorporating general relativistic effects into complexity theory through a gravitational correction factor, we prove that problems can transition between complexity classes depending on the observer’s reference frame and local gravitational environment. This insight emerges from recognizing that the definition of polynomial time implicitly assumes a universal time metric, an assumption that breaks down in curved spacetime due to gravitational time dilation. We demonstrate the existence of gravitational phase transitions in problem complexity, where an NP-complete problem in one reference frame becomes polynomially solvable in another frame experiencing extreme gravitational time dilation. Through rigorous mathematical formulation, we establish a gravitationally modified complexity theory that extends classical complexity classes to incorporate observer-dependent effects, leading to a complete framework for understanding how computational complexity transforms across different spacetime reference frames. This finding parallels other self-referential insights in mathematics and physics, such as Gödel’s incompleteness theorems and Einstein’s relativity, suggesting a deeper connection between computation, gravitation, and the nature of mathematical truth.
基金supported by the National Natural Science Foundation of China(62133008,62303273,62188101,62373226,62473173)Young Taishan Scholars Program of Shandong Province of China(tsqn202408206)+2 种基金a Project of Shandong Province Higher Educational Youth and Innovation Talent Introduction and Education Programthe Natural Science Foundation of Shandong Province,China(ZR2023QF072)China Postdoctoral Science Foundation(2022M721932)
文摘Driven by practical applications, the achievement of distributed observers for nonlinear systems has emerged as a crucial advancement in recent years. However, existing theoretical advancements face certain limitations: They either fail to address more complex nonlinear phenomena, rely on hard-to-verify assumptions, or encounter difficulties in solving system parameters.Consequently, this paper aims to address these challenges by investigating distributed observers for nonlinear systems through the full-measured canonical form(FMCF), which is inspired by full-measured system(FMS) theory. To begin with, this study addresses the fact that the FMCF can only be obtained through the observable canonical form(OCF) in existing FMS theories.The paper demonstrates that a class of nonlinear systems can directly obtain FMCF through state space equations, independent of OCF. Also, a general method for solving FMCF in such systems is provided. Furthermore, based on the FMCF, A distributed observer is developed for nonlinear systems under two scenarios: Lipschitz conditions and open-loop bounded conditions.The paper establishes their asymptotic omniscience and demonstrates that the designed distributed observer in this study has fewer design parameters and is more convenient to construct than existing approaches. Finally, the effectiveness of the proposed methods is validated through simulation results on Van der Pol oscillators and microgrid systems.
基金Supported by the Major Science and Technology Projects in Jilin Province and Changchun City(20220301010GX).
文摘When the proton exchange membrane fuel cell(PEMFC)system is running,there will be a condition that does not require power output for a short time.In order to achieve zero power output under low power consumption,it is necessary to consider the diversity of control targets and the complexity of dynamic models,which brings the challenge of high-precision tracking control of the stack output power and cathode intake flow.For system idle speed control,a modelbased nonlinear control framework is constructed in this paper.Firstly,the nonlinear dynamic model of output power and cathode intake flow is derived.Secondly,a control scheme combining nonlinear extended Kalman filter observer and state feedback controller is designed.Finally,the control scheme is verified on the PEMFC experimental platform and compared with the proportion-integration-differentiation(PID)controller.The experimental results show that the control strategy proposed in this paper can realize the idle speed control of the fuel cell system and achieve the purpose of zero power output.Compared with PID controller,it has faster response speed and better system dynamics.
基金The National Key R&D Program of China(2021ZD0201300)the National Natural Science Foundation of China(624B2058,U1913602 and 61936004)+1 种基金the Innovation Group Project of the National Natural Science Foundation of China(61821003)the 111 Project on Computational Intelligence and Intelligent Control(B18024).
文摘For large-scale heterogeneous multi-agent systems(MASs)with characteristics of dense-sparse mixed distribution,this paper investigates the practical finite-time deployment problem by establishing a novel crossspecies bionic analytical framework based on the partial differential equation-ordinary differential equation(PDE-ODE)approach.Specifically,by designing a specialized network communication protocol and employing the spatial continuum method for densely distributed agents,this paper models the tracking errors of densely distributed agents as a PDE equivalent to a human disease transmission model,and that of sparsely distributed agents as several ODEs equivalent to the predator population models.The coupling relationship between the PDE and ODE models is established through boundary conditions of the PDE,thereby forming a PDE-ODE-based tracking error model for the considered MASs.Furthermore,by integrating adaptive neural control scheme with the aforementioned biological models,a“Flexible Neural Network”endowed with adaptive and self-stabilized capabilities is constructed,which acts upon the considered MASs,enabling their practical finite-time deployment.Finally,effectiveness of the developed approach is illustrated through a numerical example.
