期刊文献+
共找到378篇文章
< 1 2 19 >
每页显示 20 50 100
Unconditional and Optimal Pointwise Error Estimates of Finite Difference Methods for the Two-Dimensional Complex Ginzburg-Landau Equation
1
作者 Yue CHENG Dongsheng TANG 《Journal of Mathematical Research with Applications》 CSCD 2024年第2期248-268,共21页
In this paper,we give improved error estimates for linearized and nonlinear CrankNicolson type finite difference schemes of Ginzburg-Landau equation in two dimensions.For linearized Crank-Nicolson scheme,we use mathem... In this paper,we give improved error estimates for linearized and nonlinear CrankNicolson type finite difference schemes of Ginzburg-Landau equation in two dimensions.For linearized Crank-Nicolson scheme,we use mathematical induction to get unconditional error estimates in discrete L^(2)and H^(1)norm.However,it is not applicable for the nonlinear scheme.Thus,based on a‘cut-off’function and energy analysis method,we get unconditional L^(2)and H^(1)error estimates for the nonlinear scheme,as well as boundedness of numerical solutions.In addition,if the assumption for exact solutions is improved compared to before,unconditional and optimal pointwise error estimates can be obtained by energy analysis method and several Sobolev inequalities.Finally,some numerical examples are given to verify our theoretical analysis. 展开更多
关键词 complex Ginzburg-Landau equation finite difference method unconditional convergence optimal estimates pointwise error estimates
原文传递
Solution of a One-Dimension Heat Equation Using Higher-Order Finite Difference Methods and Their Stability
2
作者 M. Emran Ali Wahida Zaman Loskor +1 位作者 Samia Taher Farjana Bilkis 《Journal of Applied Mathematics and Physics》 2022年第3期877-886,共10页
One-dimensional heat equation was solved for different higher-order finite difference schemes, namely, forward time and fourth-order centered space explicit method, backward time and fourth-order centered space implic... One-dimensional heat equation was solved for different higher-order finite difference schemes, namely, forward time and fourth-order centered space explicit method, backward time and fourth-order centered space implicit method, and fourth-order implicit Crank-Nicolson finite difference method. Higher-order schemes have complexity in computing values at the neighboring points to the boundaries. It is required there a specification of the values of field variables at some points exterior to the domain. The complexity was incorporated using Hicks approximation. The convergence and stability analysis was also computed for those higher-order finite difference explicit and implicit methods in case of solving a one dimensional heat equation. The obtained numerical results were compared with exact solutions. It is found that backward time and fourth-order centered space implicit scheme along with Hicks approximation performed well over the other mentioned higher-order approaches. 展开更多
关键词 Heat Equation Boundary Condition Higher-Order finite difference methods Hicks Approximation
在线阅读 下载PDF
High-Order Bound-Preserving Finite Difference Methods for Multispecies and Multireaction Detonations 被引量:2
3
作者 Jie Du Yang Yang 《Communications on Applied Mathematics and Computation》 2023年第1期31-63,共33页
In this paper,we apply high-order finite difference(FD)schemes for multispecies and multireaction detonations(MMD).In MMD,the density and pressure are positive and the mass fraction of the ith species in the chemical ... In this paper,we apply high-order finite difference(FD)schemes for multispecies and multireaction detonations(MMD).In MMD,the density and pressure are positive and the mass fraction of the ith species in the chemical reaction,say zi,is between 0 and 1,withΣz_(i)=1.Due to the lack of maximum-principle,most of the previous bound-preserving technique cannot be applied directly.To preserve those bounds,we will use the positivity-preserving technique to all the zi'is and enforceΣz_(i)=1 by constructing conservative schemes,thanks to conservative time integrations and consistent numerical fluxes in the system.Moreover,detonation is an extreme singular mode of flame propagation in premixed gas,and the model contains a significant stiff source.It is well known that for hyperbolic equations with stiff source,the transition points in the numerical approximations near the shocks may trigger spurious shock speed,leading to wrong shock position.Intuitively,the high-order weighted essentially non-oscillatory(WENO)scheme,which can suppress oscillations near the discontinuities,would be a good choice for spatial discretization.However,with the nonlinear weights,the numerical fluxes are no longer“consistent”,leading to nonconservative numerical schemes and the bound-preserving technique does not work.Numerical experiments demonstrate that,without further numerical techniques such as subcell resolutions,the conservative FD method with linear weights can yield better numerical approximations than the nonconservative WENO scheme. 展开更多
