Bird monitoring and protection are essential for maintaining biodiversity,and fine-grained bird classification has become a key focus in this field.Audio-visual modalities provide critical cues for this task,but robus...Bird monitoring and protection are essential for maintaining biodiversity,and fine-grained bird classification has become a key focus in this field.Audio-visual modalities provide critical cues for this task,but robust feature extraction and efficient fusion remain major challenges.We introduce a multi-stage fine-grained audiovisual fusion network(MSFG-AVFNet) for fine-grained bird species classification,which addresses these challenges through two key components:(1) the audiovisual feature extraction module,which adopts a multi-stage finetuning strategy to provide high-quality unimodal features,laying a solid foundation for modality fusion;(2) the audiovisual feature fusion module,which combines a max pooling aggregation strategy with a novel audiovisual loss function to achieve effective and robust feature fusion.Experiments were conducted on the self-built AVB81and the publicly available SSW60 datasets,which contain data from 81 and 60 bird species,respectively.Comprehensive experiments demonstrate that our approach achieves notable performance gains,outperforming existing state-of-the-art methods.These results highlight its effectiveness in leveraging audiovisual modalities for fine-grained bird classification and its potential to support ecological monitoring and biodiversity research.展开更多
In this paper,we propose hierarchical attention dual network(DNet)for fine-grained image classification.The DNet can randomly select pairs of inputs from the dataset and compare the differences between them through hi...In this paper,we propose hierarchical attention dual network(DNet)for fine-grained image classification.The DNet can randomly select pairs of inputs from the dataset and compare the differences between them through hierarchical attention feature learning,which are used simultaneously to remove noise and retain salient features.In the loss function,it considers the losses of difference in paired images according to the intra-variance and inter-variance.In addition,we also collect the disaster scene dataset from remote sensing images and apply the proposed method to disaster scene classification,which contains complex scenes and multiple types of disasters.Compared to other methods,experimental results show that the DNet with hierarchical attention is robust to different datasets and performs better.展开更多
The deep learning technology has shown impressive performance in various vision tasks such as image classification, object detection and semantic segmentation. In particular, recent advances of deep learning technique...The deep learning technology has shown impressive performance in various vision tasks such as image classification, object detection and semantic segmentation. In particular, recent advances of deep learning techniques bring encouraging performance to fine-grained image classification which aims to distinguish subordinate-level categories, such as bird species or dog breeds. This task is extremely challenging due to high intra-class and low inter-class variance. In this paper, we review four types of deep learning based fine-grained image classification approaches, including the general convolutional neural networks (CNNs), part detection based, ensemble of networks based and visual attention based fine-grained image classification approaches. Besides, the deep learning based semantic segmentation approaches are also covered in this paper. The region proposal based and fully convolutional networks based approaches for semantic segmentation are introduced respectively.展开更多
Fine-grained image classification, which aims to distinguish images with subtle distinctions, is a challenging task for two main reasons: lack of sufficient training data for every class and difficulty in learning dis...Fine-grained image classification, which aims to distinguish images with subtle distinctions, is a challenging task for two main reasons: lack of sufficient training data for every class and difficulty in learning discriminative features for representation. In this paper, to address the two issues, we propose a two-phase framework for recognizing images from unseen fine-grained classes, i.e., zeroshot fine-grained classification. In the first feature learning phase, we finetune deep convolutional neural networks using hierarchical semantic structure among fine-grained classes to extract discriminative deep visual features. Meanwhile, a domain adaptation structure is induced into deep convolutional neural networks to avoid domain shift from training data to test data. In the second label inference phase, a semantic directed graph is constructed over attributes of fine-grained classes. Based on this graph, we develop a label propagation algorithm to infer the labels of images in the unseen classes. Experimental results on two benchmark datasets demonstrate that our model outperforms the state-of-the-art zero-shot learning models. In addition, the features obtained by our feature learning model also yield significant gains when they are used by other zero-shot learning models, which shows the flexility of our model in zero-shot finegrained classification.展开更多
Fine-grained sedimentary rocks are defined as rocks which mainly compose of fine grains(〈62.5 μm). The detailed studies on these rocks have revealed the need of a more unified, comprehensive and inclusive classifi...Fine-grained sedimentary rocks are defined as rocks which mainly compose of fine grains(〈62.5 μm). The detailed studies on these rocks have revealed the need of a more unified, comprehensive and inclusive classification. The study focuses on fine-grained rocks has turned from the differences of inorganic mineral components to the significance of organic matter and microorganisms. The proposed classification is based on mineral composition, and it is noted that organic matters have been taken as a very important parameter in this classification scheme. Thus, four parameters, the TOC content, silica(quartz plus feldspars), clay minerals and carbonate minerals, are considered to divide the fine-grained sedimentary rocks into eight categories, and the further classification within every category is refined depending on subordinate mineral composition. The nomenclature consists of a root name preceded by a primary adjective. The root names reflect mineral constituent of the rock, including low organic(TOC〈2%), middle organic(2%4%) claystone, siliceous mudstone, limestone, and mixed mudstone. Primary adjectives convey structure and organic content information, including massive or limanited. The lithofacies are closely related to the reservoir storage space, porosity, permeability, hydrocarbon potential and shale oil/gas sweet spot, and are the key factor for the shale oil and gas exploration. The classification helps to systematically and practicably describe variability within fine-grained sedimentary rocks, what's more, it helps to guide the hydrocarbon exploration.展开更多
Based on reviews and summaries of the naming schemes of fine-grained sedimentary rocks, and analysis of characteristics of fine-grained sedimentary rocks, the problems existing in the classification and naming of fine...Based on reviews and summaries of the naming schemes of fine-grained sedimentary rocks, and analysis of characteristics of fine-grained sedimentary rocks, the problems existing in the classification and naming of fine-grained sedimentary rocks are discussed. On this basis, following the principle of three-level nomenclature, a new scheme of rock classification and naming for fine-grained sedimentary rocks is determined from two perspectives: First, fine-grained sedimentary rocks are divided into 12 types in two major categories, mudstone and siltstone, according to particle size(sand, silt and mud). Second,fine-grained sedimentary rocks are divided into 18 types in four categories, carbonate rock, fine-grained felsic sedimentary rock,clay rock and mixed fine-grained sedimentary rock according to mineral composition(carbonate minerals, felsic detrital minerals and clay minerals as three end elements). Considering the importance of organic matter in unconventional oil and gas generation and evaluation, organic matter is taken as the fourth element in the scheme. Taking the organic matter contents of 0.5% and 2% as dividing points, fine grained sedimentary rocks are divided into three categories, organic-poor, organic-bearing,and organic-rich ones. The new scheme meets the requirement of unconventional oil and gas exploration and development today and solves the problem of conceptual confusion in fine-grained sedimentary rocks, providing a unified basic term system for the research of fine-grained sedimentology.展开更多
