This paper presents an improved finite control set model predictive current control(FCS-MPCC)of a five-phase permanent magnet synchronous motor(PMSM).First,to avoid including all the 32 voltage vectors provided by a t...This paper presents an improved finite control set model predictive current control(FCS-MPCC)of a five-phase permanent magnet synchronous motor(PMSM).First,to avoid including all the 32 voltage vectors provided by a two-level five-phase inverter into the control set,virtual voltage vectors are adopted.As the third current harmonics can be much reduced by virtual voltage vectors automatically,the harmonic items in the cost function of conventional FCS-MPCC are not considered.Furthermore,an adaptive control set is proposed based on voltage prediction.Best control set with proper voltage vector amplitude corresponding to different rotor speed can be achieved by this method.Consequently,current ripples can be largely reduced and the system performs much better.At last,simulations are established to verify the steady and transient performance of the proposed FCS-MPCC,and experiments based on a 2 kW five-phase motor are carried out.The results have validated the performance improvement of the proposed control strategy.展开更多
Permanent magnet synchronous motors(PMSMs)have been widely employed in the industry. Finite-control-set model predictive control(FCS-MPC), as an advanced control scheme, has been developed and applied to improve the p...Permanent magnet synchronous motors(PMSMs)have been widely employed in the industry. Finite-control-set model predictive control(FCS-MPC), as an advanced control scheme, has been developed and applied to improve the performance and efficiency of the holistic PMSM drive systems. Based on the three elements of model predictive control, this paper provides an overview of the superiority of the FCS-MPC control scheme and its shortcomings in current applications. The problems of parameter mismatch, computational burden, and unfixed switching frequency are summarized. Moreover, other performance improvement schemes, such as the multi-vector application strategy, delay compensation scheme, and weight factor adjustment, are reviewed. Finally, future trends in this field is discussed, and several promising research topics are highlighted.展开更多
Parallel connection of multiple inverters is an important means to solve the expansion,reserve and protection of distributed power generation,such as photovoltaics.In view of the shortcomings of traditional droop cont...Parallel connection of multiple inverters is an important means to solve the expansion,reserve and protection of distributed power generation,such as photovoltaics.In view of the shortcomings of traditional droop control methods such as weak anti-interference ability,low tracking accuracy of inverter output voltage and serious circulation phenomenon,a finite control set model predictive control(FCS-MPC)strategy of microgrid multiinverter parallel system based on Mixed Logical Dynamical(MLD)modeling is proposed.Firstly,the MLD modeling method is introduced logical variables,combining discrete events and continuous events to form an overall differential equation,which makes the modeling more accurate.Then a predictive controller is designed based on the model,and constraints are added to the objective function,which can not only solve the real-time changes of the control system by online optimization,but also effectively obtain a higher tracking accuracy of the inverter output voltage and lower total harmonic distortion rate(Total Harmonics Distortion,THD);and suppress the circulating current between the inverters,to obtain a good dynamic response.Finally,the simulation is carried out onMATLAB/Simulink to verify the correctness of the model and the rationality of the proposed strategy.This paper aims to provide guidance for the design and optimal control of multi-inverter parallel systems.展开更多
Nowadays,AC electronic loads with energy recovery are widely used in the testing of uninterruptible power supplies and power supply equipment.To tackle the problems of control difficulty,strategy complexity,and poor d...Nowadays,AC electronic loads with energy recovery are widely used in the testing of uninterruptible power supplies and power supply equipment.To tackle the problems of control difficulty,strategy complexity,and poor dynamic performance of AC electronic load with energy recovery of the conventional control strategy,a control strategy of AC electronic load with energy recovery based on Finite Control Set Model Predictive Control(FCSMPC)is developed.To further reduce the computation burden of the FCS-MPC,a simplified FCS-MPC with transforming the predicted variables and using sector to select expected state is proposed.Through simplified model and equivalent approximation analysis,the transfer function of the system is obtained,and the stability and robustness of the system are analyzed.The performance of the simplified FCS-MPC is compared with space vector control(SVPWM)and conventional FCS-MPC.The results show that the FCS-MPC method performs better dynamic response and this advantage is more obvious when simulating high power loads.The simplified FCS-MPC shows similar control performance to conventional FCS-MPC at less computation burden.The control performance of the system also shows better simulation results.展开更多
