High-pressure research has emerged as a pivotal approach for advancing our understanding and development of optoelectronic materials,which are vital for a wide range of applications,including photovoltaics,light-emitt...High-pressure research has emerged as a pivotal approach for advancing our understanding and development of optoelectronic materials,which are vital for a wide range of applications,including photovoltaics,light-emitting devices,and photodetectors.This review highlights various in situ characterization methods employed in high-pressure research to investigate the optical,electronic,and structural properties of optoelectronic materials.We explore the advances that have been made in techniques such as X-ray diffraction,absorption spectroscopy,nonlinear optics,photoluminescence spectroscopy,Raman spectroscopy,and photoresponse measurement,emphasizing how these methods have enhanced the elucidation of structural transitions,bandgap modulation,performance optimization,and carrier dynamics engineering.These insights underscore the pivotal role of high-pressure techniques in optimizing and tailoring optoelectronic materials for future applications.展开更多
This paper presents a gradient-descent travel time tomography method for solving the acoustictype velocity model inversion problem.Similarly to the adjoint-state method,the proposed method is based on the Eikonal equa...This paper presents a gradient-descent travel time tomography method for solving the acoustictype velocity model inversion problem.Similarly to the adjoint-state method,the proposed method is based on the Eikonal equation,enabling simultaneous calculation of contributions from all common-source receivers to the gradient.This overcomes the inefficiency inherent in conventional travel time tomography methods,which rely on a two-point ray tracing process.By directly calculating Fréchet derivatives,our method avoids the complex derivation processes associated with the adjoint-state method.The key to calculating the Fréchet derivatives is to calculate a so-called ray-path term.Consequently,compared to the adjoint-state method,the proposed method can explicitly obtain the ray paths,resulting in a more concise and intuitive derivation process.Furthermore,our method retains the benefits of the adjoint-state method,such as speed,low memory usage,and robustness.This paper focuses on elucidating the principles and algorithms for calculating the raypath term based on the fast sweeping method.The algorithms could be further speeded up by using parallel computational techniques.Synthetic tests demonstrate that our proposed travel time tomographic method accurately calculates ray paths,regardless of the complexity of the model and recording geometry.展开更多
We investigate the relationship between the magnitudes of Forbush decreases(FDs)and solar-geomagnetic characteristics using daily-averaged galactic cosmic ray(GCR)data from Inuvick(INVK)and Magadan(MGDN)neutron monito...We investigate the relationship between the magnitudes of Forbush decreases(FDs)and solar-geomagnetic characteristics using daily-averaged galactic cosmic ray(GCR)data from Inuvick(INVK)and Magadan(MGDN)neutron monitor(NM)stations to aid in counting the case of GCR flux intensity modulation.The FDs,obtained with an automated new computer software algorithm from daily-averaged GCR data from the IZMIRAN common website:http://cr0.izmiran.ru/common,at INVK(224)and MGDN(229)NM stations,from 1998 to 2002,were used in the present work.The associated solar-geomagnetic parameters of the same time range were obtained from the OMNI website.A statistical analytical method was employed to test the link between FD amplitudes and solargeomagnetic variables.We observed negative trends in FD-IMF,FD-SWS,FD-Kp,FD-SSN and FD-SI,while a positive relation was indicated in FD-Dst at both stations.All are statistically significant at a 95%confidence level.The results obtained here imply that solar emission characteristics impact the GCR flux intensity modulation.展开更多
A procedure of the method of reverberation ray matrix(MRRM)is developed to perform the buckling analysis of thin multi-span rectangular plates having internal line supports or stiffeners.A computation algorithm for th...A procedure of the method of reverberation ray matrix(MRRM)is developed to perform the buckling analysis of thin multi-span rectangular plates having internal line supports or stiffeners.A computation algorithm for the reverberation ray matrix in the MRRM is derived to determine the buckling loading.Specifically,the analytical solutions are presented for the buckling of the structure having two opposite simply-supported or clamped-supported edges with spans,while the constraint condition of two remaining edges may be in any combination of free,simply-supported,and clamped boundary conditions.Furthermore,based on the analysis of matrices relating to the unknown coefficients in the solution form for the deflection in terms of buckling modal functions,some recursive equations(REs)for the MRRM are introduced to generate a reduced reverberation ray matrix with unchanged dimension when the number of spans increases,which promotes the computation efficiency.Several numerical examples are given,and the present results are compared with the known solutions to illustrate the validity and accurateness of the MRRM for the buckling analysis.展开更多
The research on the application of X-ray diffraction in the quantitative analysis of Chinese medicines is rare. The main reason is that the technical problems related to the internal standard and the selection of quan...The research on the application of X-ray diffraction in the quantitative analysis of Chinese medicines is rare. The main reason is that the technical problems related to the internal standard and the selection of quantitative peaks are not well solved, and the accuracy and precision of the results are not satisfactory. This study employed the concept of mass absorption coefficient based on the internal standard method, and the full spectrum fitting and quantitative methods were used to solve the above technical problems. The sample was blended. the internal standard substance of zinc oxide was fully ground, and tablets were prepared by positive pressure method. Under certain instrumental conditions, the PXRD pattern was obtained by scanning. The percentage of gypsum fibrosum in Xiaokening tablet was obtained by quantitative analysis of full spectrum fitting internal standard by TOPAS software. The method was investigated by methodology. At the same time, the method was compared by ion chromatography, and SPSS software was used to make a significant t test on the results of the two methods. After the investigation, the average standard recovery rate of CaSO4-2H2O was 99.06%(RSD = 3.02%);and the recovery rate for simulated samples was 96.7%. The method had good specificity. After statistical analysis, there was no significant difference between the new PXRD method and the traditional method of ion chromatography.展开更多