The remote sensing ships’fine-grained classification technology makes it possible to identify certain ship types in remote sensing images,and it has broad application prospects in civil and military fields.However,th...The remote sensing ships’fine-grained classification technology makes it possible to identify certain ship types in remote sensing images,and it has broad application prospects in civil and military fields.However,the current model does not examine the properties of ship targets in remote sensing images with mixed multi-granularity features and a complicated backdrop.There is still an opportunity for future enhancement of the classification impact.To solve the challenges brought by the above characteristics,this paper proposes a Metaformer and Residual fusion network based on Visual Attention Network(VAN-MR)for fine-grained classification tasks.For the complex background of remote sensing images,the VAN-MR model adopts the parallel structure of large kernel attention and spatial attention to enhance the model’s feature extraction ability of interest targets and improve the classification performance of remote sensing ship targets.For the problem of multi-grained feature mixing in remote sensing images,the VAN-MR model uses a Metaformer structure and a parallel network of residual modules to extract ship features.The parallel network has different depths,considering both high-level and lowlevel semantic information.The model achieves better classification performance in remote sensing ship images with multi-granularity mixing.Finally,the model achieves 88.73%and 94.56%accuracy on the public fine-grained ship collection-23(FGSC-23)and FGSCR-42 datasets,respectively,while the parameter size is only 53.47 M,the floating point operations is 9.9 G.The experimental results show that the classification effect of VAN-MR is superior to that of traditional CNNs model and visual model with Transformer structure under the same parameter quantity.展开更多
●AIM:To establish a classification for congenital cataracts that can facilitate individualized treatment and help identify individuals with a high likelihood of different visual outcomes.●METHODS:Consecutive patient...●AIM:To establish a classification for congenital cataracts that can facilitate individualized treatment and help identify individuals with a high likelihood of different visual outcomes.●METHODS:Consecutive patients diagnosed with congenital cataracts and undergoing surgery between January 2005 and November 2021 were recruited.Data on visual outcomes and the phenotypic characteristics of ocular biometry and the anterior and posterior segments were extracted from the patients’medical records.A hierarchical cluster analysis was performed.The main outcome measure was the identification of distinct clusters of eyes with congenital cataracts.●RESULTS:A total of 164 children(299 eyes)were divided into two clusters based on their ocular features.Cluster 1(96 eyes)had a shorter axial length(mean±SD,19.44±1.68 mm),a low prevalence of macular abnormalities(1.04%),and no retinal abnormalities or posterior cataracts.Cluster 2(203 eyes)had a greater axial length(mean±SD,20.42±2.10 mm)and a higher prevalence of macular abnormalities(8.37%),retinal abnormalities(98.52%),and posterior cataracts(4.93%).Compared with the eyes in Cluster 2(57.14%),those in Cluster 1(71.88%)had a 2.2 times higher chance of good best-corrected visual acuity[<0.7 logMAR;OR(95%CI),2.20(1.25–3.81);P=0.006].●CONCLUSION:This retrospective study categorizes congenital cataracts into two distinct clusters,each associated with a different likelihood of visual outcomes.This innovative classification may enable the personalization and prioritization of early interventions for patients who may gain the greatest benefit,thereby making strides toward precision medicine in the field of congenital cataracts.展开更多
Many bioinformatics applications require determining the class of a newly sequenced Deoxyribonucleic acid(DNA)sequence,making DNA sequence classification an integral step in performing bioinformatics analysis,where la...Many bioinformatics applications require determining the class of a newly sequenced Deoxyribonucleic acid(DNA)sequence,making DNA sequence classification an integral step in performing bioinformatics analysis,where large biomedical datasets are transformed into valuable knowledge.Existing methods rely on a feature extraction step and suffer from high computational time requirements.In contrast,newer approaches leveraging deep learning have shown significant promise in enhancing accuracy and efficiency.In this paper,we investigate the performance of various deep learning architectures:Convolutional Neural Network(CNN),CNN-Long Short-Term Memory(CNNLSTM),CNN-Bidirectional Long Short-Term Memory(CNN-BiLSTM),Residual Network(ResNet),and InceptionV3 for DNA sequence classification.Various numerical and visual data representation techniques are utilized to represent the input datasets,including:label encoding,k-mer sentence encoding,k-mer one-hot vector,Frequency Chaos Game Representation(FCGR)and 5-Color Map(ColorSquare).Three datasets are used for the training of the models including H3,H4 and DNA Sequence Dataset(Yeast,Human,Arabidopsis Thaliana).Experiments are performed to determine which combination of DNA representation and deep learning architecture yields improved performance for the classification task.Our results indicate that using a hybrid CNN-LSTM neural network trained on DNA sequences represented as one-hot encoded k-mer sequences yields the best performance,achieving an accuracy of 92.1%.展开更多
Medical image classification is crucial in disease diagnosis,treatment planning,and clinical decisionmaking.We introduced a novel medical image classification approach that integrates Bayesian Random Semantic Data Aug...Medical image classification is crucial in disease diagnosis,treatment planning,and clinical decisionmaking.We introduced a novel medical image classification approach that integrates Bayesian Random Semantic Data Augmentation(BSDA)with a Vision Mamba-based model for medical image classification(MedMamba),enhanced by residual connection blocks,we named the model BSDA-Mamba.BSDA augments medical image data semantically,enhancing the model’s generalization ability and classification performance.MedMamba,a deep learning-based state space model,excels in capturing long-range dependencies in medical images.By incorporating residual connections,BSDA-Mamba further improves feature extraction capabilities.Through comprehensive experiments on eight medical image datasets,we demonstrate that BSDA-Mamba outperforms existing models in accuracy,area under the curve,and F1-score.Our results highlight BSDA-Mamba’s potential as a reliable tool for medical image analysis,particularly in handling diverse imaging modalities from X-rays to MRI.The open-sourcing of our model’s code and datasets,will facilitate the reproduction and extension of our work.展开更多
The process of human natural scene categorization consists of two correlated stages: visual perception and visual cognition of natural scenes.Inspired by this fact,we propose a biologically plausible approach for natu...The process of human natural scene categorization consists of two correlated stages: visual perception and visual cognition of natural scenes.Inspired by this fact,we propose a biologically plausible approach for natural scene image classification.This approach consists of one visual perception model and two visual cognition models.The visual perception model,composed of two steps,is used to extract discriminative features from natural scene images.In the first step,we mimic the oriented and bandpass properties of human primary visual cortex by a special complex wavelets transform,which can decompose a natural scene image into a series of 2D spatial structure signals.In the second step,a hybrid statistical feature extraction method is used to generate gist features from those 2D spatial structure signals.Then we design a cognitive feedback model to realize adaptive optimization for the visual perception model.At last,we build a multiple semantics based cognition model to imitate human cognitive mode in rapid natural scene categorization.Experiments on natural scene datasets show that the proposed method achieves high efficiency and accuracy for natural scene classification.展开更多