This paper proposes an event-triggered stochastic model predictive control for discrete-time linear time-invariant(LTI)systems under additive stochastic disturbances.It first constructs a probabilistic invariant set a...This paper proposes an event-triggered stochastic model predictive control for discrete-time linear time-invariant(LTI)systems under additive stochastic disturbances.It first constructs a probabilistic invariant set and a probabilistic reachable set based on the priori knowledge of system uncertainties.Assisted with enhanced robust tubes,the chance constraints are then formulated into a deterministic form.To alleviate the online computational burden,a novel event-triggered stochastic model predictive control is developed,where the triggering condition is designed based on the past and future optimal trajectory tracking errors in order to achieve a good trade-off between system resource utilization and control performance.Two triggering parametersσandγare used to adjust the frequency of solving the optimization problem.The probabilistic feasibility and stability of the system under the event-triggered mechanism are also examined.Finally,numerical studies on the control of a heating,ventilation,and air conditioning(HVAC)system confirm the efficacy of the proposed control.展开更多
A model predictive current control(MPCC)with adaptive-adjusting method of timescales for permanent magnet synchronous motors(PMSMs)is proposed in this paper to improve the dynamic response and prediction accuracy in t...A model predictive current control(MPCC)with adaptive-adjusting method of timescales for permanent magnet synchronous motors(PMSMs)is proposed in this paper to improve the dynamic response and prediction accuracy in transient-state,while lessening the computational burden and improving the control performance in steady-state.The timescale characteristics of different parts of MPCC,such as signal sampling,prediction calculation,control output,model error correction,are analyzed,and the algorithm architecture of MPCC with multi-timescale is proposed.The difference between reference and actual speed,and the change rate of actual speed are utilized to discriminate the transient state of speed change and load change,respectively.Adaptive-adjusting method of control period and prediction stepsize are illustrated in detail after operation condition discrimination.Experimental results of a PMSM are presented to validate the effectiveness of proposed MPCC.In addition,comparative evaluation of single-step MPCC with fixed timescale and proposed MPCC is conducted,which demonstrates the superiority of proposed control strategy.展开更多
Aiming at a class of nonlinear systems with multiple equilibrium points, we present a dual-mode model predictive control algorithm with extended terminal constraint set combined with control invariant set and gain sch...Aiming at a class of nonlinear systems with multiple equilibrium points, we present a dual-mode model predictive control algorithm with extended terminal constraint set combined with control invariant set and gain schedule. Local LQR control laws and the corresponding maximum control invariant sets can be designed for finite equilibrium points. It is guaranteed that control invariant sets are overlapped each other. The union of the control invariant sets is treated as the terminal constraint set of predictive control. The feasibility and stability of the novel dual-mode model predictive control are investigated with both variable and fixed horizon. Because of the introduction of extended terminal constrained set, the feasibility of optimization can be guaranteed with short prediction horizon. In this way, the size of the optimization problem is reduced so it is computationally efficient. Finally, a simulation example illustrating the algorithm is presented.展开更多
A global fast terminal sliding mode(GFTSM)-based model predictive torque control(MPTC)strategy is developed for permanent magnet synchronous motor(PMSM)drive system with only one phase current sensor.Generally two pha...A global fast terminal sliding mode(GFTSM)-based model predictive torque control(MPTC)strategy is developed for permanent magnet synchronous motor(PMSM)drive system with only one phase current sensor.Generally two phase-current sensors are indispensable for MPTC.In response to only one phase current sensor available and the change of stator resistance,a novel adaptive observer for estimating the remaining two phase currents and time-varying stator resistance is proposed to perform MPTC.Moreover,in view of the variation of system parameters and external disturbance,a new GFTSM-based speed regulator is synthesized to enhance the drive system robustness.In this paper,the GFTSM,based on sliding mode theory,employs the fast terminal sliding mode in both the reaching stage and the sliding stage.The resultant GFTSM-based MPTC PMSM drive system with single phase current sensor has excellent dynamical performance which is very close to the GFTSM-based MPTC PMSM drive system with two-phase current sensors.On the other hand,compared with proportional-integral(PI)-based and sliding mode(SM)-based MPTC PMSM drive systems,it possesses better dynamical response and stronger robustness as well as smaller total harmonic distortion(THD)index of three-phase stator currents in the presence of variation of load torque.The simulation results validate the feasibility and effectiveness of the proposed scheme.展开更多
Based on the fractional order theory and sliding mode control theory,a model prediction current control(MPCC)strategy based on fractional observer is proposed for the permanent magnet synchronous motor(PMSM)driven by ...Based on the fractional order theory and sliding mode control theory,a model prediction current control(MPCC)strategy based on fractional observer is proposed for the permanent magnet synchronous motor(PMSM)driven by three-level inverter.Compared with the traditional sliding mode speed observer,the observer is very simple and eases to implement.Moreover,the observer reduces the ripple of the motor speed in high frequency range in an efficient way.To reduce the stator current ripple and improve the control performance of the torque and speed,the MPCC strategy is put forward,which can make PMSM MPCC system have better control performance,stronger robustness and good dynamic performance.The simulation results validate the feasibility and effectiveness of the proposed scheme.展开更多