基金supported by the Key Technology of Flexible Regulation of Energy in Green High-Efficiency/Carbon-Efficient Buildings under the Smart Park System of PowerChina Guiyang Co.,Ltd.(YJ2022-12)the Science and Technology Support Plan of Guizhou Province“Research and Application Development of Key Technologies for Flexible Regulation of Energy in High-Efficiency/Carbon-Efficient Buildings”(Guizhou Science and Technology Cooperation Support[2023]General 409).
文摘In permanent magnet synchronous motor(PMSM)control,the jitter problem affects the system performance,so a novel reaching lawis proposed to construct a non-singular fast terminal slidingmode controller(NFTSMC)to reduce the jitter.To enhance the immunity of the system,a disturbance observer is designed to observe and compensate for the disturbance to the sliding mode controller.In addition,considering that the controller parameters are difficult to adjust,and the traditional zebra optimization algorithm(ZOA)is prone to converge prematurely and fall into local optimum when solving the optimal solution,the improved zebra optimization algorithm(IZOA)is proposed,and the ability of the IZOA in practical applications is verified by using international standard test functions.To verify the performance of IZOA,firstly,the adjustment time of IZOA is reduced by 71.67%compared with ZOA through the step response,and secondly,the tracking error of IZOA is reduced by 51.52%compared with ZOA through the sinusoidal signal following.To verify the performance of the designed controller based on disturbance observer,the designed controller reduces the speed overshoot from 2.5%to 0.63%compared with the traditional NFTSMC in the speed mutation experiment,which is a performance improvement of 70.8%,and the designed controller outperforms the traditional NFTSMC in the load mutation experiment,which is a performance improvement of 60.0%in the case of sudden load addition,and a performance improvement of 90.0%in the case of load release,which verifies that the designed controller outperforms the traditional NFTSMC.
基金supported by the Artificial Intelligence Innovation and Development Special Fund of Shanghai(No.2019RGZN01041)the National Natural Science Foundation of China(No.92048205).
文摘This paper presents a robust finite-time visual servo control strategy for the tracking problem of omni-directional mobile manipulators(OMMs)subject to mismatched disturbances.First,the nonlinear kinematic model of visual servoing for OMMs with mismatched disturbances is explicitly presented to solve the whole-body inverse kinematic problem.Second,a sliding mode observer augmented with an integral terminal sliding mode controller is proposed to handle these uncertainties and ensure that the system converges to a small region around the equilibrium point.The boundary layer technique is employed to mitigate the chattering phenomenon.Furthermore,a strict finite-time Lyapunov stability analysis is conducted.An experimental comparison between the proposed algorithm and a traditional position-based visual servo controller is carried out,and the results demonstrate the superiority of the proposed control algorithm.
文摘This paper presents a novel active disturbance rejection control(ADRC)scheme based on a cascade connection of generalized proportional integral observers(GPIOs)with internal models designed to estimate both polynomial and resonant disturbances.In this estimator structure,referred to as Cascade GPIO(CGPIO),the total disturbance sensitivity is the product of the sensitivities at each cascade level.This approach improves system performance against both periodic and non-periodic disturbances and enhances robustness under frequency variations in harmonic components.Additionally,the decoupled nature of the estimator reduces the order of the GPIOs,thereby simplifying tuning and limiting observer gains.The proposed control scheme is supported by a frequency-domain analysis and is experimentally validated in the current control of a grid-connected converter subject to control gain uncertainties,harmonic distortion,frequency deviations,and measurement noise.Experimental results demonstrate that the CGPIO-based ADRC outperforms benchmark solutions,including proportional-integral(PI)and proportional-resonant(PR)controllers.