The Corona Virus Disease 2019(COVID-19)effect has made telecommuting and remote learning the norm.The growing number of Internet-connected devices provides cyber attackers with more attack vectors.The development of m...The Corona Virus Disease 2019(COVID-19)effect has made telecommuting and remote learning the norm.The growing number of Internet-connected devices provides cyber attackers with more attack vectors.The development of malware by criminals also incorporates a number of sophisticated obfuscation techniques,making it difficult to classify and detect malware using conventional approaches.Therefore,this paper proposes a novel visualization-based malware classification system using transfer and ensemble learning(VMCTE).VMCTE has a strong anti-interference ability.Even if malware uses obfuscation,fuzzing,encryption,and other techniques to evade detection,it can be accurately classified into its corresponding malware family.Unlike traditional dynamic and static analysis techniques,VMCTE does not require either reverse engineering or the aid of domain expert knowledge.The proposed classification system combines three strong deep convolutional neural networks(ResNet50,MobilenetV1,and MobilenetV2)as feature extractors,lessens the dimension of the extracted features using principal component analysis,and employs a support vector machine to establish the classification model.The semantic representations of malware images can be extracted using various convolutional neural network(CNN)architectures,obtaining higher-quality features than traditional methods.Integrating fine-tuned and non-fine-tuned classification models based on transfer learning can greatly enhance the capacity to classify various families ofmalware.The experimental findings on the Malimg dataset demonstrate that VMCTE can attain 99.64%,99.64%,99.66%,and 99.64%accuracy,F1-score,precision,and recall,respectively.展开更多
A ransomware attack that interrupted the operation of Colonial Pipeline(a large U.S.oil pipeline company),showed that security threats by malware have become serious enough to affect industries and social infrastructu...A ransomware attack that interrupted the operation of Colonial Pipeline(a large U.S.oil pipeline company),showed that security threats by malware have become serious enough to affect industries and social infrastructure rather than individuals alone.The agents and characteristics of attacks should be identified,and appropriate strategies should be established accordingly in order to respond to such attacks.For this purpose,the first task that must be performed is malware classification.Malware creators are well aware of this and apply various concealment and avoidance techniques,making it difficult to classify malware.This study focuses on new features and classification techniques to overcome these difficulties.We propose a behavioral performance visualization method using utilization patterns of system resources,such as the central processing unit,memory,and input/output,that are commonly used in performance analysis or tuning of programs.We extracted the usage patterns of the system resources for ransomware to performbehavioral performance visualization.The results of the classification performance evaluation using the visualization results indicate an accuracy of at least 98.94%with a 3.69%loss rate.Furthermore,we designed and implemented a framework to perform the entire process—from data extraction to behavioral performance visualization and classification performance measurement—that is expected to contribute to related studies in the future.展开更多
Deep learning has achieved excellent results in various tasks in the field of computer vision,especially in fine-grained visual categorization.It aims to distinguish the subordinate categories of the label-level categ...Deep learning has achieved excellent results in various tasks in the field of computer vision,especially in fine-grained visual categorization.It aims to distinguish the subordinate categories of the label-level categories.Due to high intra-class variances and high inter-class similarity,the fine-grained visual categorization is extremely challenging.This paper first briefly introduces and analyzes the related public datasets.After that,some of the latest methods are reviewed.Based on the feature types,the feature processing methods,and the overall structure used in the model,we divide them into three types of methods:methods based on general convolutional neural network(CNN)and strong supervision of parts,methods based on single feature processing,and meth-ods based on multiple feature processing.Most methods of the first type have a relatively simple structure,which is the result of the initial research.The methods of the other two types include models that have special structures and training processes,which are helpful to obtain discriminative features.We conduct a specific analysis on several methods with high accuracy on pub-lic datasets.In addition,we support that the focus of the future research is to solve the demand of existing methods for the large amount of the data and the computing power.In terms of tech-nology,the extraction of the subtle feature information with the burgeoning vision transformer(ViT)network is also an important research direction.展开更多
With the development of short video industry,video and bullet screen have become important ways to spread public opinions.Public attitudes can be timely obtained through emotional analysis on bullet screen,which can a...With the development of short video industry,video and bullet screen have become important ways to spread public opinions.Public attitudes can be timely obtained through emotional analysis on bullet screen,which can also reduce difficulties in management of online public opinions.A convolutional neural network model based on multi-head attention is proposed to solve the problem of how to effectively model relations among words and identify key words in emotion classification tasks with short text contents and lack of complete context information.Firstly,encode word positions so that order information of input sequences can be used by the model.Secondly,use a multi-head attention mechanism to obtain semantic expressions in different subspaces,effectively capture internal relevance and enhance dependent relationships among words,as well as highlight emotional weights of key emotional words.Then a dilated convolution is used to increase the receptive field and extract more features.On this basis,the above multi-attention mechanism is combined with a convolutional neural network to model and analyze the seven emotional categories of bullet screens.Testing from perspectives of model and dataset,experimental results can validate effectiveness of our approach.Finally,emotions of bullet screens are visualized to provide data supports for hot event controls and other fields.展开更多
With the rapid development of deepfake technology,the authenticity of various types of fake synthetic content is increasing rapidly,which brings potential security threats to people’s daily life and social stability....With the rapid development of deepfake technology,the authenticity of various types of fake synthetic content is increasing rapidly,which brings potential security threats to people’s daily life and social stability.Currently,most algorithms define deepfake detection as a binary classification problem,i.e.,global features are first extracted using a backbone network and then fed into a binary classifier to discriminate true or false.However,the differences between real and fake samples are often subtle and local,and such global feature-based detection algorithms are not optimal in efficiency and accuracy.To this end,to enhance the extraction of forgery details in deep forgery samples,we propose a multi-branch deepfake detection algorithm based on fine-grained features from the perspective of fine-grained classification.First,to address the critical problem in locating discriminative feature regions in fine-grained classification tasks,we investigate a method for locating multiple different discriminative regions and design a lightweight feature localization module to obtain crucial feature representations by augmenting the most significant parts of the feature map.Second,using information complementation,we introduce a correlation-guided fusion module to enhance the discriminative feature information of different branches.Finally,we use the global attention module in the multi-branch model to improve the cross-dimensional interaction of spatial domain and channel domain information and increase the weights of crucial feature regions and feature channels.We conduct sufficient ablation experiments and comparative experiments.The experimental results show that the algorithm outperforms the detection accuracy and effectiveness on the FaceForensics++and Celeb-DF-v2 datasets compared with the representative detection algorithms in recent years,which can achieve better detection results.展开更多