Finite-control-set model predictive control(FCSMPC)has advantages of multi-objective optimization and easy implementation.To reduce the computational burden and switching frequency,this article proposed a simplified M...Finite-control-set model predictive control(FCSMPC)has advantages of multi-objective optimization and easy implementation.To reduce the computational burden and switching frequency,this article proposed a simplified MPC for dual three-phase permanent magnet synchronous motor(DTPPMSM).The novelty of this method is the decomposition of prediction function and the switching optimization algorithm.Based on the decomposition of prediction function,the current increment vector is obtained,which is employed to select the optimal voltage vector and calculate the duty cycle.Then,the computation burden can be reduced and the current tracking performance can be maintained.Additionally,the switching optimization algorithm was proposed to optimize the voltage vector action sequence,which results in lower switching frequency.Hence,this control strategy can not only reduce the computation burden and switching frequency,but also maintain the steady-state and dynamic performance.The simulation and experimental results are presented to verify the feasibility of the proposed strategy.展开更多
The recent studies on Artificial Intelligence(AI)accompanied by enhanced computing capabilities supports increasing attention into traditional control methods coupled with AI learning methods in an attempt to bringing...The recent studies on Artificial Intelligence(AI)accompanied by enhanced computing capabilities supports increasing attention into traditional control methods coupled with AI learning methods in an attempt to bringing adap-tiveness and fast responding features.The Model Predictive Control(MPC)tech-nique is a widely used,safe and reliable control method based on constraints.On the other hand,the Eddy Current dynamometers are highly nonlinear braking sys-tems whose performance parameters are related to many processes related vari-ables.This study is based on an adaptive model predictive control that utilizes selected AI methods.The presented approach presents an updated the mathema-tical model of an Eddy Current Dynamometer based on experimentally obtained system operational data.Finally,the comparison of AI methods and related learn-ing performances based on the assessment technique of mean absolute percentage error(MAPE)issues are discussed.The results indicate that Single Hidden Layer Neural Network(SHLNN),General Regression Neural Network(GRNN),Radial Basis Network(RBNN),Neuro Fuzzy Network(ANFIS)coupled MPC have quite satisfying performances.The presented results indicate that,amongst them,GRNN appears to provide the best performance.展开更多
Compared with the traditional three-phase star connection winding,the open-end winding permanent magnet synchronous motor(OW-PMSM)system with a common direct current(DC)bus has a zero-sequence circuit,which makes the ...Compared with the traditional three-phase star connection winding,the open-end winding permanent magnet synchronous motor(OW-PMSM)system with a common direct current(DC)bus has a zero-sequence circuit,which makes the common-mode voltage and the back electromotive force(EMF)harmonic generated by the inverters produce the zero-sequence current in the zero-sequence circuit,and the zero-sequence current has great influence on the operation efficiency and stability of the motor control system.A zero-sequence current suppression strategy is presented based on model predictive current control for OW-PMSM.Through the mathematical model of OW-PMSM to establish the predictive model and the zero-sequence circuit model,the common-mode voltage under different voltage vector combinations is fully considered during vector selection and action time calculation.Then zero-sequence loop constraints are established,so as to suppress the zero-sequence current.In the end,the control strategy proposed in this paper is verified by simulation experiments.展开更多
The widely used cascade speed and torque controllers have a limited control performance in most high power applications due to the low switching frequency of power electronic converters and the convenience to avoid sp...The widely used cascade speed and torque controllers have a limited control performance in most high power applications due to the low switching frequency of power electronic converters and the convenience to avoid speed overshoots and oscillations for lifetime considerations. Model Predictive Direct Current Control (MPDCC) leads to an increase of torque control performance taking into account the discrete nature of inverters but temporary offsets and poor responses to load torque variations are still issues in speed control. A load torque estimator is proposed in this paper in order to further improve dynamic behavior. It compensates the load torque influence on the speed control setting a feed forward torque reference value. The benefits are twice; the speed controller reaches the speed reference value without offsets which would need to be compensated by an integrator and a better response to load torque variations is obtained since they are detected and compensated leading to small speed variations. Moreover, the influence of pararneter errors and disturbances has been analyzed and limited so that they play a minor role in operation.展开更多