关键词 Weighted essentially non-oscillatory scheme finite difference method Stiff source DETONATIONS Bound-preserving CONSERVATIVE
在线阅读 下载PDF
Finite Difference Methods for the Time Fractional Advection-diffusion Equation 被引量:2
4
作者 MA Yan MUSBAH FS 《Chinese Quarterly Journal of Mathematics》 2019年第3期259-273,共15页
In this paper, three implicit finite difference methods are developed to solve one dimensional time fractional advection-diffusion equation. The fractional derivative is treated by applying right shifted Grünwald... In this paper, three implicit finite difference methods are developed to solve one dimensional time fractional advection-diffusion equation. The fractional derivative is treated by applying right shifted Grünwald-Letnikov formula of order α ∈(0, 1). We investigate the stability analysis by using von Neumann method with mathematical induction and prove that these three proposed methods are unconditionally stable. Numerical results are presented to demonstrate the effectiveness of the schemes mentioned in this paper. 展开更多
关键词 Time fractional advection-difusion finite difference method Griinwald-Letnikov formula STABILITY EFFECTIVENESS
在线阅读 下载PDF
ONE-PARAMETER FINITE DIFFERENCE METHODS AND THEIR ACCELERATED SCHEMES FOR SPACE-FRACTIONAL SINE-GORDON EQUATIONS WITH DISTRIBUTED DELAY
5
作者 Tao Sun Chengjian Zhang Haiwei Sun 《Journal of Computational Mathematics》 SCIE CSCD 2024年第3期705-734,共30页
This paper deals with numerical methods for solving one-dimensional(1D)and twodimensional(2D)initial-boundary value problems(IBVPs)of space-fractional sine-Gordon equations(SGEs)with distributed delay.For 1D problems,... This paper deals with numerical methods for solving one-dimensional(1D)and twodimensional(2D)initial-boundary value problems(IBVPs)of space-fractional sine-Gordon equations(SGEs)with distributed delay.For 1D problems,we construct a kind of oneparameter finite difference(OPFD)method.It is shown that,under a suitable condition,the proposed method is convergent with second order accuracy both in time and space.In implementation,the preconditioned conjugate gradient(PCG)method with the Strang circulant preconditioner is carried out to improve the computational efficiency of the OPFD method.For 2D problems,we develop another kind of OPFD method.For such a method,two classes of accelerated schemes are suggested,one is alternative direction implicit(ADI)scheme and the other is ADI-PCG scheme.In particular,we prove that ADI scheme can arrive at second-order accuracy in time and space.With some numerical experiments,the computational effectiveness and accuracy of the methods are further verified.Moreover,for the suggested methods,a numerical comparison in computational efficiency is presented. 展开更多
关键词 Fractional sine-Gordon equation with distributed delay One-parameter finite difference methods Convergence analysis ADI scheme PCG method
原文传递
A Fast Algorithm for Solving the Poisson Equations Based on the Discrete Cosine/Sine Transforms in the Finite Difference Method
6
作者 LI Congcong WANG Danxia +1 位作者 JIA Hongen ZHANG Chenhui 《应用数学》 北大核心 2025年第3期651-669,共19页
To enhance the computational efficiency of spatio-temporally discretized phase-field models,we present a high-speed solver specifically designed for the Poisson equations,a component frequently used in the numerical c... To enhance the computational efficiency of spatio-temporally discretized phase-field models,we present a high-speed solver specifically designed for the Poisson equations,a component frequently used in the numerical computation of such models.This efficient solver employs algorithms based on discrete cosine transformations(DCT)or discrete sine transformations(DST)and is not restricted by any spatio-temporal schemes.Our proposed methodology is appropriate for a variety of phase-field models and is especially efficient when combined with flow field systems.Meanwhile,this study has conducted an extensive numerical comparison and found that employing DCT and DST techniques not only yields results comparable to those obtained via the Multigrid(MG)method,a conventional approach used in the resolution of the Poisson equations,but also enhances computational efficiency by over 90%. 展开更多
关键词 Phase-field model finite difference method Fast Poisson solver(DC-T/DST) Explicit invariant energy quadratization Unconditional energy stability
在线阅读 下载PDF
Unravelling Temperature Profile through Bifacial PV Modules via Finite Difference Method:Effects of Heat Internal Generation Due to Spectral Absorption
7
作者 Khadija Ibaararen Mhammed Zaimi +1 位作者 Khadija El Ainaoui El Mahdi Assaid 《Energy Engineering》 2025年第9期3487-3505,共19页