Targeted multimodal sentiment classification(TMSC)aims to identify the sentiment polarity of a target mentioned in a multimodal post.The majority of current studies on this task focus on mapping the image and the text...Targeted multimodal sentiment classification(TMSC)aims to identify the sentiment polarity of a target mentioned in a multimodal post.The majority of current studies on this task focus on mapping the image and the text to a high-dimensional space in order to obtain and fuse implicit representations,ignoring the rich semantic information contained in the images and not taking into account the contribution of the visual modality in the multimodal fusion representation,which can potentially influence the results of TMSC tasks.This paper proposes a general model for Improving Targeted Multimodal Sentiment Classification with Semantic Description of Images(ITMSC)as a way to tackle these issues and improve the accu-racy of multimodal sentiment analysis.Specifically,the ITMSC model can automatically adjust the contribution of images in the fusion representation through the exploitation of semantic descriptions of images and text similarity relations.Further,we propose a target-based attention module to capture the target-text relevance,an image-based attention module to capture the image-text relevance,and a target-image matching module based on the former two modules to properly align the target with the image so that fine-grained semantic information can be extracted.Our experimental results demonstrate that our model achieves comparable performance with several state-of-the-art approaches on two multimodal sentiment datasets.Our findings indicate that incorporating semantic descriptions of images can enhance our understanding of multimodal content and lead to improved sentiment analysis performance.展开更多
We review the most important computer programs for the classification of igneous rocks and point out those that follow the recommendations of the International Union of Geological Sciences(IUGS).A new program“Igneous...We review the most important computer programs for the classification of igneous rocks and point out those that follow the recommendations of the International Union of Geological Sciences(IUGS).A new program“Igneous Rock Classification System”(IgRoCS),written in Visual Basic,is then described in detail.IgRoCS allows the user to follow strictly the IUGS classification and nomenclature scheme for igneous rocks.The special rocks are first classified,then plutonic rocks are named after the IUGS mineralogical classification,next high-Mg and picritic volcanic rocks are identified from the IUGS criteria,and finally other volcanic rocks are classified according to the TAS diagram and CIPW norm.The chemical classification of volcanic rocks can also be achieved directly without going through the classification of other rock types.The IgRoCS program incorporates the revised standard igneous norm.Thus,the use of this new software is encouraged for a strict application of the IUGS recommendations for igneous rock classification and nomenclature.展开更多
Pneumonia is part of the main diseases causing the death of children.It is generally diagnosed through chest Xray images.With the development of Deep Learning(DL),the diagnosis of pneumonia based on DL has received ex...Pneumonia is part of the main diseases causing the death of children.It is generally diagnosed through chest Xray images.With the development of Deep Learning(DL),the diagnosis of pneumonia based on DL has received extensive attention.However,due to the small difference between pneumonia and normal images,the performance of DL methods could be improved.This research proposes a new fine-grained Convolutional Neural Network(CNN)for children’s pneumonia diagnosis(FG-CPD).Firstly,the fine-grainedCNNclassificationwhich can handle the slight difference in images is investigated.To obtain the raw images from the real-world chest X-ray data,the YOLOv4 algorithm is trained to detect and position the chest part in the raw images.Secondly,a novel attention network is proposed,named SGNet,which integrates the spatial information and channel information of the images to locate the discriminative parts in the chest image for expanding the difference between pneumonia and normal images.Thirdly,the automatic data augmentation method is adopted to increase the diversity of the images and avoid the overfitting of FG-CPD.The FG-CPD has been tested on the public Chest X-ray 2017 dataset,and the results show that it has achieved great effect.Then,the FG-CPD is tested on the real chest X-ray images from children aged 3–12 years ago from Tongji Hospital.The results show that FG-CPD has achieved up to 96.91%accuracy,which can validate the potential of the FG-CPD.展开更多
Histogram Intersection Kernel Support Vector Machines (SVM) was used for the image classification problem. Specifically, each image was split into blocks, and each block was represented by the Scale Invariant Feature ...Histogram Intersection Kernel Support Vector Machines (SVM) was used for the image classification problem. Specifically, each image was split into blocks, and each block was represented by the Scale Invariant Feature Transform (SIFT) descriptors;secondly, k-means cluster method was applied to separate the SIFT descriptors into groups, each group represented a visual keywords;thirdly, count the number of the SIFT descriptors in each image, and histogram of each image should be constructed;finally, Histogram Intersection Kernel should be built based on these histograms. In our experimental study, we use Corel-low images to test our method. Compared with typical RBF kernel SVM, the Histogram Intersection kernel SVM performs better than RBF kernel SVM.展开更多
基金supported by the Beijing Natural Science Foundation(No.5252014)the Open Fund of The Key Laboratory of Urban Ecological Environment Simulation and Protection,Ministry of Ecology and Environment of the People's Republic of China (No.UEESP-202502)the National Natural Science Foundation of China (No.62303063&32371874)。
文摘Bird monitoring and protection are essential for maintaining biodiversity,and fine-grained bird classification has become a key focus in this field.Audio-visual modalities provide critical cues for this task,but robust feature extraction and efficient fusion remain major challenges.We introduce a multi-stage fine-grained audiovisual fusion network(MSFG-AVFNet) for fine-grained bird species classification,which addresses these challenges through two key components:(1) the audiovisual feature extraction module,which adopts a multi-stage finetuning strategy to provide high-quality unimodal features,laying a solid foundation for modality fusion;(2) the audiovisual feature fusion module,which combines a max pooling aggregation strategy with a novel audiovisual loss function to achieve effective and robust feature fusion.Experiments were conducted on the self-built AVB81and the publicly available SSW60 datasets,which contain data from 81 and 60 bird species,respectively.Comprehensive experiments demonstrate that our approach achieves notable performance gains,outperforming existing state-of-the-art methods.These results highlight its effectiveness in leveraging audiovisual modalities for fine-grained bird classification and its potential to support ecological monitoring and biodiversity research.