In electric are furnace smelting, electrode regulator system is a key link. A good electrode control algorithm will reduce energy consumption effectively and shorten smelting time greatly. The offline design online sy...In electric are furnace smelting, electrode regulator system is a key link. A good electrode control algorithm will reduce energy consumption effectively and shorten smelting time greatly. The offline design online synthesis model predictive control algorithm is proposed for electrode regulator system with input and output constraints. On the offline computation, the continuum of terminal constraint sets will be constructed. On the online synthesis, the time-varying terminal constraint sets will be adopted and at least one free control variable will be introduced to solve the min-max optimization control problem. Then Lyapunov method will be adopted to analyze closed-loop system stability. Simulation and field trial results show that the proposed offline design online synthesis model predictive control method is effective.展开更多
For the model predictive controller, terminal state satisfying a certain inequality can guarantee the stability but it is somewhat conservative. In this paper, we give a more relaxed stability condition by considerin...For the model predictive controller, terminal state satisfying a certain inequality can guarantee the stability but it is somewhat conservative. In this paper, we give a more relaxed stability condition by considering the effect of the initial state. Based on that we propose an algorithm to guarantee that the closed loop system is asymptotically stable. Finally, the conclusions are verified by a simttlation.展开更多
For a permanent magnet synchronous motor(PMSM)model predictive current control(MPCC)system,when the speed loop adopts proportional-integral(PI)control,speed regulation is easily affected by motor parameters,resulting ...For a permanent magnet synchronous motor(PMSM)model predictive current control(MPCC)system,when the speed loop adopts proportional-integral(PI)control,speed regulation is easily affected by motor parameters,resulting in the inability to balance the system robustness and dynamic performance.A PMSM optimal control strategy combining linear active disturbance rejection control(LADRC)and two-vector MPCC(TV-MPCC)is proposed.Firstly,a mathematical model of a PMSM is presented,and the PMSM TV-MPCC model is developed in the synchronous rotation coordinate system.Secondly,a first-order LADRC controller composed of a linear extended state observer and linear state error feedback is designed to reduce the complexity of parameter tuning while linearly simplifying the traditional active disturbance rejection control(ADRC)structure.Finally,the conventional PI speed regulator in the motor speed control system is replaced by the designed LADRC controller.The simulation results show that the speed control system using LADRC can effectively deal with the changes in motor parameters and has better robustness and dynamic performance than PI control and similar methods.The system has a fast motor speed response,small overshoot,strong anti-interference,and no steady-state error,and the total harmonic distortion is reduced.展开更多
An improved model predictive control algorithm is proposed for Hammerstein-Wiener nonlinear systems.The proposed synthesis algorithm contains two parts:offline design the polytopic invariant sets,and online solve the ...An improved model predictive control algorithm is proposed for Hammerstein-Wiener nonlinear systems.The proposed synthesis algorithm contains two parts:offline design the polytopic invariant sets,and online solve the min-max optimization problem.The polytopic invariant set is adopted to replace the traditional ellipsoid invariant set.And the parameter-correlation nonlinear control law is designed to replace the traditional linear control law.Consequently,the terminal region is enlarged and the control effect is improved.Simulation and experiment are used to verify the validity of the wind tunnel flow field control algorithm.展开更多
A novel double extended state observer(DESO)based on model predictive torque control(MPTC)strategy is developed for three-phase permanent magnet synchronous motor(PMSM)drive system without current sensor.In general,to...A novel double extended state observer(DESO)based on model predictive torque control(MPTC)strategy is developed for three-phase permanent magnet synchronous motor(PMSM)drive system without current sensor.In general,to achieve high-precision control,two-phase current sensors are necessary for successful implementation of MPTC.For this purpose,two ESOs are used to estimate q-axis current and stator resistance respectively,and then based on this,d-axis current is estimated.Moreover,to reduce torque and flux ripple and to improve the performance of the torque and speed,MPTC strategy is designed.The simulation results validate the feasibility and effectiveness of the proposed scheme.展开更多
基金This work was supported in part by the National Natural Science Foundation of China under 61374125。
文摘This paper presents an improved finite control set model predictive current control(FCS-MPCC)of a five-phase permanent magnet synchronous motor(PMSM).First,to avoid including all the 32 voltage vectors provided by a two-level five-phase inverter into the control set,virtual voltage vectors are adopted.As the third current harmonics can be much reduced by virtual voltage vectors automatically,the harmonic items in the cost function of conventional FCS-MPCC are not considered.Furthermore,an adaptive control set is proposed based on voltage prediction.Best control set with proper voltage vector amplitude corresponding to different rotor speed can be achieved by this method.Consequently,current ripples can be largely reduced and the system performs much better.At last,simulations are established to verify the steady and transient performance of the proposed FCS-MPCC,and experiments based on a 2 kW five-phase motor are carried out.The results have validated the performance improvement of the proposed control strategy.