This study investigates the complex heat transfer dynamics inmultilayer bifacial photovoltaic(bPV)solar modules under spectrally resolved solar irradiation.A novel numericalmodel is developed to incorporate internal h... This study investigates the complex heat transfer dynamics inmultilayer bifacial photovoltaic(bPV)solar modules under spectrally resolved solar irradiation.A novel numericalmodel is developed to incorporate internal heat generation resulting from optical absorption,grounded in the physical equations governing light-matter interactions within the module’smultilayer structure.The model accounts for reflection and transmission at each interface between adjacent layers,as well as absorption within individual layers,using the wavelength-dependent dielectric properties of constituent materials.These properties are used to calculate the spectral reflectance,transmittance,and absorption coefficients,enabling precise quantification of internal heat sources from irradiance incidents on both the front and rear surfaces of the module.The study further examines the influence of irradiance reflection on thermal behavior,evaluates the thermal impact of various supporting materials placed beneath the module,and analyzes the role of albedo in modifying heat distribution.By incorporating spectrally resolved heat generation across each layer often simplified or omitted in conventional models,the proposed approach enhances physical accuracy.The transient heat equation is solved using a one-dimensional finite difference(FD)method to produce detailed temperature profiles under multiple operating scenarios,including Standard Test Conditions(STC),Bifacial Standard Test Conditions(BSTC),Normal Operating Cell Temperature(NOCT),and Bifacial NOCT(BNOCT).The results offer valuable insights into the interplay between optical and thermal phenomena in bifacial systems,informing the design and optimization of more efficient photovoltaic technologies. 展开更多
关键词 Bifacial photovoltaic(bPV) solarmodule heat transfer optical absorption temperature profile ALBEDO finite difference method
在线阅读 下载PDF
ASYMPTOTICS OF LARGE DEVIATIONS OF FINITE DIFFERENCE METHOD FOR STOCHASTIC CAHN-HILLIARD EQUATION
8
作者 Diancong JIN Derui SHENG 《Acta Mathematica Scientia》 2025年第3期1078-1106,共29页
In this work, we first derive the one-point large deviations principle (LDP) for both the stochastic Cahn–Hilliard equation with small noise and its spatial finite difference method (FDM). Then, we focus on giving th... In this work, we first derive the one-point large deviations principle (LDP) for both the stochastic Cahn–Hilliard equation with small noise and its spatial finite difference method (FDM). Then, we focus on giving the convergence of the one-point large deviations rate function (LDRF) of the spatial FDM, which is about the asymptotical limit of a parametric variational problem. The main idea for proving the convergence of the LDRF of the spatial FDM is via the Γ-convergence of objective functions. This relies on the qualitative analysis of skeleton equations of the original equation and the numerical method. In order to overcome the difficulty that the drift coefficient is not one-sided Lipschitz continuous, we derive the equivalent characterization of the skeleton equation of the spatial FDM and the discrete interpolation inequality to obtain the uniform boundedness of the solution to the underlying skeleton equation. These play important roles in deriving the T-convergence of objective functions. 展开更多
关键词 large deviations rate function finite difference method convergence analysis F-convergence stochastic Cahn-Hilliard equation
在线阅读 下载PDF
Effect of joint coalescence coefficient on rock bridge formation of slope based on finite difference method
9
作者 Su LI Yi TANG Hang LIN 《Transactions of Nonferrous Metals Society of China》 2025年第10期3455-3467,共13页
A method combining finite difference method(FDM)and k-means clustering algorithm which can determine the threshold of rock bridge generation is proposed.Jointed slope models with different joint coalescence coefficien... A method combining finite difference method(FDM)and k-means clustering algorithm which can determine the threshold of rock bridge generation is proposed.Jointed slope models with different joint coalescence coefficients(k)are constructed based on FDM.The rock bridge area was divided through k-means algorithm and the optimal number of clusters was determined by sum of squared errors(SSE)and elbow method.The influence of maximum principal stress and stress change rate as clustering indexes on the clustering results of rock bridges was compared by using Euclidean distance.The results show that using stress change rate as clustering index is more effective.When the joint coalescence coefficient is less than 0.6,there is no significant stress concentration in the middle area of adjacent joints,that is,no generation of rock bridge.In addition,the range of rock bridge is affected by the coalescence coefficient(k),the relative position of joints and the parameters of weak interlayer. 展开更多
关键词 SLOPE rock bridge finite difference method k-means algorithm