Based on the method of reverberation ray matrix(MRRM), a reverberation matrix for planar framed structures composed of anisotropic Timoshenko(T) beam members containing completely hinged joints is developed for st...Based on the method of reverberation ray matrix(MRRM), a reverberation matrix for planar framed structures composed of anisotropic Timoshenko(T) beam members containing completely hinged joints is developed for static analysis of such structures.In the MRRM for dynamic analysis, amplitudes of arriving and departing waves for joints are chosen as unknown quantities. However, for the present case of static analysis, displacements and rotational angles at the ends of each beam member are directly considered as unknown quantities. The expressions for stiffness matrices for anisotropic beam members are developed. A corresponding reverberation matrix is derived analytically for exact and unified determination on the displacements and internal forces at both ends of each member and arbitrary cross sectional locations in the structure. Numerical examples are given and compared with the finite element method(FEM) results to validate the present model. The characteristic parameter analysis is performed to demonstrate accuracy of the present model with the T beam theory in contrast with errors in the usual model based on the Euler-Bernoulli(EB) beam theory. The resulting reverberation matrix can be used for exact calculation of anisotropic framed structures as well as for parameter analysis of geometrical and material properties of the framed structures.展开更多
Generally speaking, the factors of both medium and tectonic that give rise to heterogeneity of the earth crust and mantle structures should be taken into account simultaneously in three dimensional seismic ray tracin...Generally speaking, the factors of both medium and tectonic that give rise to heterogeneity of the earth crust and mantle structures should be taken into account simultaneously in three dimensional seismic ray tracing. In this paper, the three dimensional structure models are constructed with the model similar to generation system in computer aid design and manufacturing (CAD/CAM). Based on the algorithm proposed by Cerveny et al . for complete seismic ray tracing in complex three dimensional structures, a new technique called the indirect approach method for two point seismic ray tracing in three dimensional laterally heterogeneous media has been put forward, and its numerical computing examples were given.展开更多
DArk Matter Particle Explorer(DAMPE) is a general purpose high energy cosmic ray and gamma ray observatory, aiming to detect high energy electrons and gammas in the energy range 5 Ge V to 10 Te V and hundreds of Te V ...DArk Matter Particle Explorer(DAMPE) is a general purpose high energy cosmic ray and gamma ray observatory, aiming to detect high energy electrons and gammas in the energy range 5 Ge V to 10 Te V and hundreds of Te V for nuclei. This paper provides a method using machine learning to identify electrons and separate them from gammas, protons, helium and heavy nuclei with the DAMPE data acquired from 2016 January 1 to 2017 June 30, in the energy range from 10 to 100 Ge V.展开更多
With the development of ultra-wide coverage technology,multibeam echo-sounder(MBES)system has put forward higher requirements for localization accuracy and computational efficiency of ray tracing method.The classical ...With the development of ultra-wide coverage technology,multibeam echo-sounder(MBES)system has put forward higher requirements for localization accuracy and computational efficiency of ray tracing method.The classical equivalent sound speed profile(ESSP)method replaces the measured sound velocity profile(SVP)with a simple constant gradient SVP,reducing the computational workload of beam positioning.However,in deep-sea environment,the depth measurement error of this method rapidly increases from the central beam to the edge beam.By analyzing the positioning error of the ESSP method at edge beam,it is discovered that the positioning error increases monotonically with the incident angle,and the relationship between them could be expressed by polynomial function.Therefore,an error correction algorithm based on polynomial fitting is obtained.The simulation experiment conducted on an inclined seafloor shows that the proposed algorithm exhibits comparable efficiency to the original ESSP method,while significantly improving bathymetry accuracy by nearly eight times in the edge beam.展开更多
The intersection method is one of the basic approaches for locating earthquakes and is not only robust but also efficient. However, its location accuracy is not high, especially for focal depth because the velocity mo...The intersection method is one of the basic approaches for locating earthquakes and is not only robust but also efficient. However, its location accuracy is not high, especially for focal depth because the velocity model used for the conventional intersection method is based on homogeneous or laterally homogeneous media, which is too simple. In order to improve the accuracy, we have modified the existing intersection method. In the modified approach, the earthquake loci are not assumed to be circular or hyperbolic and calculation accuracy is improved using a minimum traveltime tree algorithm for tracing rays. The numerical model shows that the modified method can locate earthquakes in complex velocity models.展开更多
Lanthanide(Ln)-based metal halides with excellent luminescence properties,large Stokes shifts,and low toxicity have aroused wide attention as scintillators for X-ray imaging.However,the lack of fast and mild synthesis...Lanthanide(Ln)-based metal halides with excellent luminescence properties,large Stokes shifts,and low toxicity have aroused wide attention as scintillators for X-ray imaging.However,the lack of fast and mild synthesis methods of Ln-based metal halides,as one of the technical challenges,limits their applications.Here,benefiting from the innovative selection of methanol and ethanol as the solvent and anti-solvent,respectively,a series of Cs3LnCl6(Ln=Ce,Pr,Nd,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Lu)microcrystals(MCs)were prepared via the recrystallization method at room temperature for the first time.This recrystallization method could also realize large-scale production at one time and recyclable recrystallization of single-element MCs and the preparation of high-entropy five-element Cs_(3){TbDy-HoErTm}_(1)Cl_(6) crystals.Among these Cs_(3)LnCl_(6)MCs,Cs_(3)TbCl_(6)MCs with 4f→ 5d absorption transition possess the highest photoluminescence quantum yield of 90.8%.Besides,under X-ray irradiation,Cs3TbCl6 MCs show a high light yield of~51,800 photons MeV^(-1) and the as-fabricated thin films possess promising X-ray imaging ability and excellent spatial resolutions(12 Ip mm^(-1)).This work provides a new method for ultrafast preparing Ln-based metal halides under mild synthetic conditions and highlights their excellent potential as scintillators for X-ray imaging.展开更多