基金supported in part by the National Natural Science Foundation of China(51875261)the Postgraduate Research and Practice Innovation Program of Jiangsu Province(KYCX21_3331)+1 种基金the Faculty of Agricultural Equipment of Jiangsu University(NZXB20210103)。
文摘Permanent magnet synchronous motors(PMSMs)have been widely employed in the industry. Finite-control-set model predictive control(FCS-MPC), as an advanced control scheme, has been developed and applied to improve the performance and efficiency of the holistic PMSM drive systems. Based on the three elements of model predictive control, this paper provides an overview of the superiority of the FCS-MPC control scheme and its shortcomings in current applications. The problems of parameter mismatch, computational burden, and unfixed switching frequency are summarized. Moreover, other performance improvement schemes, such as the multi-vector application strategy, delay compensation scheme, and weight factor adjustment, are reviewed. Finally, future trends in this field is discussed, and several promising research topics are highlighted.
基金supported by the Major Science and Technology Projects of Gansu Province(Grant No.20ZD7GF011)Gansu Province Higher Education Industry Support Plan Project:Research on the Collaborative Operation of Solar Thermal Storage+Wind-Solar Hybrid Power Generation--Based on“Integrated Energy Demonstration of Wind-Solar Energy Storage in Gansu Province”(Project No.2022CYZC-34).
文摘Parallel connection of multiple inverters is an important means to solve the expansion,reserve and protection of distributed power generation,such as photovoltaics.In view of the shortcomings of traditional droop control methods such as weak anti-interference ability,low tracking accuracy of inverter output voltage and serious circulation phenomenon,a finite control set model predictive control(FCS-MPC)strategy of microgrid multiinverter parallel system based on Mixed Logical Dynamical(MLD)modeling is proposed.Firstly,the MLD modeling method is introduced logical variables,combining discrete events and continuous events to form an overall differential equation,which makes the modeling more accurate.Then a predictive controller is designed based on the model,and constraints are added to the objective function,which can not only solve the real-time changes of the control system by online optimization,but also effectively obtain a higher tracking accuracy of the inverter output voltage and lower total harmonic distortion rate(Total Harmonics Distortion,THD);and suppress the circulating current between the inverters,to obtain a good dynamic response.Finally,the simulation is carried out onMATLAB/Simulink to verify the correctness of the model and the rationality of the proposed strategy.This paper aims to provide guidance for the design and optimal control of multi-inverter parallel systems.
文摘Nowadays,AC electronic loads with energy recovery are widely used in the testing of uninterruptible power supplies and power supply equipment.To tackle the problems of control difficulty,strategy complexity,and poor dynamic performance of AC electronic load with energy recovery of the conventional control strategy,a control strategy of AC electronic load with energy recovery based on Finite Control Set Model Predictive Control(FCSMPC)is developed.To further reduce the computation burden of the FCS-MPC,a simplified FCS-MPC with transforming the predicted variables and using sector to select expected state is proposed.Through simplified model and equivalent approximation analysis,the transfer function of the system is obtained,and the stability and robustness of the system are analyzed.The performance of the simplified FCS-MPC is compared with space vector control(SVPWM)and conventional FCS-MPC.The results show that the FCS-MPC method performs better dynamic response and this advantage is more obvious when simulating high power loads.The simplified FCS-MPC shows similar control performance to conventional FCS-MPC at less computation burden.The control performance of the system also shows better simulation results.