基金Supported by the National Natural Science Foundation of China(61601176)。
文摘In this paper,we propose hierarchical attention dual network(DNet)for fine-grained image classification.The DNet can randomly select pairs of inputs from the dataset and compare the differences between them through hierarchical attention feature learning,which are used simultaneously to remove noise and retain salient features.In the loss function,it considers the losses of difference in paired images according to the intra-variance and inter-variance.In addition,we also collect the disaster scene dataset from remote sensing images and apply the proposed method to disaster scene classification,which contains complex scenes and multiple types of disasters.Compared to other methods,experimental results show that the DNet with hierarchical attention is robust to different datasets and performs better.
基金supported by the National Natural Science Foundation of China(Nos.61373121 and 61328205)Program for Sichuan Provincial Science Fund for Distinguished Young Scholars(No.13QNJJ0149)+1 种基金the Fundamental Research Funds for the Central UniversitiesChina Scholarship Council(No.201507000032)
文摘The deep learning technology has shown impressive performance in various vision tasks such as image classification, object detection and semantic segmentation. In particular, recent advances of deep learning techniques bring encouraging performance to fine-grained image classification which aims to distinguish subordinate-level categories, such as bird species or dog breeds. This task is extremely challenging due to high intra-class and low inter-class variance. In this paper, we review four types of deep learning based fine-grained image classification approaches, including the general convolutional neural networks (CNNs), part detection based, ensemble of networks based and visual attention based fine-grained image classification approaches. Besides, the deep learning based semantic segmentation approaches are also covered in this paper. The region proposal based and fully convolutional networks based approaches for semantic segmentation are introduced respectively.
基金supported by National Basic Research Program of China (973 Program) (No. 2015CB352502)National Nature Science Foundation of China (No. 61573026)Beijing Nature Science Foundation (No. L172037)
文摘Fine-grained image classification, which aims to distinguish images with subtle distinctions, is a challenging task for two main reasons: lack of sufficient training data for every class and difficulty in learning discriminative features for representation. In this paper, to address the two issues, we propose a two-phase framework for recognizing images from unseen fine-grained classes, i.e., zeroshot fine-grained classification. In the first feature learning phase, we finetune deep convolutional neural networks using hierarchical semantic structure among fine-grained classes to extract discriminative deep visual features. Meanwhile, a domain adaptation structure is induced into deep convolutional neural networks to avoid domain shift from training data to test data. In the second label inference phase, a semantic directed graph is constructed over attributes of fine-grained classes. Based on this graph, we develop a label propagation algorithm to infer the labels of images in the unseen classes. Experimental results on two benchmark datasets demonstrate that our model outperforms the state-of-the-art zero-shot learning models. In addition, the features obtained by our feature learning model also yield significant gains when they are used by other zero-shot learning models, which shows the flexility of our model in zero-shot finegrained classification.
基金supported by the Certificate of China Postdoctoral Science Foundation (No. 2015M582165)the National Natural Science Foundation of China (Nos. 41602142, 41772090)the National Science and Technology Special (No. 2017ZX05009-002)
文摘Fine-grained sedimentary rocks are defined as rocks which mainly compose of fine grains(〈62.5 μm). The detailed studies on these rocks have revealed the need of a more unified, comprehensive and inclusive classification. The study focuses on fine-grained rocks has turned from the differences of inorganic mineral components to the significance of organic matter and microorganisms. The proposed classification is based on mineral composition, and it is noted that organic matters have been taken as a very important parameter in this classification scheme. Thus, four parameters, the TOC content, silica(quartz plus feldspars), clay minerals and carbonate minerals, are considered to divide the fine-grained sedimentary rocks into eight categories, and the further classification within every category is refined depending on subordinate mineral composition. The nomenclature consists of a root name preceded by a primary adjective. The root names reflect mineral constituent of the rock, including low organic(TOC〈2%), middle organic(2%4%) claystone, siliceous mudstone, limestone, and mixed mudstone. Primary adjectives convey structure and organic content information, including massive or limanited. The lithofacies are closely related to the reservoir storage space, porosity, permeability, hydrocarbon potential and shale oil/gas sweet spot, and are the key factor for the shale oil and gas exploration. The classification helps to systematically and practicably describe variability within fine-grained sedimentary rocks, what's more, it helps to guide the hydrocarbon exploration.