In order to extend the eN method to general three-dimensional boundary layers, the conservation law of the imaginary parts for the wave parameters with a fixed wave vector is deduced. The compatibility relationship ...In order to extend the eN method to general three-dimensional boundary layers, the conservation law of the imaginary parts for the wave parameters with a fixed wave vector is deduced. The compatibility relationship (CR) and the general theory of ray tracing (RT), which have been extensively used in conservative systems, are applied to a general three-dimensional boundary layer belonging to non-conservative systems. Two kinds of eN methods, i.e., the eN-CR method and the eN-RT method, are established. Both the two kinds of methods can wavenumber and the amplitude of the be used to predict the evolutions of the spanwise disturbances in general three-dimensional boundary layers. The reliability of the proposed methods is verified and validated by performing a direct numerical simulation (DNS) in a hypersonic general three-dimensional boundary layer over an aircraft model. The results are also compared with those obtained by other eN methods, indicating that the proposed methods have great potential applications in improving the transition prediction accuracy in general three-dimensional boundary layers.展开更多
Observing GeV gamma-rays is an important goal of the DArk Matter Particle Explorer(DAMPE)for indirect dark matter searching and high energy astrophysics. In this work, we present a set of accurate instrument response ...Observing GeV gamma-rays is an important goal of the DArk Matter Particle Explorer(DAMPE)for indirect dark matter searching and high energy astrophysics. In this work, we present a set of accurate instrument response functions for DAMPE(DmpIRFs) including the effective area, point-spread function and energy dispersion, which are crucial for gamma-ray data analysis based on statistics from simulation data. A dedicated software named DmpST is developed to facilitate the scientific analyses of DAMPE gamma-ray data. Considering the limited number of photons and angular resolution of DAMPE, the maximum likelihood method is adopted in DmpST to better disentangle different source components. The basic mathematics and framework regarding this software are also introduced in this paper.展开更多
The DArk Matter Particle Explorer(DAMPE),also known as Wukong in China,which was launched on 2015 December 17,is a new high energy cosmic ray and γ-ray satellite-borne observatory.One of the main scientific goals o...The DArk Matter Particle Explorer(DAMPE),also known as Wukong in China,which was launched on 2015 December 17,is a new high energy cosmic ray and γ-ray satellite-borne observatory.One of the main scientific goals of DAMPE is to observe Ge V-Te V high energy γ-rays with accurate energy,angular and time resolution,to indirectly search for dark matter particles and for the study of high energy astrophysics. Due to the comparatively higher fluxes of charged cosmic rays with respect to γ-rays,it is challenging to identify γ-rays with sufficiently high efficiency,minimizing the amount of charged cosmic ray contamination. In this work we present a method to identify γ-rays in DAMPE data based on Monte Carlo simulations,using the powerful electromagnetic/hadronic shower discrimination provided by the calorimeter and the veto detection of charged particles provided by the plastic scintillation detector. Monte Carlo simulations show that after this selection the number of electrons and protons that contaminate the selected γ-ray events at~10 Ge V amounts to less than 1% of the selected sample.Finally,we use flight data to verify the effectiveness of the method by highlighting known γ-ray sources in the sky and by reconstructing preliminary light curves of the Geminga pulsar.展开更多
In this study, the mass attenuation coefficient of boron-containing ores in the Liaoning province of China was calculated using Win XCOM software to investigate the shielding effectiveness of these ores against gamma ...In this study, the mass attenuation coefficient of boron-containing ores in the Liaoning province of China was calculated using Win XCOM software to investigate the shielding effectiveness of these ores against gamma rays. The mass attenuation coefficients were also calculated using MCNP-4 B code and compared with Win XCOM results; consequently, a good consistency between the results of Win XCOM and MCNP-4 B was observed. Furthermore, the G-P fitting method was used to evaluate the values of exposure buildup factor(EBF) in the energy range of 0.015–15 Me V up to 40 mean free paths. Among the selected ores, boron-bearing iron concentrate ore(M3)was determined to be the best gamma ray shielding ore owing to its higher values of mass attenuation coefficient and equivalent atomic number and lower value of EBF.Moreover, American Evaluated Nuclear Data File(ENDF/B-VII) was used to analyze the shielding effectivenessagainst thermal neutrons. It was determined that Szaibelyite(M2) is the best thermal neutron shielding material.This study would be useful for demonstrating the potential of boron-containing ores for applications in the field of nuclear engineering and technology.展开更多
We study the statistical properties of the highest pulses within individual gamma-ray bursts (GRBs). A wavelet package analysis technique and a developed pulse-finding algorithm have been applied to identify the highe...We study the statistical properties of the highest pulses within individual gamma-ray bursts (GRBs). A wavelet package analysis technique and a developed pulse-finding algorithm have been applied to identify the highest pulses from burst profiles observed by BATSE on board CGRO from 1991 April 21 to 1999 January 26. The statistical light curves of the highest pulses in four energy channels have been derived by an aligning method, which illustrate the temporal evolution of the pulse emission. Our result that narrower pulses go with higher energies is consistent with previous findings. By normalizing both the pulse durations and counts to unity, 'characteristic' profiles of the highest pulses in the four channels are also derived. The four characteristic profiles are turned out to be almost the same, thus strongly support the previous conclusion that the temporal profiles in different energy channels are self-similar and the previous conjecture on GRB pulses, implying that the emission process is similar at different energies. The cosmological time dilation effect is examined by investigating the relationship between the pulse flux and pulse duration. An anti-correlation between the two was found, which agrees with the expectation of the cosmological time dilation effect. Also, the evolution of the pulse duration with the observational epoch is studied. The result shows that the pulse duration tends to be shorter in later epochs. This trend cannot be explained by the present theoretical models, and may represent a great challenge to current theories.展开更多