基金supported by the National Nature Science Foundation of China(62073194)the Natural Science Foundation of Shandong Province of China(ZR2023MF028)the Taishan Scholars Program of Shandong Province(tsqn202312008)
文摘This paper proposes an event-triggered stochastic model predictive control for discrete-time linear time-invariant(LTI)systems under additive stochastic disturbances.It first constructs a probabilistic invariant set and a probabilistic reachable set based on the priori knowledge of system uncertainties.Assisted with enhanced robust tubes,the chance constraints are then formulated into a deterministic form.To alleviate the online computational burden,a novel event-triggered stochastic model predictive control is developed,where the triggering condition is designed based on the past and future optimal trajectory tracking errors in order to achieve a good trade-off between system resource utilization and control performance.Two triggering parametersσandγare used to adjust the frequency of solving the optimization problem.The probabilistic feasibility and stability of the system under the event-triggered mechanism are also examined.Finally,numerical studies on the control of a heating,ventilation,and air conditioning(HVAC)system confirm the efficacy of the proposed control.
基金supported in part by the National Natural Science Foundation of China under Grant 52077054in part by the Natural Science Foundation of Hebei Province under Grant E2019202092+2 种基金in part by the China Postdoctoral Science Foundation under Grant 2021T140077 and 2020M681446in part by the State Key Laboratory of Reliability and Intelligence of Electrical Equipment under Grant EERI_PI2020002in part by the Funds for Creative Research Groups of Hebei Province under Grant E2020202142.
文摘A model predictive current control(MPCC)with adaptive-adjusting method of timescales for permanent magnet synchronous motors(PMSMs)is proposed in this paper to improve the dynamic response and prediction accuracy in transient-state,while lessening the computational burden and improving the control performance in steady-state.The timescale characteristics of different parts of MPCC,such as signal sampling,prediction calculation,control output,model error correction,are analyzed,and the algorithm architecture of MPCC with multi-timescale is proposed.The difference between reference and actual speed,and the change rate of actual speed are utilized to discriminate the transient state of speed change and load change,respectively.Adaptive-adjusting method of control period and prediction stepsize are illustrated in detail after operation condition discrimination.Experimental results of a PMSM are presented to validate the effectiveness of proposed MPCC.In addition,comparative evaluation of single-step MPCC with fixed timescale and proposed MPCC is conducted,which demonstrates the superiority of proposed control strategy.
基金Supported by National Natural Science Foundation of China (60504026, 60674041) and National High Technology Research and Development Program of China (863 Program)(2006AA04Z173).
基金Supported by National Natural Science Foundation of P. R. China (60474051, 60534020)Development Program of Shanghai Science and Technology Department (04DZ11008)the Program for New Century Excellent Talents in Universities of P. R. China (NCET)
文摘Aiming at a class of nonlinear systems with multiple equilibrium points, we present a dual-mode model predictive control algorithm with extended terminal constraint set combined with control invariant set and gain schedule. Local LQR control laws and the corresponding maximum control invariant sets can be designed for finite equilibrium points. It is guaranteed that control invariant sets are overlapped each other. The union of the control invariant sets is treated as the terminal constraint set of predictive control. The feasibility and stability of the novel dual-mode model predictive control are investigated with both variable and fixed horizon. Because of the introduction of extended terminal constrained set, the feasibility of optimization can be guaranteed with short prediction horizon. In this way, the size of the optimization problem is reduced so it is computationally efficient. Finally, a simulation example illustrating the algorithm is presented.
基金supported by the National Natural Science Foundation of China(61463025).
文摘A global fast terminal sliding mode(GFTSM)-based model predictive torque control(MPTC)strategy is developed for permanent magnet synchronous motor(PMSM)drive system with only one phase current sensor.Generally two phase-current sensors are indispensable for MPTC.In response to only one phase current sensor available and the change of stator resistance,a novel adaptive observer for estimating the remaining two phase currents and time-varying stator resistance is proposed to perform MPTC.Moreover,in view of the variation of system parameters and external disturbance,a new GFTSM-based speed regulator is synthesized to enhance the drive system robustness.In this paper,the GFTSM,based on sliding mode theory,employs the fast terminal sliding mode in both the reaching stage and the sliding stage.The resultant GFTSM-based MPTC PMSM drive system with single phase current sensor has excellent dynamical performance which is very close to the GFTSM-based MPTC PMSM drive system with two-phase current sensors.On the other hand,compared with proportional-integral(PI)-based and sliding mode(SM)-based MPTC PMSM drive systems,it possesses better dynamical response and stronger robustness as well as smaller total harmonic distortion(THD)index of three-phase stator currents in the presence of variation of load torque.The simulation results validate the feasibility and effectiveness of the proposed scheme.
