With the aim of studying the anti-rutting performance of Thiopave modified asphalt mixture applied to the upper layer of pavement, the strain-hardening creep model in ABAQUS finite element software was used to analyze...With the aim of studying the anti-rutting performance of Thiopave modified asphalt mixture applied to the upper layer of pavement, the strain-hardening creep model in ABAQUS finite element software was used to analyze the rutting under the condition of introducing temperature field. Compared with the calculation results of the rutting of ordinary asphalt pavement, it is found that Thiopave can improve the temperature sensitivity of asphalt mixture. With the increase of temperature, the rutting change of Thiopave modified asphalt pavement is smaller than that of ordinary asphalt. Thiopave also has a certain degree of improvement in the fatigue resistance of asphalt pavements, which can be applied to sections with high traffic volume in high temperature areas.展开更多
The quadrilateral discrete Kirchhoff thin plate bending element DKQ is based on the isoparametric element Q8, however, the accuracy of the isoparametric quadrilateral elements will drop significantly due to mesh disto...The quadrilateral discrete Kirchhoff thin plate bending element DKQ is based on the isoparametric element Q8, however, the accuracy of the isoparametric quadrilateral elements will drop significantly due to mesh distortions. In a previous work, we constructed an 8-node quadrilateral spline element L8 using the triangular area coordinates and the B- net method, which can be insensitive to mesh distortions and possess the second order completeness in the Cartesian co- ordinates. In this paper, a thin plate spline element is devel- oped based on the spline element L8 and the refined tech- nique. Numerical examples show that the present element indeed possesses higher accuracy than the DKQ element for distorted meshes.展开更多
This paper presents and proves the mixed compatible finite element variationalprinciples in dynamics of viscous barotropic fluids. When the principles are proved, itis found that the compatibility conditions of stress...This paper presents and proves the mixed compatible finite element variationalprinciples in dynamics of viscous barotropic fluids. When the principles are proved, itis found that the compatibility conditions of stress can be naturally satisfied. The gene-rallzed variational principles with mixed hybrid incompatible finite elements are alsopresented and proved, and they can reduce the computation of incompatible elements indynamics of viscous barotropic flows.展开更多
In this paper we first prove a theorem on the nonexistence of pyramidal polynomial basis functions.Then we present a new symmetric composite pyramidal finite element which yields a better convergence than the nonsymm...In this paper we first prove a theorem on the nonexistence of pyramidal polynomial basis functions.Then we present a new symmetric composite pyramidal finite element which yields a better convergence than the nonsymmetric one.It has fourteen degrees of freedom and its basis functions are incomplete piecewise triquadratic polynomials.The space of ansatz functions contains all quadratic functions on each of four subtetrahedra that form a given pyramidal element.展开更多
Impact dynamics of flexible solids is important in engineering practice. Obtaining its dynamic response is a challenging task and usually achieved by numerical methods. The objectives of the study are twofold. Firstly...Impact dynamics of flexible solids is important in engineering practice. Obtaining its dynamic response is a challenging task and usually achieved by numerical methods. The objectives of the study are twofold. Firstly, the discrete singular convolution (DSC) is used for the first time to analyze the impact dynamics. Secondly, the efficiency of various numerical methods for dynamic analysis is explored via an example of a flexible rod hit by a rigid ball. Three numerical methods, including the conventional finite element (FE) method, the DSC algorithm, and the spectral finite element (SFE) method, and one proposed modeling strategy, the improved spectral finite element (ISFE) method, are involved. Numerical results are compared with the known analytical solutions to show their efficiency. It is demonstrated that the proposed ISFE modeling strategy with a proper length of con- ventional FE yields the most accurate contact stress among the four investigated models. It is also found that the DSC algorithm is an alternative method for collision problems.展开更多
In this paper, a constrained distributed optimal control problem governed by a first- order elliptic system is considered. Least-squares mixed finite element methods, which are not subject to the Ladyzhenkaya-Babuska-...In this paper, a constrained distributed optimal control problem governed by a first- order elliptic system is considered. Least-squares mixed finite element methods, which are not subject to the Ladyzhenkaya-Babuska-Brezzi consistency condition, are used for solving the elliptic system with two unknown state variables. By adopting the Lagrange multiplier approach, continuous and discrete optimality systems including a primal state equation, an adjoint state equation, and a variational inequality for the optimal control are derived, respectively. Both the discrete state equation and discrete adjoint state equation yield a symmetric and positive definite linear algebraic system. Thus, the popular solvers such as preconditioned conjugate gradient (PCG) and algebraic multi-grid (AMG) can be used for rapid solution. Optimal a priori error estimates are obtained, respectively, for the control function in L2 (Ω)-norm, for the original state and adjoint state in H1 (Ω)-norm, and for the flux state and adjoint flux state in H(div; Ω)-norm. Finally, we use one numerical example to validate the theoretical findings.展开更多
文摘With the aim of studying the anti-rutting performance of Thiopave modified asphalt mixture applied to the upper layer of pavement, the strain-hardening creep model in ABAQUS finite element software was used to analyze the rutting under the condition of introducing temperature field. Compared with the calculation results of the rutting of ordinary asphalt pavement, it is found that Thiopave can improve the temperature sensitivity of asphalt mixture. With the increase of temperature, the rutting change of Thiopave modified asphalt pavement is smaller than that of ordinary asphalt. Thiopave also has a certain degree of improvement in the fatigue resistance of asphalt pavements, which can be applied to sections with high traffic volume in high temperature areas.