The narrowness of the distribution of the peak energy of the νF<SUB>ν</SUB> spectrum of gamma-ray bursts (GRBs) and the unification of GRB populations are great puzzles yet to be solved. We investigate t...The narrowness of the distribution of the peak energy of the νF<SUB>ν</SUB> spectrum of gamma-ray bursts (GRBs) and the unification of GRB populations are great puzzles yet to be solved. We investigate the two puzzles based on the global spectral behaviors of different GRB populations, the long GRBs, the short GRBs, and the X-ray flashes (XRFs), in the HR?E<SUB>p</SUB> plane (HR the spectral hardness ratio) with BATSE and HETE-2 observations. It is found that the long GRBs and the XRFs observed by HETE-2 seem to follow the same sequence in the HR?E<SUB>p</SUB> plane, with the XRFs at the low end of this sequence. We fit the sequence by a universal Band function, and find that this sequence is mainly defined by the low energy index α, and is insensitive to the high energy index, β. With fixed β = ?5, a best fit is given by α = ?1.00 with χ<SUP>2</SUP><SUB>min</SUB>/dof = 2.2. The long and short GRBs observed by BATSE follow significantly different sequences in the HR?E<SUB>p</SUB> plane, with most of the short GRBs having a larger hardness ratio than the long GRBs at a given E<SUB>p</SUB>. For the long GRBs a best-fit yields α = ?0.30 and β = ?2.05. For the short GRBs, a best fit gives α = ?0.60 with χ<SUP>2</SUP><SUB>min</SUB> = 1.1 (with β fixed at -2.0 because it is numerically unstable). The α value for the short GRBs is significantly greater than that for the long GRBs. These results indicate that the global spectral behaviors of the long GRB sample and the XRF sample are similar, while that of the short GRBs is different. The short GRBs seem to be a unique subclass of GRBs, and they are not the higher energy extension of the long GRBs.展开更多
Forbush decrease(FD),discovered by Scott E.Forbush about 80 years ago,is referred to as the non-repetitive short-term depression in Galactic cosmic ray(GCR)flux,presumed to be associated with large-scale perturbations...Forbush decrease(FD),discovered by Scott E.Forbush about 80 years ago,is referred to as the non-repetitive short-term depression in Galactic cosmic ray(GCR)flux,presumed to be associated with large-scale perturbations in solar wind and interplanetary magnetic field(IMF).It is the most spectacular variability in the GCR intensity which appears to be the compass for investigators seeking solar-terrestrial relationships.The method of selection and validation of FD events is very important to cosmic ray(CR)scientists.We have deployed new computer software to determine the amplitude and timing of FDs from daily-averaged CR data at Oulu Neutron Monitor station.The code selected 230 FDs between 1998 and 2002.In an attempt to validate the new FD automated catalog,the relationship between the amplitude of FDs,and IMF,solar wind speed(SWS)and geomagnetic storm indices(Dst,kp,ap)is tested here.A two-dimensional regression analysis indicates significant linear relationship between large FDs(CR(%)≤-3)and solar wind data and geomagnetic storm indices in the present sample.The implications of the relationship among these parameters are discussed.展开更多
The power-law frequency distributions of the peak flux of solar flare X-ray emission have been studied extensively and attributed to a system having self-organized criticality (SOC). In this paper, we first show tha...The power-law frequency distributions of the peak flux of solar flare X-ray emission have been studied extensively and attributed to a system having self-organized criticality (SOC). In this paper, we first show that, so long as the shape of the normalized light curve is not correlated with the peak flux, the flux histogram of solar flares also follows a power-law distribution with the same spectral index as the power- law frequency distribution of the peak flux, which may partially explain why power-law distributions are ubiquitous in the Universe. We then show that the spectral indexes of the histograms of soft X-ray fluxes observed by GOES satellites in two different energy channels are different: the higher energy channel has a harder distribution than the lower energy channel, which challenges the universal power-law distribution predicted by SOC models and implies a very soft distribution of thermal energy content of plasmas probed by the GOES satellites. The temperature (T) distribution, on the other hand, approaches a power-law dis- tribution with an index of 2 for high values of T. Hence the application of SOC models to the statistical properties of solar flares needs to be revisited.展开更多
With the assistance of the identified/associated sources in the second Fermi Large Area Telescope (LAT) catalog, we analyze and resolve the spatial distribution and the distributions of the gamma-ray spectral and va...With the assistance of the identified/associated sources in the second Fermi Large Area Telescope (LAT) catalog, we analyze and resolve the spatial distribution and the distributions of the gamma-ray spectral and variability indices of the remaining 575 unassociated Fermi LAT sources. Consequently, it is suggested that the unassociated sources could statistically consist of Galactic supernova remnants/pulsar wind nebulae, BL Lacertae objects, fiat spectrum radio quasars and other types of active galaxies with fractions of 25%, 29%, 41% and 5%, respectively.展开更多
基金supported by the National Nature Science Foundation of China(NSFC)(Grant Nos.22275004,62274040,and 62304046)the Shanghai Science and Technology Committee(Grant No.22JC1410300)+2 种基金the Shanghai Key Laboratory of Novel Extreme Condition Materials(Grant No.22dz2260800)the National Key Research and Development Program of China(Grant No.2022YFE0137400)the Shanghai Science and Technology Innovationaction Plan(Grant No.24DZ3001200).