基金Supported by the National Natural Science Foundation of China (41872166)。
文摘Based on reviews and summaries of the naming schemes of fine-grained sedimentary rocks, and analysis of characteristics of fine-grained sedimentary rocks, the problems existing in the classification and naming of fine-grained sedimentary rocks are discussed. On this basis, following the principle of three-level nomenclature, a new scheme of rock classification and naming for fine-grained sedimentary rocks is determined from two perspectives: First, fine-grained sedimentary rocks are divided into 12 types in two major categories, mudstone and siltstone, according to particle size(sand, silt and mud). Second,fine-grained sedimentary rocks are divided into 18 types in four categories, carbonate rock, fine-grained felsic sedimentary rock,clay rock and mixed fine-grained sedimentary rock according to mineral composition(carbonate minerals, felsic detrital minerals and clay minerals as three end elements). Considering the importance of organic matter in unconventional oil and gas generation and evaluation, organic matter is taken as the fourth element in the scheme. Taking the organic matter contents of 0.5% and 2% as dividing points, fine grained sedimentary rocks are divided into three categories, organic-poor, organic-bearing,and organic-rich ones. The new scheme meets the requirement of unconventional oil and gas exploration and development today and solves the problem of conceptual confusion in fine-grained sedimentary rocks, providing a unified basic term system for the research of fine-grained sedimentology.
文摘The remote sensing ships’fine-grained classification technology makes it possible to identify certain ship types in remote sensing images,and it has broad application prospects in civil and military fields.However,the current model does not examine the properties of ship targets in remote sensing images with mixed multi-granularity features and a complicated backdrop.There is still an opportunity for future enhancement of the classification impact.To solve the challenges brought by the above characteristics,this paper proposes a Metaformer and Residual fusion network based on Visual Attention Network(VAN-MR)for fine-grained classification tasks.For the complex background of remote sensing images,the VAN-MR model adopts the parallel structure of large kernel attention and spatial attention to enhance the model’s feature extraction ability of interest targets and improve the classification performance of remote sensing ship targets.For the problem of multi-grained feature mixing in remote sensing images,the VAN-MR model uses a Metaformer structure and a parallel network of residual modules to extract ship features.The parallel network has different depths,considering both high-level and lowlevel semantic information.The model achieves better classification performance in remote sensing ship images with multi-granularity mixing.Finally,the model achieves 88.73%and 94.56%accuracy on the public fine-grained ship collection-23(FGSC-23)and FGSCR-42 datasets,respectively,while the parameter size is only 53.47 M,the floating point operations is 9.9 G.The experimental results show that the classification effect of VAN-MR is superior to that of traditional CNNs model and visual model with Transformer structure under the same parameter quantity.
基金Supported by the Municipal Government and School(Hospital)Joint Funding Programme of Guangzhou(No.2023A03J0174,No.2023A03J0188)the State Key Laboratories’Youth Program of China(No.83000-32030003).
文摘●AIM:To establish a classification for congenital cataracts that can facilitate individualized treatment and help identify individuals with a high likelihood of different visual outcomes.●METHODS:Consecutive patients diagnosed with congenital cataracts and undergoing surgery between January 2005 and November 2021 were recruited.Data on visual outcomes and the phenotypic characteristics of ocular biometry and the anterior and posterior segments were extracted from the patients’medical records.A hierarchical cluster analysis was performed.The main outcome measure was the identification of distinct clusters of eyes with congenital cataracts.●RESULTS:A total of 164 children(299 eyes)were divided into two clusters based on their ocular features.Cluster 1(96 eyes)had a shorter axial length(mean±SD,19.44±1.68 mm),a low prevalence of macular abnormalities(1.04%),and no retinal abnormalities or posterior cataracts.Cluster 2(203 eyes)had a greater axial length(mean±SD,20.42±2.10 mm)and a higher prevalence of macular abnormalities(8.37%),retinal abnormalities(98.52%),and posterior cataracts(4.93%).Compared with the eyes in Cluster 2(57.14%),those in Cluster 1(71.88%)had a 2.2 times higher chance of good best-corrected visual acuity[<0.7 logMAR;OR(95%CI),2.20(1.25–3.81);P=0.006].●CONCLUSION:This retrospective study categorizes congenital cataracts into two distinct clusters,each associated with a different likelihood of visual outcomes.This innovative classification may enable the personalization and prioritization of early interventions for patients who may gain the greatest benefit,thereby making strides toward precision medicine in the field of congenital cataracts.
基金funded by the Researchers Supporting Project number(RSPD2025R857),King Saud University,Riyadh,Saudi Arabia.
文摘Many bioinformatics applications require determining the class of a newly sequenced Deoxyribonucleic acid(DNA)sequence,making DNA sequence classification an integral step in performing bioinformatics analysis,where large biomedical datasets are transformed into valuable knowledge.Existing methods rely on a feature extraction step and suffer from high computational time requirements.In contrast,newer approaches leveraging deep learning have shown significant promise in enhancing accuracy and efficiency.In this paper,we investigate the performance of various deep learning architectures:Convolutional Neural Network(CNN),CNN-Long Short-Term Memory(CNNLSTM),CNN-Bidirectional Long Short-Term Memory(CNN-BiLSTM),Residual Network(ResNet),and InceptionV3 for DNA sequence classification.Various numerical and visual data representation techniques are utilized to represent the input datasets,including:label encoding,k-mer sentence encoding,k-mer one-hot vector,Frequency Chaos Game Representation(FCGR)and 5-Color Map(ColorSquare).Three datasets are used for the training of the models including H3,H4 and DNA Sequence Dataset(Yeast,Human,Arabidopsis Thaliana).Experiments are performed to determine which combination of DNA representation and deep learning architecture yields improved performance for the classification task.Our results indicate that using a hybrid CNN-LSTM neural network trained on DNA sequences represented as one-hot encoded k-mer sequences yields the best performance,achieving an accuracy of 92.1%.