基金supported by the National Natural Science Foundation of China(11001037,11102037,11290143)the Fundamental Research Funds for the Central Universities(DUT13LK07)
文摘The quadrilateral discrete Kirchhoff thin plate bending element DKQ is based on the isoparametric element Q8, however, the accuracy of the isoparametric quadrilateral elements will drop significantly due to mesh distortions. In a previous work, we constructed an 8-node quadrilateral spline element L8 using the triangular area coordinates and the B- net method, which can be insensitive to mesh distortions and possess the second order completeness in the Cartesian co- ordinates. In this paper, a thin plate spline element is devel- oped based on the spline element L8 and the refined tech- nique. Numerical examples show that the present element indeed possesses higher accuracy than the DKQ element for distorted meshes.
文摘This paper presents and proves the mixed compatible finite element variationalprinciples in dynamics of viscous barotropic fluids. When the principles are proved, itis found that the compatibility conditions of stress can be naturally satisfied. The gene-rallzed variational principles with mixed hybrid incompatible finite elements are alsopresented and proved, and they can reduce the computation of incompatible elements indynamics of viscous barotropic flows.
基金The Natural Sciences and Engineering Research Council of Canada,the grant No.IAA 100190803the Grant Agency of the Academy of Sciences of the Czech Republic and the Institutional Research Plan No.AV0Z 10190503。
文摘In this paper we first prove a theorem on the nonexistence of pyramidal polynomial basis functions.Then we present a new symmetric composite pyramidal finite element which yields a better convergence than the nonsymmetric one.It has fourteen degrees of freedom and its basis functions are incomplete piecewise triquadratic polynomials.The space of ansatz functions contains all quadratic functions on each of four subtetrahedra that form a given pyramidal element.
基金Supported by the National Natural Science Foundation of China(50830201)the Priority Academic Program Development of Jiangsu Higher Education Institutions~~
文摘Impact dynamics of flexible solids is important in engineering practice. Obtaining its dynamic response is a challenging task and usually achieved by numerical methods. The objectives of the study are twofold. Firstly, the discrete singular convolution (DSC) is used for the first time to analyze the impact dynamics. Secondly, the efficiency of various numerical methods for dynamic analysis is explored via an example of a flexible rod hit by a rigid ball. Three numerical methods, including the conventional finite element (FE) method, the DSC algorithm, and the spectral finite element (SFE) method, and one proposed modeling strategy, the improved spectral finite element (ISFE) method, are involved. Numerical results are compared with the known analytical solutions to show their efficiency. It is demonstrated that the proposed ISFE modeling strategy with a proper length of con- ventional FE yields the most accurate contact stress among the four investigated models. It is also found that the DSC algorithm is an alternative method for collision problems.
基金Acknowledgements. The authors would like to thank the editor and the anonymous referee for their valuable comments and suggestions on an earlier version of this paper. The work of Hongxing Rui (corresponding author) was supported by the NationM Natural Science Founda- tion of China (No. 11171190). The work of Hongfei Fu was supported by the National Natural Science Foundation of China (No. 11201485), the Promotive Research Fund for Excellent Young and Middle-aged Scientists of Shandong Province (No. BS2013NJ001), and the Fundamental Research Funds for the Central Universities (No. 14CX02217A).
文摘In this paper, a constrained distributed optimal control problem governed by a first- order elliptic system is considered. Least-squares mixed finite element methods, which are not subject to the Ladyzhenkaya-Babuska-Brezzi consistency condition, are used for solving the elliptic system with two unknown state variables. By adopting the Lagrange multiplier approach, continuous and discrete optimality systems including a primal state equation, an adjoint state equation, and a variational inequality for the optimal control are derived, respectively. Both the discrete state equation and discrete adjoint state equation yield a symmetric and positive definite linear algebraic system. Thus, the popular solvers such as preconditioned conjugate gradient (PCG) and algebraic multi-grid (AMG) can be used for rapid solution. Optimal a priori error estimates are obtained, respectively, for the control function in L2 (Ω)-norm, for the original state and adjoint state in H1 (Ω)-norm, and for the flux state and adjoint flux state in H(div; Ω)-norm. Finally, we use one numerical example to validate the theoretical findings.