文摘High-pressure research has emerged as a pivotal approach for advancing our understanding and development of optoelectronic materials,which are vital for a wide range of applications,including photovoltaics,light-emitting devices,and photodetectors.This review highlights various in situ characterization methods employed in high-pressure research to investigate the optical,electronic,and structural properties of optoelectronic materials.We explore the advances that have been made in techniques such as X-ray diffraction,absorption spectroscopy,nonlinear optics,photoluminescence spectroscopy,Raman spectroscopy,and photoresponse measurement,emphasizing how these methods have enhanced the elucidation of structural transitions,bandgap modulation,performance optimization,and carrier dynamics engineering.These insights underscore the pivotal role of high-pressure techniques in optimizing and tailoring optoelectronic materials for future applications.
基金supported by 14th Five-Year Plan major science and technology projects(no.KJGG2022-0201)。
文摘This paper presents a gradient-descent travel time tomography method for solving the acoustictype velocity model inversion problem.Similarly to the adjoint-state method,the proposed method is based on the Eikonal equation,enabling simultaneous calculation of contributions from all common-source receivers to the gradient.This overcomes the inefficiency inherent in conventional travel time tomography methods,which rely on a two-point ray tracing process.By directly calculating Fréchet derivatives,our method avoids the complex derivation processes associated with the adjoint-state method.The key to calculating the Fréchet derivatives is to calculate a so-called ray-path term.Consequently,compared to the adjoint-state method,the proposed method can explicitly obtain the ray paths,resulting in a more concise and intuitive derivation process.Furthermore,our method retains the benefits of the adjoint-state method,such as speed,low memory usage,and robustness.This paper focuses on elucidating the principles and algorithms for calculating the raypath term based on the fast sweeping method.The algorithms could be further speeded up by using parallel computational techniques.Synthetic tests demonstrate that our proposed travel time tomographic method accurately calculates ray paths,regardless of the complexity of the model and recording geometry.
文摘We investigate the relationship between the magnitudes of Forbush decreases(FDs)and solar-geomagnetic characteristics using daily-averaged galactic cosmic ray(GCR)data from Inuvick(INVK)and Magadan(MGDN)neutron monitor(NM)stations to aid in counting the case of GCR flux intensity modulation.The FDs,obtained with an automated new computer software algorithm from daily-averaged GCR data from the IZMIRAN common website:http://cr0.izmiran.ru/common,at INVK(224)and MGDN(229)NM stations,from 1998 to 2002,were used in the present work.The associated solar-geomagnetic parameters of the same time range were obtained from the OMNI website.A statistical analytical method was employed to test the link between FD amplitudes and solargeomagnetic variables.We observed negative trends in FD-IMF,FD-SWS,FD-Kp,FD-SSN and FD-SI,while a positive relation was indicated in FD-Dst at both stations.All are statistically significant at a 95%confidence level.The results obtained here imply that solar emission characteristics impact the GCR flux intensity modulation.
文摘A procedure of the method of reverberation ray matrix(MRRM)is developed to perform the buckling analysis of thin multi-span rectangular plates having internal line supports or stiffeners.A computation algorithm for the reverberation ray matrix in the MRRM is derived to determine the buckling loading.Specifically,the analytical solutions are presented for the buckling of the structure having two opposite simply-supported or clamped-supported edges with spans,while the constraint condition of two remaining edges may be in any combination of free,simply-supported,and clamped boundary conditions.Furthermore,based on the analysis of matrices relating to the unknown coefficients in the solution form for the deflection in terms of buckling modal functions,some recursive equations(REs)for the MRRM are introduced to generate a reduced reverberation ray matrix with unchanged dimension when the number of spans increases,which promotes the computation efficiency.Several numerical examples are given,and the present results are compared with the known solutions to illustrate the validity and accurateness of the MRRM for the buckling analysis.
文摘The research on the application of X-ray diffraction in the quantitative analysis of Chinese medicines is rare. The main reason is that the technical problems related to the internal standard and the selection of quantitative peaks are not well solved, and the accuracy and precision of the results are not satisfactory. This study employed the concept of mass absorption coefficient based on the internal standard method, and the full spectrum fitting and quantitative methods were used to solve the above technical problems. The sample was blended. the internal standard substance of zinc oxide was fully ground, and tablets were prepared by positive pressure method. Under certain instrumental conditions, the PXRD pattern was obtained by scanning. The percentage of gypsum fibrosum in Xiaokening tablet was obtained by quantitative analysis of full spectrum fitting internal standard by TOPAS software. The method was investigated by methodology. At the same time, the method was compared by ion chromatography, and SPSS software was used to make a significant t test on the results of the two methods. After the investigation, the average standard recovery rate of CaSO4-2H2O was 99.06%(RSD = 3.02%);and the recovery rate for simulated samples was 96.7%. The method had good specificity. After statistical analysis, there was no significant difference between the new PXRD method and the traditional method of ion chromatography.