基金National Natural Science Foundation of China(No.61463025)Opening Foundation of Key Laboratory of Opto-Technology and Intelligent Control(Lanzhou Jiaotong University),Ministry of Education(No.KFKT2018-8)。
文摘Based on the fractional order theory and sliding mode control theory,a model prediction current control(MPCC)strategy based on fractional observer is proposed for the permanent magnet synchronous motor(PMSM)driven by three-level inverter.Compared with the traditional sliding mode speed observer,the observer is very simple and eases to implement.Moreover,the observer reduces the ripple of the motor speed in high frequency range in an efficient way.To reduce the stator current ripple and improve the control performance of the torque and speed,the MPCC strategy is put forward,which can make PMSM MPCC system have better control performance,stronger robustness and good dynamic performance.The simulation results validate the feasibility and effectiveness of the proposed scheme.
基金supported by the National Natural Science Foundation of China under Grant 5227705。
文摘Finite-control-set model predictive control(FCSMPC)has advantages of multi-objective optimization and easy implementation.To reduce the computational burden and switching frequency,this article proposed a simplified MPC for dual three-phase permanent magnet synchronous motor(DTPPMSM).The novelty of this method is the decomposition of prediction function and the switching optimization algorithm.Based on the decomposition of prediction function,the current increment vector is obtained,which is employed to select the optimal voltage vector and calculate the duty cycle.Then,the computation burden can be reduced and the current tracking performance can be maintained.Additionally,the switching optimization algorithm was proposed to optimize the voltage vector action sequence,which results in lower switching frequency.Hence,this control strategy can not only reduce the computation burden and switching frequency,but also maintain the steady-state and dynamic performance.The simulation and experimental results are presented to verify the feasibility of the proposed strategy.
文摘The recent studies on Artificial Intelligence(AI)accompanied by enhanced computing capabilities supports increasing attention into traditional control methods coupled with AI learning methods in an attempt to bringing adap-tiveness and fast responding features.The Model Predictive Control(MPC)tech-nique is a widely used,safe and reliable control method based on constraints.On the other hand,the Eddy Current dynamometers are highly nonlinear braking sys-tems whose performance parameters are related to many processes related vari-ables.This study is based on an adaptive model predictive control that utilizes selected AI methods.The presented approach presents an updated the mathema-tical model of an Eddy Current Dynamometer based on experimentally obtained system operational data.Finally,the comparison of AI methods and related learn-ing performances based on the assessment technique of mean absolute percentage error(MAPE)issues are discussed.The results indicate that Single Hidden Layer Neural Network(SHLNN),General Regression Neural Network(GRNN),Radial Basis Network(RBNN),Neuro Fuzzy Network(ANFIS)coupled MPC have quite satisfying performances.The presented results indicate that,amongst them,GRNN appears to provide the best performance.
基金Fundamental Research Funds for the Central Universities,China(No.2232019D3-53)Initial Research Funds for Young Teachers of Donghua University,China(104070053029)Shanghai Rising-Star Program,China(No.19QA1400400)。
文摘Compared with the traditional three-phase star connection winding,the open-end winding permanent magnet synchronous motor(OW-PMSM)system with a common direct current(DC)bus has a zero-sequence circuit,which makes the common-mode voltage and the back electromotive force(EMF)harmonic generated by the inverters produce the zero-sequence current in the zero-sequence circuit,and the zero-sequence current has great influence on the operation efficiency and stability of the motor control system.A zero-sequence current suppression strategy is presented based on model predictive current control for OW-PMSM.Through the mathematical model of OW-PMSM to establish the predictive model and the zero-sequence circuit model,the common-mode voltage under different voltage vector combinations is fully considered during vector selection and action time calculation.Then zero-sequence loop constraints are established,so as to suppress the zero-sequence current.In the end,the control strategy proposed in this paper is verified by simulation experiments.