文摘This study offers an empirical comparison of the Linear Quadratic Regulator(LQR)and Fractional Order LQR(FOLQR)controllers that were implemented on a two-degrees-offreedom(2-DOF)Quanser Aero 2 helicopter platform.It employs both full and reduced-order observer designs to facilitate trajectory monitoring and stabilisation.The Aero 2 platform is dynamically modelled using Euler-Lagrange equations to develop a multi-input multi-output(MIMO)system.This system comprises two inputs and four state equations.In collaboration with observers,the LQR and FOLQR controllers approximate states that are not directly measurable by utilising the system model and available data.This procedure effectively overcomes the practical limitations of sensors.The enhanced performance of FOLQR in terms of tracking precision and stability has been depicted from the experimental results,showing real-time execution on the Aero 2 platform.This paper provides rigorous insights into control engineering and advanced observer-based control design for underactuated systems.
基金Supported by National Key R&D Program of China(Grant No.2018YFB0105102)Anhui Provincial Natural Science Foundation(Grant No.2208085QE153).
文摘Automated valet parking systems based on parking automated guided vehicles(P-AGVs)are effective for improving parking convenience and increasing parking density.The ability of P-AGVs to move towards any position and attain any orientation simultaneously due to their mecanum wheels makes it convenient to transport vehicles in a parking lot.In this study,a nonlinear disturbance observer-based sliding mode controller for the trajectory tracking problem of a P-AGV is proposed.The kinematic and dynamic models for a P-AGV tracking trajectory are first analyzed in sequence and the influences of disturbing forces considered.Subsequently,a nonlinear disturbance observer(NDO)is designed to estimate the disturbing forces and torques generated by the caster wheels.Based on the designed NDO,a robust nonsingular terminal sliding-mode(NTSM)controller is used to track reference trajectories.The stabilities of the NDO and NDO-NTSM control systems are theoretically verified using their Lyapunov functions.Finally,simulations and experiments are performed to verify the effectiveness of the proposed control scheme.The experimental results show that the proposed NDO-NTSM controller can improve the trajectory tracking stability by 42-68%compared to a traditional NTSM controller.The NDO-based sliding mode controller for trajectory tracking proposed in this study can effectively reduce the impact of disturbances on trajectory tracking accuracy.
基金funded by the European Union’s Horizon 2020 Research and Innovation Program under the Marie Sklodowska-Curie Grant Agreement(Grant No.101026104)by the National Natural Science Foundation of China(Grant No.U20A6004)in part by the State Key Laboratory of Precision Electronics Manufacturing Technology and Equipment(Grant No.JMDZ202314).
文摘In semiconductor precision packaging and other applications involving alignment of automated equipment,the nonlinear motion caused by structural characteristics and friction effects on torque-type rotating motion stages seriously affects output accuracy and stability.To solve this problem,the motion characteristics of a rotating stage and the mechanism by which friction nonlinearity influences accuracy are analyzed in detail.In addition,a compound control strategy based on a kinematic model and the Stribeck friction model is designed.A friction disturbance observer based on output position feedback is improved for simple parameter tuning.Finally,an experimental system is constructed to carry out validation tests,including identification of nonlinear characteristics and performance comparisons.The experimental results show that the linear tracking error of the torque-type rotating stage is less than 1.47µm after adoption of the proposed model-based composite control strategy,and the corresponding rotary angle deviation is less than 0.0153°.The linearity of output motion is increased to 97.59%and the error compensation effect is improved by 51.6%compared with the PID control method.The experimental results confirm that the analysis method adopted here and the proposed compensation strategy can effectively reduce frictional nonlinearity and improve motion accuracy.The proposed method can also be applied to other precision electromechanical systems.
基金supported by the National Natural Science Foundation of China(61803015).
文摘In order to enhance the dynamic control precision of inertial stabilization platform(ISP),a disturbance sliding mode observer(DSMO)is proposed in this paper suppressing disturbance torques inherent within the system.The control accuracy of ISP is fundamentally circumscribed by various disturbance torques in rotating shaft.Therefore,a dynamic model of ISP incorporating composite perturbations is established with regard to the stabilization of axis in the inertial reference frame.Subsequently,an online estimator for control loop uncertainties based on the sliding mode control algorithm is designed to estimate the aggregate disturbances of various parameters uncertainties and other unmodeled disturbances that cannot be accurately calibrated.Finally,the proposed DSMO is integrated into a classical proportional-integral-derivative(PID)control scheme,utilizing feedforward approach to compensate the composite disturbance in the control loop online.The effectiveness of the proposed disturbance observer is validated through simulation and hardware experimentation,demonstrating a significant improvement in the dynamic control performance and robustness of the classical PID controller extensively utilized in the field of engineering.