基金Project supported by the Program for New Century Excellent Talents in Universities(NCET)by the Ministry of Education of China(No.NCET-04-0373)
文摘Based on the method of reverberation ray matrix(MRRM), a reverberation matrix for planar framed structures composed of anisotropic Timoshenko(T) beam members containing completely hinged joints is developed for static analysis of such structures.In the MRRM for dynamic analysis, amplitudes of arriving and departing waves for joints are chosen as unknown quantities. However, for the present case of static analysis, displacements and rotational angles at the ends of each beam member are directly considered as unknown quantities. The expressions for stiffness matrices for anisotropic beam members are developed. A corresponding reverberation matrix is derived analytically for exact and unified determination on the displacements and internal forces at both ends of each member and arbitrary cross sectional locations in the structure. Numerical examples are given and compared with the finite element method(FEM) results to validate the present model. The characteristic parameter analysis is performed to demonstrate accuracy of the present model with the T beam theory in contrast with errors in the usual model based on the Euler-Bernoulli(EB) beam theory. The resulting reverberation matrix can be used for exact calculation of anisotropic framed structures as well as for parameter analysis of geometrical and material properties of the framed structures.
文摘Generally speaking, the factors of both medium and tectonic that give rise to heterogeneity of the earth crust and mantle structures should be taken into account simultaneously in three dimensional seismic ray tracing. In this paper, the three dimensional structure models are constructed with the model similar to generation system in computer aid design and manufacturing (CAD/CAM). Based on the algorithm proposed by Cerveny et al . for complete seismic ray tracing in complex three dimensional structures, a new technique called the indirect approach method for two point seismic ray tracing in three dimensional laterally heterogeneous media has been put forward, and its numerical computing examples were given.
基金supported by the State Key Project of Research and Development Plan (2016YFA0400204)the National Natural Science Foundation of China (U1738133)+3 种基金Strategic Pioneer Research Program in Space Science of the Chinese Academy of Science (CAS)Youth Innovation Promotion Association of CASMinistry of Science and Technology of Jiangsu Province (17KJD510001)Changzhou Institute of Technology (YN1611)
文摘DArk Matter Particle Explorer(DAMPE) is a general purpose high energy cosmic ray and gamma ray observatory, aiming to detect high energy electrons and gammas in the energy range 5 Ge V to 10 Te V and hundreds of Te V for nuclei. This paper provides a method using machine learning to identify electrons and separate them from gammas, protons, helium and heavy nuclei with the DAMPE data acquired from 2016 January 1 to 2017 June 30, in the energy range from 10 to 100 Ge V.
基金The Natural Science Foundation of Shandong Province of China under contract Nos ZR2022MA051 and ZR2020MA090the National Natural Science Foundation of China under contract No.U22A2012+2 种基金China Postdoctoral Science Foundation under contract No.2020M670891the SDUST Research Fund under contract No.2019TDJH103the Talent Introduction Plan for Youth Innovation Team in universities of Shandong Province(innovation team of satellite positioning and navigation)。
文摘With the development of ultra-wide coverage technology,multibeam echo-sounder(MBES)system has put forward higher requirements for localization accuracy and computational efficiency of ray tracing method.The classical equivalent sound speed profile(ESSP)method replaces the measured sound velocity profile(SVP)with a simple constant gradient SVP,reducing the computational workload of beam positioning.However,in deep-sea environment,the depth measurement error of this method rapidly increases from the central beam to the edge beam.By analyzing the positioning error of the ESSP method at edge beam,it is discovered that the positioning error increases monotonically with the incident angle,and the relationship between them could be expressed by polynomial function.Therefore,an error correction algorithm based on polynomial fitting is obtained.The simulation experiment conducted on an inclined seafloor shows that the proposed algorithm exhibits comparable efficiency to the original ESSP method,while significantly improving bathymetry accuracy by nearly eight times in the edge beam.
基金This work is supported by the National Natural Science Foundation of China(40674044)the Special Foundation for Basic Professional Scientific Research (DQJB06A02)
文摘The intersection method is one of the basic approaches for locating earthquakes and is not only robust but also efficient. However, its location accuracy is not high, especially for focal depth because the velocity model used for the conventional intersection method is based on homogeneous or laterally homogeneous media, which is too simple. In order to improve the accuracy, we have modified the existing intersection method. In the modified approach, the earthquake loci are not assumed to be circular or hyperbolic and calculation accuracy is improved using a minimum traveltime tree algorithm for tracing rays. The numerical model shows that the modified method can locate earthquakes in complex velocity models.
基金supported by financial aid from the National Natural Science Foundation of China(22271273).
文摘Lanthanide(Ln)-based metal halides with excellent luminescence properties,large Stokes shifts,and low toxicity have aroused wide attention as scintillators for X-ray imaging.However,the lack of fast and mild synthesis methods of Ln-based metal halides,as one of the technical challenges,limits their applications.Here,benefiting from the innovative selection of methanol and ethanol as the solvent and anti-solvent,respectively,a series of Cs3LnCl6(Ln=Ce,Pr,Nd,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Lu)microcrystals(MCs)were prepared via the recrystallization method at room temperature for the first time.This recrystallization method could also realize large-scale production at one time and recyclable recrystallization of single-element MCs and the preparation of high-entropy five-element Cs_(3){TbDy-HoErTm}_(1)Cl_(6) crystals.Among these Cs_(3)LnCl_(6)MCs,Cs_(3)TbCl_(6)MCs with 4f→ 5d absorption transition possess the highest photoluminescence quantum yield of 90.8%.Besides,under X-ray irradiation,Cs3TbCl6 MCs show a high light yield of~51,800 photons MeV^(-1) and the as-fabricated thin films possess promising X-ray imaging ability and excellent spatial resolutions(12 Ip mm^(-1)).This work provides a new method for ultrafast preparing Ln-based metal halides under mild synthetic conditions and highlights their excellent potential as scintillators for X-ray imaging.