文摘The widely used cascade speed and torque controllers have a limited control performance in most high power applications due to the low switching frequency of power electronic converters and the convenience to avoid speed overshoots and oscillations for lifetime considerations. Model Predictive Direct Current Control (MPDCC) leads to an increase of torque control performance taking into account the discrete nature of inverters but temporary offsets and poor responses to load torque variations are still issues in speed control. A load torque estimator is proposed in this paper in order to further improve dynamic behavior. It compensates the load torque influence on the speed control setting a feed forward torque reference value. The benefits are twice; the speed controller reaches the speed reference value without offsets which would need to be compensated by an integrator and a better response to load torque variations is obtained since they are detected and compensated leading to small speed variations. Moreover, the influence of pararneter errors and disturbances has been analyzed and limited so that they play a minor role in operation.
基金supported by National Natural Science Foundation of China(61533013,61273144)Scientific Technology Research and Development Plan Project of Tangshan(13130298B)Scientific Technology Research and Development Plan Project of Hebei(z2014070)
基金Item Sponsored by National Science and Technology Support Plan of China (2007AA041401,2007AA04Z194)
文摘In electric are furnace smelting, electrode regulator system is a key link. A good electrode control algorithm will reduce energy consumption effectively and shorten smelting time greatly. The offline design online synthesis model predictive control algorithm is proposed for electrode regulator system with input and output constraints. On the offline computation, the continuum of terminal constraint sets will be constructed. On the online synthesis, the time-varying terminal constraint sets will be adopted and at least one free control variable will be introduced to solve the min-max optimization control problem. Then Lyapunov method will be adopted to analyze closed-loop system stability. Simulation and field trial results show that the proposed offline design online synthesis model predictive control method is effective.
文摘For the model predictive controller, terminal state satisfying a certain inequality can guarantee the stability but it is somewhat conservative. In this paper, we give a more relaxed stability condition by considering the effect of the initial state. Based on that we propose an algorithm to guarantee that the closed loop system is asymptotically stable. Finally, the conclusions are verified by a simttlation.
文摘For a permanent magnet synchronous motor(PMSM)model predictive current control(MPCC)system,when the speed loop adopts proportional-integral(PI)control,speed regulation is easily affected by motor parameters,resulting in the inability to balance the system robustness and dynamic performance.A PMSM optimal control strategy combining linear active disturbance rejection control(LADRC)and two-vector MPCC(TV-MPCC)is proposed.Firstly,a mathematical model of a PMSM is presented,and the PMSM TV-MPCC model is developed in the synchronous rotation coordinate system.Secondly,a first-order LADRC controller composed of a linear extended state observer and linear state error feedback is designed to reduce the complexity of parameter tuning while linearly simplifying the traditional active disturbance rejection control(ADRC)structure.Finally,the conventional PI speed regulator in the motor speed control system is replaced by the designed LADRC controller.The simulation results show that the speed control system using LADRC can effectively deal with the changes in motor parameters and has better robustness and dynamic performance than PI control and similar methods.The system has a fast motor speed response,small overshoot,strong anti-interference,and no steady-state error,and the total harmonic distortion is reduced.
基金Project(61074074)supported by the National Natural Science Foundation,ChinaProject(KT2012C01J0401)supported by the Group Innovation Fund,China
文摘An improved model predictive control algorithm is proposed for Hammerstein-Wiener nonlinear systems.The proposed synthesis algorithm contains two parts:offline design the polytopic invariant sets,and online solve the min-max optimization problem.The polytopic invariant set is adopted to replace the traditional ellipsoid invariant set.And the parameter-correlation nonlinear control law is designed to replace the traditional linear control law.Consequently,the terminal region is enlarged and the control effect is improved.Simulation and experiment are used to verify the validity of the wind tunnel flow field control algorithm.
基金National Natural Science Foundation of China(No.61463025)Opening Foundation of Key Laboratory of Opto-technology and Intelligent Control(Lanzhou Jiaotong University),Ministry of Education(No.KFKT2018-8)
文摘A novel double extended state observer(DESO)based on model predictive torque control(MPTC)strategy is developed for three-phase permanent magnet synchronous motor(PMSM)drive system without current sensor.In general,to achieve high-precision control,two-phase current sensors are necessary for successful implementation of MPTC.For this purpose,two ESOs are used to estimate q-axis current and stator resistance respectively,and then based on this,d-axis current is estimated.Moreover,to reduce torque and flux ripple and to improve the performance of the torque and speed,MPTC strategy is designed.The simulation results validate the feasibility and effectiveness of the proposed scheme.