文摘Medical image classification is crucial in disease diagnosis,treatment planning,and clinical decisionmaking.We introduced a novel medical image classification approach that integrates Bayesian Random Semantic Data Augmentation(BSDA)with a Vision Mamba-based model for medical image classification(MedMamba),enhanced by residual connection blocks,we named the model BSDA-Mamba.BSDA augments medical image data semantically,enhancing the model’s generalization ability and classification performance.MedMamba,a deep learning-based state space model,excels in capturing long-range dependencies in medical images.By incorporating residual connections,BSDA-Mamba further improves feature extraction capabilities.Through comprehensive experiments on eight medical image datasets,we demonstrate that BSDA-Mamba outperforms existing models in accuracy,area under the curve,and F1-score.Our results highlight BSDA-Mamba’s potential as a reliable tool for medical image analysis,particularly in handling diverse imaging modalities from X-rays to MRI.The open-sourcing of our model’s code and datasets,will facilitate the reproduction and extension of our work.
文摘The process of human natural scene categorization consists of two correlated stages: visual perception and visual cognition of natural scenes.Inspired by this fact,we propose a biologically plausible approach for natural scene image classification.This approach consists of one visual perception model and two visual cognition models.The visual perception model,composed of two steps,is used to extract discriminative features from natural scene images.In the first step,we mimic the oriented and bandpass properties of human primary visual cortex by a special complex wavelets transform,which can decompose a natural scene image into a series of 2D spatial structure signals.In the second step,a hybrid statistical feature extraction method is used to generate gist features from those 2D spatial structure signals.Then we design a cognitive feedback model to realize adaptive optimization for the visual perception model.At last,we build a multiple semantics based cognition model to imitate human cognitive mode in rapid natural scene categorization.Experiments on natural scene datasets show that the proposed method achieves high efficiency and accuracy for natural scene classification.
基金This work is supported,in part,by the National Natural Science Foundation of China Grant No.62102190 and 62272236in part,by the Natural Science Foundation of Jiangsu Province under Grant No.BK20201136 and BK20191401.
文摘The Corona Virus Disease 2019(COVID-19)effect has made telecommuting and remote learning the norm.The growing number of Internet-connected devices provides cyber attackers with more attack vectors.The development of malware by criminals also incorporates a number of sophisticated obfuscation techniques,making it difficult to classify and detect malware using conventional approaches.Therefore,this paper proposes a novel visualization-based malware classification system using transfer and ensemble learning(VMCTE).VMCTE has a strong anti-interference ability.Even if malware uses obfuscation,fuzzing,encryption,and other techniques to evade detection,it can be accurately classified into its corresponding malware family.Unlike traditional dynamic and static analysis techniques,VMCTE does not require either reverse engineering or the aid of domain expert knowledge.The proposed classification system combines three strong deep convolutional neural networks(ResNet50,MobilenetV1,and MobilenetV2)as feature extractors,lessens the dimension of the extracted features using principal component analysis,and employs a support vector machine to establish the classification model.The semantic representations of malware images can be extracted using various convolutional neural network(CNN)architectures,obtaining higher-quality features than traditional methods.Integrating fine-tuned and non-fine-tuned classification models based on transfer learning can greatly enhance the capacity to classify various families ofmalware.The experimental findings on the Malimg dataset demonstrate that VMCTE can attain 99.64%,99.64%,99.66%,and 99.64%accuracy,F1-score,precision,and recall,respectively.
基金This work was supported by the Institute of Information&Communications Technology Planning&Evaluation(IITP)(Project No.2019-0-00426%,10%)the ICT R&D Program of MSIT/IITP(Project No.2021-0-01816,A Research on Core Technology of Autonomous Twins for Metaverse,10%)National Research Foundation of Korea(NRF)grant funded by the Korean government(Project No.NRF-2020R1A2C4002737%,80%).
文摘A ransomware attack that interrupted the operation of Colonial Pipeline(a large U.S.oil pipeline company),showed that security threats by malware have become serious enough to affect industries and social infrastructure rather than individuals alone.The agents and characteristics of attacks should be identified,and appropriate strategies should be established accordingly in order to respond to such attacks.For this purpose,the first task that must be performed is malware classification.Malware creators are well aware of this and apply various concealment and avoidance techniques,making it difficult to classify malware.This study focuses on new features and classification techniques to overcome these difficulties.We propose a behavioral performance visualization method using utilization patterns of system resources,such as the central processing unit,memory,and input/output,that are commonly used in performance analysis or tuning of programs.We extracted the usage patterns of the system resources for ransomware to performbehavioral performance visualization.The results of the classification performance evaluation using the visualization results indicate an accuracy of at least 98.94%with a 3.69%loss rate.Furthermore,we designed and implemented a framework to perform the entire process—from data extraction to behavioral performance visualization and classification performance measurement—that is expected to contribute to related studies in the future.
基金supported by the National Natural Science Foundation of China(61571453,61806218).
文摘Deep learning has achieved excellent results in various tasks in the field of computer vision,especially in fine-grained visual categorization.It aims to distinguish the subordinate categories of the label-level categories.Due to high intra-class variances and high inter-class similarity,the fine-grained visual categorization is extremely challenging.This paper first briefly introduces and analyzes the related public datasets.After that,some of the latest methods are reviewed.Based on the feature types,the feature processing methods,and the overall structure used in the model,we divide them into three types of methods:methods based on general convolutional neural network(CNN)and strong supervision of parts,methods based on single feature processing,and meth-ods based on multiple feature processing.Most methods of the first type have a relatively simple structure,which is the result of the initial research.The methods of the other two types include models that have special structures and training processes,which are helpful to obtain discriminative features.We conduct a specific analysis on several methods with high accuracy on pub-lic datasets.In addition,we support that the focus of the future research is to solve the demand of existing methods for the large amount of the data and the computing power.In terms of tech-nology,the extraction of the subtle feature information with the burgeoning vision transformer(ViT)network is also an important research direction.
基金National Natural Science Foundation of China(No.61562057)Gansu Science and Technology Plan Project(No.18JR3RA104)。
文摘With the development of short video industry,video and bullet screen have become important ways to spread public opinions.Public attitudes can be timely obtained through emotional analysis on bullet screen,which can also reduce difficulties in management of online public opinions.A convolutional neural network model based on multi-head attention is proposed to solve the problem of how to effectively model relations among words and identify key words in emotion classification tasks with short text contents and lack of complete context information.Firstly,encode word positions so that order information of input sequences can be used by the model.Secondly,use a multi-head attention mechanism to obtain semantic expressions in different subspaces,effectively capture internal relevance and enhance dependent relationships among words,as well as highlight emotional weights of key emotional words.Then a dilated convolution is used to increase the receptive field and extract more features.On this basis,the above multi-attention mechanism is combined with a convolutional neural network to model and analyze the seven emotional categories of bullet screens.Testing from perspectives of model and dataset,experimental results can validate effectiveness of our approach.Finally,emotions of bullet screens are visualized to provide data supports for hot event controls and other fields.