基金supported by the National Natural Science Foundation of China(No.11332007)the Natural Science Foundation of Tianjin(No.15JCYBJC19500)
文摘In order to extend the eN method to general three-dimensional boundary layers, the conservation law of the imaginary parts for the wave parameters with a fixed wave vector is deduced. The compatibility relationship (CR) and the general theory of ray tracing (RT), which have been extensively used in conservative systems, are applied to a general three-dimensional boundary layer belonging to non-conservative systems. Two kinds of eN methods, i.e., the eN-CR method and the eN-RT method, are established. Both the two kinds of methods can wavenumber and the amplitude of the be used to predict the evolutions of the spanwise disturbances in general three-dimensional boundary layers. The reliability of the proposed methods is verified and validated by performing a direct numerical simulation (DNS) in a hypersonic general three-dimensional boundary layer over an aircraft model. The results are also compared with those obtained by other eN methods, indicating that the proposed methods have great potential applications in improving the transition prediction accuracy in general three-dimensional boundary layers.
基金supported in part by the National Key Program for Research and Development (2016YFA0400200)the Strategic Priority Research Program of Chinese Academy of Sciences (XDB23040000)+3 种基金the 13th Five-year Informatization Plan of Chinese Academy of Sciences (XXH13506)the National Natural Science Foundation of China (Nos. U1631111, U1738123, U1738136 and U1738210)Youth Innovation Promotion Association of Chinese Academy of Sciencesthe Young Elite Scientists Sponsorship Program
文摘Observing GeV gamma-rays is an important goal of the DArk Matter Particle Explorer(DAMPE)for indirect dark matter searching and high energy astrophysics. In this work, we present a set of accurate instrument response functions for DAMPE(DmpIRFs) including the effective area, point-spread function and energy dispersion, which are crucial for gamma-ray data analysis based on statistics from simulation data. A dedicated software named DmpST is developed to facilitate the scientific analyses of DAMPE gamma-ray data. Considering the limited number of photons and angular resolution of DAMPE, the maximum likelihood method is adopted in DmpST to better disentangle different source components. The basic mathematics and framework regarding this software are also introduced in this paper.
基金founded by the strategic priority science and technology projects in space science of the Chinese Academy of Sciences (Nos.XDA04040000 and XDA04040400)supported in part by the National Key Research and Development Program of China (2016YFA0400200)+7 种基金the National Basic Research Program of China (No.2013CB837000)the Strategic Priority Research Program of the Chinese Academy of Sciences “Multi-Waveband Gravitational Wave Universe” (No.XDB23040000)Youth Innovation Promotion Association of CASthe National Natural Science Foundation of China (Nos.11525313,11673075,11773086,11303107,11303105,11773085,U1738123,U1738136,U1738207 and U1738210)the Young Elite Scientists Sponsorship program by CAST (No.YESS20160196)the 100 Talents Program of Chinese Academy of Sciencessupport by the Swiss National Science Foundation (SNSF)Switzerland and the National Institute for Nuclear Physics (INFN),Italy
文摘The DArk Matter Particle Explorer(DAMPE),also known as Wukong in China,which was launched on 2015 December 17,is a new high energy cosmic ray and γ-ray satellite-borne observatory.One of the main scientific goals of DAMPE is to observe Ge V-Te V high energy γ-rays with accurate energy,angular and time resolution,to indirectly search for dark matter particles and for the study of high energy astrophysics. Due to the comparatively higher fluxes of charged cosmic rays with respect to γ-rays,it is challenging to identify γ-rays with sufficiently high efficiency,minimizing the amount of charged cosmic ray contamination. In this work we present a method to identify γ-rays in DAMPE data based on Monte Carlo simulations,using the powerful electromagnetic/hadronic shower discrimination provided by the calorimeter and the veto detection of charged particles provided by the plastic scintillation detector. Monte Carlo simulations show that after this selection the number of electrons and protons that contaminate the selected γ-ray events at~10 Ge V amounts to less than 1% of the selected sample.Finally,we use flight data to verify the effectiveness of the method by highlighting known γ-ray sources in the sky and by reconstructing preliminary light curves of the Geminga pulsar.
基金supported by the National Natural Science Foundation of China(Nos.51472048,50774022)the Key Laboratory Project of Liaoning Province Education Office(No.LZ 2014-022)
文摘In this study, the mass attenuation coefficient of boron-containing ores in the Liaoning province of China was calculated using Win XCOM software to investigate the shielding effectiveness of these ores against gamma rays. The mass attenuation coefficients were also calculated using MCNP-4 B code and compared with Win XCOM results; consequently, a good consistency between the results of Win XCOM and MCNP-4 B was observed. Furthermore, the G-P fitting method was used to evaluate the values of exposure buildup factor(EBF) in the energy range of 0.015–15 Me V up to 40 mean free paths. Among the selected ores, boron-bearing iron concentrate ore(M3)was determined to be the best gamma ray shielding ore owing to its higher values of mass attenuation coefficient and equivalent atomic number and lower value of EBF.Moreover, American Evaluated Nuclear Data File(ENDF/B-VII) was used to analyze the shielding effectivenessagainst thermal neutrons. It was determined that Szaibelyite(M2) is the best thermal neutron shielding material.This study would be useful for demonstrating the potential of boron-containing ores for applications in the field of nuclear engineering and technology.
基金Supported by the National Natural Science Foundation of China.