在线阅读 下载PDF
ON BOUNDARY TREATMENT FOR THE NUMERICAL SOLUTION OF THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS WITH FINITE DIFFERENCE METHODS 被引量:1
10
《Journal of Computational Mathematics》 SCIE CSCD 1996年第2期135-142,共8页
关键词 MATH ON BOUNDARY TREATMENT FOR THE NUMERICAL SOLUTION OF THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS WITH finite difference methods
原文传递
ON THE FINITE DIFFERENCE METHODS FOR TWO DIMENSIONAL TURBULENCE BOUNDARY LAYER
11
作者 Wu Zheng Fudan University,Shanghai 200433,P.R.China 《Journal of Hydrodynamics》 SCIE EI CSCD 1990年第1期22-28,共7页
In this paper,the author first establishes the general finite difference formula for the governing equations of the turbulent average velocities in a steady two dimensional incompressible fluid boundary layer-inner la... In this paper,the author first establishes the general finite difference formula for the governing equations of the turbulent average velocities in a steady two dimensional incompressible fluid boundary layer-inner layer.Next, three key parameters of the difference scheme are determined respectively by several simple flow models with known analytical solutions.Finally a special five points difference system is given and its application value is showed by a numerical example for the vertical velocity distribution in an Ekman's layer. 展开更多
关键词 ON THE finite difference methods FOR TWO DIMENSIONAL TURBULENCE BOUNDARY LAYER very
原文传递
Optimal l~∞ error estimates of finite difference methods for the coupled Gross-Pitaevskii equations in high dimensions 被引量:12
12
作者 WANG TingChun ZHAO XiaoFei 《Science China Mathematics》 SCIE 2014年第10期2189-2214,共26页
Due to the difficulty in obtaining the a priori estimate,it is very hard to establish the optimal point-wise error bound of a finite difference scheme for solving a nonlinear partial differential equation in high dime... Due to the difficulty in obtaining the a priori estimate,it is very hard to establish the optimal point-wise error bound of a finite difference scheme for solving a nonlinear partial differential equation in high dimensions(2D or 3D).We here propose and analyze finite difference methods for solving the coupled GrossPitaevskii equations in two dimensions,which models the two-component Bose-Einstein condensates with an internal atomic Josephson junction.The methods which we considered include two conservative type schemes and two non-conservative type schemes.Discrete conservation laws and solvability of the schemes are analyzed.For the four proposed finite difference methods,we establish the optimal convergence rates for the error at the order of O(h^2+τ~2)in the l~∞-norm(i.e.,the point-wise error estimates)with the time stepτand the mesh size h.Besides the standard techniques of the energy method,the key techniques in the analysis is to use the cut-off function technique,transformation between the time and space direction and the method of order reduction.All the methods and results here are also valid and can be easily extended to the three-dimensional case.Finally,numerical results are reported to confirm our theoretical error estimates for the numerical methods. 展开更多
关键词 coupled Gross-Pitaevskii equations finite difference method SOLVABILITY conservation laws pointwise convergence optimal error estimates
原文传递
Analysis of Extended Fisher-Kolmogorov Equation in 2D Utilizing the Generalized Finite Difference Method with Supplementary Nodes
13
作者 Bingrui Ju Wenxiang Sun +1 位作者 Wenzhen Qu Yan Gu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期267-280,共14页
In this study,we propose an efficient numerical framework to attain the solution of the extended Fisher-Kolmogorov(EFK)problem.The temporal derivative in the EFK equation is approximated by utilizing the Crank-Nicolso... In this study,we propose an efficient numerical framework to attain the solution of the extended Fisher-Kolmogorov(EFK)problem.The temporal derivative in the EFK equation is approximated by utilizing the Crank-Nicolson scheme.Following temporal discretization,the generalized finite difference method(GFDM)with supplementary nodes is utilized to address the nonlinear boundary value problems at each time node.These supplementary nodes are distributed along the boundary to match the number of boundary nodes.By incorporating supplementary nodes,the resulting nonlinear algebraic equations can effectively satisfy the governing equation and boundary conditions of the EFK equation.To demonstrate the efficacy of our approach,we present three numerical examples showcasing its performance in solving this nonlinear problem. 展开更多
关键词 Generalized finite difference method nonlinear extended Fisher-Kolmogorov equation Crank-Nicolson scheme
在线阅读 下载PDF
Finite Difference-Peridynamic Differential Operator for Solving Transient Heat Conduction Problems
14
作者 Chunlei Ruan Cengceng Dong +2 位作者 Zeyue Zhang Boyu Chen Zhijun Liu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第9期2707-2728,共22页