基金supported in part by the National Natural Science Foundation of China(Grant Nos.62473135 and 62173121)。
文摘This paper investigates the observer-based prescribed-time time-varying output formation-containment(PT-TV-OFC)control problem for heterogeneous multi-agent systems in which the different agents have different state dimensions.The system comprises one tracking leader,multiple formation leaders,and followers,where two types of leaders are used to generate a reference trajectory for movement and achieve specific formation,respectively.Firstly,a prescribed-time dynamics observer is constructed for the formation leaders to estimate the tracking leader's dynamic model and state.On this basis,a prescribed-time control protocol is designed for the formation leaders to achieve time-varying output formation.Then,a prescribed-time convex hull observer is designed for the followers to estimate information regarding the convex hull formed by the formation leaders.Using the estimated convex hull information,a prescribed-time containment control protocol is designed to ensure the followers converge into the convex hull.Furthermore,using Lyapunov stability theory,the stability of systems is proved in detail,which implies that the heterogeneous multi-agent systems can achieve PT-TV-OFC control.Finally,numerical simulations validate the feasibility of the theoretical results.
基金funded by the King Salman Center for Disability Research,through Research Group No.KSRG-2024-468.
文摘Accurate trajectory tracking in lower-limb exoskeletons is challenged by the nonlinear,time-varying dynamics of human-robot interaction,limited sensor availability,and unknown external disturbances.This study proposes a novel control strategy that combines flatness-based control with two cascaded observers:a high-gain observer to estimate unmeasured joint velocities,and a nonlinear disturbance observer to reconstruct external torque disturbances in real time.These estimates are integrated into the control law to enable robust,state-feedback-based trajectory tracking.The approach is validated through simulation scenarios involving partial state measurements and abrupt external torque perturbations,reflecting realistic rehabilitation conditions.Results confirm that the proposed method significantly enhances tracking accuracy and disturbance rejection capability,demonstrating its strong potential for reliable and adaptive rehabilitation assistance.
基金supported by the National Natural Science Foundation of China(No.12472045)the Shanghai Aerospace Science and Technology Innovation Fund(No.SAST2022-036)。
文摘To overcome external environmental disturbances,inertial parameter uncertainties and vibration of flexible modes in the process of attitude tracking,a comprehensively effective predefined-time guaranteed performance controller based on multi⁃observers for flexible spacecraft is proposed.First,to prevent unwinding phenomenon in attitude description,the rotation matrix is used to represent the spacecraft’s attitude.Second,the flexible modes observer which can guarantee predefined⁃time convergence is designed,for the case where flexible vibrations are unmeasurable in practice.What’s more,the disturbance observer is applied to estimate and compensate the lumped disturbances to improve the robustness of attitude control.A predefined-time controller is proposed to satisfy the prescribed performance and stabilize the attitude tracking system via barrier Lyapunov function.Finally,through comparative numerical simulations,the proposed controller can achieve high-precision convergence compared with the existing finite-time attitude tracking controller.This paper provides certain references for the high-precision predefined-time prescribed performance attitude tracking of flexible spacecraft with multi-disturbance.
基金co-supported by the National Natural Science Foundation of China(Nos.62303380,62176214,62101590,62003268)。
文摘This paper introduces an optimized backstepping control method for Flexible Airbreathing Hypersonic Vehicles(FAHVs).The approach incorporates nonlinear disturbance observation and reinforcement learning to address complex control challenges.The Minimal Learning Parameter(MLP)technique is applied to manage unknown nonlinear dynamics,significantly reducing the computational load usually associated with Neural Network(NN)weight updates.To improve the control system robustness,an MLP-based nonlinear disturbance observer is designed,which estimates lumped disturbances,including flexibility effects,model uncertainties,and external disruptions within the FAHVs.In parallel,the control strategy integrates reinforcement learning using an MLP-based actor-critic framework within the backstepping design to achieve both optimality and robustness.The actor performs control actions,while the critic assesses the optimal performance index function.To minimize this index function,an adaptive gradient descent method constructs both the actor and critic.Lyapunov analysis is employed to demonstrate that all signals in the closed-loop system are semiglobally uniformly ultimately bounded.Simulation results confirm that the proposed control strategy delivers high control performance,marked by improved accuracy and reduced energy consumption.