文摘We study the statistical properties of the highest pulses within individual gamma-ray bursts (GRBs). A wavelet package analysis technique and a developed pulse-finding algorithm have been applied to identify the highest pulses from burst profiles observed by BATSE on board CGRO from 1991 April 21 to 1999 January 26. The statistical light curves of the highest pulses in four energy channels have been derived by an aligning method, which illustrate the temporal evolution of the pulse emission. Our result that narrower pulses go with higher energies is consistent with previous findings. By normalizing both the pulse durations and counts to unity, 'characteristic' profiles of the highest pulses in the four channels are also derived. The four characteristic profiles are turned out to be almost the same, thus strongly support the previous conclusion that the temporal profiles in different energy channels are self-similar and the previous conjecture on GRB pulses, implying that the emission process is similar at different energies. The cosmological time dilation effect is examined by investigating the relationship between the pulse flux and pulse duration. An anti-correlation between the two was found, which agrees with the expectation of the cosmological time dilation effect. Also, the evolution of the pulse duration with the observational epoch is studied. The result shows that the pulse duration tends to be shorter in later epochs. This trend cannot be explained by the present theoretical models, and may represent a great challenge to current theories.
基金the National Natural Science Foundation of China.
文摘The narrowness of the distribution of the peak energy of the νF<SUB>ν</SUB> spectrum of gamma-ray bursts (GRBs) and the unification of GRB populations are great puzzles yet to be solved. We investigate the two puzzles based on the global spectral behaviors of different GRB populations, the long GRBs, the short GRBs, and the X-ray flashes (XRFs), in the HR?E<SUB>p</SUB> plane (HR the spectral hardness ratio) with BATSE and HETE-2 observations. It is found that the long GRBs and the XRFs observed by HETE-2 seem to follow the same sequence in the HR?E<SUB>p</SUB> plane, with the XRFs at the low end of this sequence. We fit the sequence by a universal Band function, and find that this sequence is mainly defined by the low energy index α, and is insensitive to the high energy index, β. With fixed β = ?5, a best fit is given by α = ?1.00 with χ<SUP>2</SUP><SUB>min</SUB>/dof = 2.2. The long and short GRBs observed by BATSE follow significantly different sequences in the HR?E<SUB>p</SUB> plane, with most of the short GRBs having a larger hardness ratio than the long GRBs at a given E<SUB>p</SUB>. For the long GRBs a best-fit yields α = ?0.30 and β = ?2.05. For the short GRBs, a best fit gives α = ?0.60 with χ<SUP>2</SUP><SUB>min</SUB> = 1.1 (with β fixed at -2.0 because it is numerically unstable). The α value for the short GRBs is significantly greater than that for the long GRBs. These results indicate that the global spectral behaviors of the long GRB sample and the XRF sample are similar, while that of the short GRBs is different. The short GRBs seem to be a unique subclass of GRBs, and they are not the higher energy extension of the long GRBs.
文摘Forbush decrease(FD),discovered by Scott E.Forbush about 80 years ago,is referred to as the non-repetitive short-term depression in Galactic cosmic ray(GCR)flux,presumed to be associated with large-scale perturbations in solar wind and interplanetary magnetic field(IMF).It is the most spectacular variability in the GCR intensity which appears to be the compass for investigators seeking solar-terrestrial relationships.The method of selection and validation of FD events is very important to cosmic ray(CR)scientists.We have deployed new computer software to determine the amplitude and timing of FDs from daily-averaged CR data at Oulu Neutron Monitor station.The code selected 230 FDs between 1998 and 2002.In an attempt to validate the new FD automated catalog,the relationship between the amplitude of FDs,and IMF,solar wind speed(SWS)and geomagnetic storm indices(Dst,kp,ap)is tested here.A two-dimensional regression analysis indicates significant linear relationship between large FDs(CR(%)≤-3)and solar wind data and geomagnetic storm indices in the present sample.The implications of the relationship among these parameters are discussed.
基金supported partially by the Strategic Priority Research Program,the Emergence of Cosmological Structures,of the Chinese Academy of Sciences(Grant No.XDB09000000)MSTC Program2011 CB811402+3 种基金the National Natural Science Foundation of China(NSFC)(Grant Nos.11173063, 11173064,11233008 and 11427803)supported by the NFSC(Grant No.11473070)the Natural Science Foundation of Jiangsu Province (Grant BK2012889)the Youth Innovation Promotion Association,CAS,for financial support
文摘The power-law frequency distributions of the peak flux of solar flare X-ray emission have been studied extensively and attributed to a system having self-organized criticality (SOC). In this paper, we first show that, so long as the shape of the normalized light curve is not correlated with the peak flux, the flux histogram of solar flares also follows a power-law distribution with the same spectral index as the power- law frequency distribution of the peak flux, which may partially explain why power-law distributions are ubiquitous in the Universe. We then show that the spectral indexes of the histograms of soft X-ray fluxes observed by GOES satellites in two different energy channels are different: the higher energy channel has a harder distribution than the lower energy channel, which challenges the universal power-law distribution predicted by SOC models and implies a very soft distribution of thermal energy content of plasmas probed by the GOES satellites. The temperature (T) distribution, on the other hand, approaches a power-law dis- tribution with an index of 2 for high values of T. Hence the application of SOC models to the statistical properties of solar flares needs to be revisited.
基金supported by the National Natural Science Foundation of China (Grant No. 11103004)the Foundation for the Authors of National Excellent Doctoral Dissertations of China (Grant No. 201225)
文摘With the assistance of the identified/associated sources in the second Fermi Large Area Telescope (LAT) catalog, we analyze and resolve the spatial distribution and the distributions of the gamma-ray spectral and variability indices of the remaining 575 unassociated Fermi LAT sources. Consequently, it is suggested that the unassociated sources could statistically consist of Galactic supernova remnants/pulsar wind nebulae, BL Lacertae objects, fiat spectrum radio quasars and other types of active galaxies with fractions of 25%, 29%, 41% and 5%, respectively.