Transient heat conduction problems widely exist in engineering.In previous work on the peridynamic differential operator(PDDO)method for solving such problems,both time and spatial derivatives were discretized using t... Transient heat conduction problems widely exist in engineering.In previous work on the peridynamic differential operator(PDDO)method for solving such problems,both time and spatial derivatives were discretized using the PDDO method,resulting in increased complexity and programming difficulty.In this work,the forward difference formula,the backward difference formula,and the centered difference formula are used to discretize the time derivative,while the PDDO method is used to discretize the spatial derivative.Three new schemes for solving transient heat conduction equations have been developed,namely,the forward-in-time and PDDO in space(FT-PDDO)scheme,the backward-in-time and PDDO in space(BT-PDDO)scheme,and the central-in-time and PDDO in space(CT-PDDO)scheme.The stability and convergence of these schemes are analyzed using the Fourier method and Taylor’s theorem.Results show that the FT-PDDO scheme is conditionally stable,whereas the BT-PDDO and CT-PDDO schemes are unconditionally stable.The stability conditions for the FT-PDDO scheme are less stringent than those of the explicit finite element method and explicit finite difference method.The convergence rate in space for these three methods is two.These constructed schemes are applied to solve one-dimensional and two-dimensional transient heat conduction problems.The accuracy and validity of the schemes are verified by comparison with analytical solutions. 展开更多
关键词 Peridynamic differential operator finite difference method STABILITY transient heat conduction problem
在线阅读 下载PDF
Integrating Krylov Deferred Correction and Generalized Finite Difference Methods for Dynamic Simulations of Wave Propagation Phenomena in Long-Time Intervals 被引量:1
15
作者 Wenzhen Qu Hongwei Gao Yan Gu 《Advances in Applied Mathematics and Mechanics》 SCIE 2021年第6期1398-1417,共20页
In this paper,a high-accuracy numerical scheme is developed for long-time dynamic simulations of 2D and 3D wave propagation phenomena.In the derivation of the present approach,the second order time derivative of the p... In this paper,a high-accuracy numerical scheme is developed for long-time dynamic simulations of 2D and 3D wave propagation phenomena.In the derivation of the present approach,the second order time derivative of the physical quantity in the wave equation is treated as a substitution variable.Based on the temporal discretization with the Krylov deferred correction(KDC)technique,the original wave problem is then converted into the modified Helmholtz equation.The transformed boundary value problem(BVP)in space is efficiently simulated by using the meshless generalized finite difference method(GFDM)with Taylor series after truncating the second and fourth order approximations.The developed scheme is finally verified by four numerical experiments including cases with complicated domains or the temporally piecewise defined source function.Numerical results match with the analytical solutions and results by the COMSOL software,which demonstrates that the developed KDC-GFDM can allow large time-step sizes for wave propagation problems in longtime intervals. 展开更多
关键词 Wave equation Krylov deferred correction technique large time-step long-time simulation generalized finite difference method
在线阅读 下载PDF
Asymptotic Behavior of the Finite Difference and the Finite Element Methods for Parabolic Equations
16
作者 LIU Yang FENG Hui 《Wuhan University Journal of Natural Sciences》 EI CAS 2005年第6期953-956,共4页
The asymptotic convergence of the solution of the parabolic equation is proved. By the eigenvalues estimation, we obtain that the approximate solutions by the finite difference method and the finite element method are... The asymptotic convergence of the solution of the parabolic equation is proved. By the eigenvalues estimation, we obtain that the approximate solutions by the finite difference method and the finite element method are asymptotically convergent. Both methods are considered in continnous time. 展开更多
关键词 asymptotic behavior finite difference method finite element method EIGENVALUE
在线阅读 下载PDF
Finite analytic method for simulating water flow using water content-based Richards'equation
17
作者 Zai-yong Zhang Da Xu +4 位作者 Cheng-cheng Gong Bin Ran Xue-ke Wang Wan-yu Zhang Jun-zuo Pan 《Journal of Groundwater Science and Engineering》 2025年第2期147-155,共9页
