High-dimensional quantum resources provide the ability to encode several bits of information on a single photon,which can particularly increase the secret key rate rate of quantum key distribution(QKD)systems.Recently...High-dimensional quantum resources provide the ability to encode several bits of information on a single photon,which can particularly increase the secret key rate rate of quantum key distribution(QKD)systems.Recently,a practical four-dimensional QKD scheme based on time-bin quantum photonic state,only with two single-photon avalanche detectors as measurement setup,has been proven to have a superior performance than the qubit-based one.In this paper,we extend the results to our proposed eight-dimensional scheme.Then,we consider two main practical factors to improve its secret key bound.Concretely,we take the afterpulse effect into account and apply a finite-key analysis with the intensity fluctuations.Our secret bounds give consideration to both the intensity fluctuations and the afterpulse effect for the high-dimensional QKD systems.Numerical simulations show the bound of eight-dimensional QKD scheme is more robust to the intensity fluctuations but more sensitive to the afterpulse effect than the four-dimensional one.展开更多
基金Project supported by the National Key Research and Development Program of China(Grant No.2020YFA0309702)the National Natural Science Foundation of China(Grant Nos.62101597,61605248,61675235,and 61505261)+2 种基金the China Postdoctoral Science Foundation(Grant No.2021M691536)the Natural Science Foundation of Henan Province,China(Grant Nos.202300410534 and 202300410532)the Anhui Initiative Fund in Quantum Information Technologies。
文摘High-dimensional quantum resources provide the ability to encode several bits of information on a single photon,which can particularly increase the secret key rate rate of quantum key distribution(QKD)systems.Recently,a practical four-dimensional QKD scheme based on time-bin quantum photonic state,only with two single-photon avalanche detectors as measurement setup,has been proven to have a superior performance than the qubit-based one.In this paper,we extend the results to our proposed eight-dimensional scheme.Then,we consider two main practical factors to improve its secret key bound.Concretely,we take the afterpulse effect into account and apply a finite-key analysis with the intensity fluctuations.Our secret bounds give consideration to both the intensity fluctuations and the afterpulse effect for the high-dimensional QKD systems.Numerical simulations show the bound of eight-dimensional QKD scheme is more robust to the intensity fluctuations but more sensitive to the afterpulse effect than the four-dimensional one.