Accurately simulating water flow movement in vadose zone is crucial for effective water resources assessment.Richards'equation,which describes the movement of water flow in the vadose zone,is highly nonlinear and ... Accurately simulating water flow movement in vadose zone is crucial for effective water resources assessment.Richards'equation,which describes the movement of water flow in the vadose zone,is highly nonlinear and challenging to solve.Existing numerical methods often face issues such as numerical dispersion,oscillation,and mass non-conservation when spatial and temporal discretization conditions are not appropriately configured.To address these problems and achieve accurate and stable numerical solutions,a finite analytic method based on water content-based Richards'equation(FAM-W)is proposed.The performance of the FAM-W is compared with analytical solutions,Finite Difference Method(FDM),and Finite Analytic Method based on the pressure Head-based Richards'equation(FAM-H).Compared to analytical solution and other numerical methods(FDM and FAM-H),FAM-W demonstrates superior accuracy and efficiency in controlling mass balance errors,regardless of spatial step sizes.This study introduces a novel approach for modelling water flow in the vadose zone,offering significant benefits for water resources management. 展开更多
关键词 finite analytic method Vadose zone Soil moisture finite difference method Analytical solution Richards'equation Water resources management
在线阅读 下载PDF
Dynamic Analysis of Contact Bounce of Aerospace Relay Based on Finite Difference Method 被引量:4
18
作者 熊军 何俊佳 臧春艳 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2009年第3期262-267,共6页
Contact bounce of relay, which is the main cause of electric abrasion and material erosion, is inevitable. By using the mode expansion form, the dynamic behavior of two different reed systems for aerospace relays is a... Contact bounce of relay, which is the main cause of electric abrasion and material erosion, is inevitable. By using the mode expansion form, the dynamic behavior of two different reed systems for aerospace relays is analyzed. The dynamic model uses Euler-Bernoulli beam theory for cantilever beam, in which the driving force (or driving moment) of the electromagnetic system is taken into account, and the contact force between moving contact and stationary contact is simulated by the Kelvin-Voigt vis-coelastic... 展开更多
关键词 aerospace relay dynamic analysis finite difference method contact bounce reed system
原文传递
An GPU accelerated finite difference method for heat transfer simulation
19
作者 ZHOU Yi HE Fazhi QIU Yimin 《Computer Aided Drafting,Design and Manufacturing》 2013年第1期27-31,共5页
The heat transfer mathematic models are widely used in iron and steel industry area. Many computational models that represent this physical process is based on finite difference methods. The simulation of these phenom... The heat transfer mathematic models are widely used in iron and steel industry area. Many computational models that represent this physical process is based on finite difference methods. The simulation of these phenomena demands a high computa- tional cost. In this paper we employ GPU for the development of algorithm for a two-dimensional heat transfer problem with f'mite difference methods. The performance evaluation has been made and the comparison between CPU and GPU were discussed. The experimental result shows that GPU can solve this problem more efficiently when we need to divide calculation material into a large number of meshes. 展开更多
关键词 finite difference methods GPU Heat transfer OPENCL
在线阅读 下载PDF
Improved finite difference method for pressure distribution of aerostatic bearing 被引量:4
20
作者 郑书飞 蒋书运 《Journal of Southeast University(English Edition)》 EI CAS 2009年第4期501-505,共5页
An improved finite difference method (FDM)is described to solve existing problems such as low efficiency and poor convergence performance in the traditional method adopted to derive the pressure distribution of aero... An improved finite difference method (FDM)is described to solve existing problems such as low efficiency and poor convergence performance in the traditional method adopted to derive the pressure distribution of aerostatic bearings. A detailed theoretical analysis of the pressure distribution of the orifice-compensated aerostatic journal bearing is presented. The nonlinear dimensionless Reynolds equation of the aerostatic journal bearing is solved by the finite difference method. Based on the principle of flow equilibrium, a new iterative algorithm named the variable step size successive approximation method is presented to adjust the pressure at the orifice in the iterative process and enhance the efficiency and convergence performance of the algorithm. A general program is developed to analyze the pressure distribution of the aerostatic journal bearing by Matlab tool. The results show that the improved finite difference method is highly effective, reliable, stable, and convergent. Even when very thin gas film thicknesses (less than 2 Win)are considered, the improved calculation method still yields a result and converges fast. 展开更多
关键词 aerostatic bearing: pressure distribution: Reynolds equation: finite difference method: variable step size
在线阅读 下载PDF
上一页 1 2 19 下一页 到第
使用帮助 返回顶部