基金supported by the 2023 Open Project of Key Laboratory of Ministry of Public Security for Artificial Intelligence Security(RGZNAQ-2304)the Fundamental Research Funds for the Central Universities of PPSUC(2023JKF01ZK08).
文摘With the rapid development of deepfake technology,the authenticity of various types of fake synthetic content is increasing rapidly,which brings potential security threats to people’s daily life and social stability.Currently,most algorithms define deepfake detection as a binary classification problem,i.e.,global features are first extracted using a backbone network and then fed into a binary classifier to discriminate true or false.However,the differences between real and fake samples are often subtle and local,and such global feature-based detection algorithms are not optimal in efficiency and accuracy.To this end,to enhance the extraction of forgery details in deep forgery samples,we propose a multi-branch deepfake detection algorithm based on fine-grained features from the perspective of fine-grained classification.First,to address the critical problem in locating discriminative feature regions in fine-grained classification tasks,we investigate a method for locating multiple different discriminative regions and design a lightweight feature localization module to obtain crucial feature representations by augmenting the most significant parts of the feature map.Second,using information complementation,we introduce a correlation-guided fusion module to enhance the discriminative feature information of different branches.Finally,we use the global attention module in the multi-branch model to improve the cross-dimensional interaction of spatial domain and channel domain information and increase the weights of crucial feature regions and feature channels.We conduct sufficient ablation experiments and comparative experiments.The experimental results show that the algorithm outperforms the detection accuracy and effectiveness on the FaceForensics++and Celeb-DF-v2 datasets compared with the representative detection algorithms in recent years,which can achieve better detection results.
文摘Targeted multimodal sentiment classification(TMSC)aims to identify the sentiment polarity of a target mentioned in a multimodal post.The majority of current studies on this task focus on mapping the image and the text to a high-dimensional space in order to obtain and fuse implicit representations,ignoring the rich semantic information contained in the images and not taking into account the contribution of the visual modality in the multimodal fusion representation,which can potentially influence the results of TMSC tasks.This paper proposes a general model for Improving Targeted Multimodal Sentiment Classification with Semantic Description of Images(ITMSC)as a way to tackle these issues and improve the accu-racy of multimodal sentiment analysis.Specifically,the ITMSC model can automatically adjust the contribution of images in the fusion representation through the exploitation of semantic descriptions of images and text similarity relations.Further,we propose a target-based attention module to capture the target-text relevance,an image-based attention module to capture the image-text relevance,and a target-image matching module based on the former two modules to properly align the target with the image so that fine-grained semantic information can be extracted.Our experimental results demonstrate that our model achieves comparable performance with several state-of-the-art approaches on two multimodal sentiment datasets.Our findings indicate that incorporating semantic descriptions of images can enhance our understanding of multimodal content and lead to improved sentiment analysis performance.
文摘We review the most important computer programs for the classification of igneous rocks and point out those that follow the recommendations of the International Union of Geological Sciences(IUGS).A new program“Igneous Rock Classification System”(IgRoCS),written in Visual Basic,is then described in detail.IgRoCS allows the user to follow strictly the IUGS classification and nomenclature scheme for igneous rocks.The special rocks are first classified,then plutonic rocks are named after the IUGS mineralogical classification,next high-Mg and picritic volcanic rocks are identified from the IUGS criteria,and finally other volcanic rocks are classified according to the TAS diagram and CIPW norm.The chemical classification of volcanic rocks can also be achieved directly without going through the classification of other rock types.The IgRoCS program incorporates the revised standard igneous norm.Thus,the use of this new software is encouraged for a strict application of the IUGS recommendations for igneous rock classification and nomenclature.
基金supported in part by the Natural Science Foundation of China(NSFC)underGrant No.51805192,Major Special Science and Technology Project of Hubei Province under Grant No.2020AEA009sponsored by the State Key Laboratory of Digital Manufacturing Equipment and Technology(DMET)of Huazhong University of Science and Technology(HUST)under Grant No.DMETKF2020029.
文摘Pneumonia is part of the main diseases causing the death of children.It is generally diagnosed through chest Xray images.With the development of Deep Learning(DL),the diagnosis of pneumonia based on DL has received extensive attention.However,due to the small difference between pneumonia and normal images,the performance of DL methods could be improved.This research proposes a new fine-grained Convolutional Neural Network(CNN)for children’s pneumonia diagnosis(FG-CPD).Firstly,the fine-grainedCNNclassificationwhich can handle the slight difference in images is investigated.To obtain the raw images from the real-world chest X-ray data,the YOLOv4 algorithm is trained to detect and position the chest part in the raw images.Secondly,a novel attention network is proposed,named SGNet,which integrates the spatial information and channel information of the images to locate the discriminative parts in the chest image for expanding the difference between pneumonia and normal images.Thirdly,the automatic data augmentation method is adopted to increase the diversity of the images and avoid the overfitting of FG-CPD.The FG-CPD has been tested on the public Chest X-ray 2017 dataset,and the results show that it has achieved great effect.Then,the FG-CPD is tested on the real chest X-ray images from children aged 3–12 years ago from Tongji Hospital.The results show that FG-CPD has achieved up to 96.91%accuracy,which can validate the potential of the FG-CPD.
文摘Histogram Intersection Kernel Support Vector Machines (SVM) was used for the image classification problem. Specifically, each image was split into blocks, and each block was represented by the Scale Invariant Feature Transform (SIFT) descriptors;secondly, k-means cluster method was applied to separate the SIFT descriptors into groups, each group represented a visual keywords;thirdly, count the number of the SIFT descriptors in each image, and histogram of each image should be constructed;finally, Histogram Intersection Kernel should be built based on these histograms. In our experimental study, we use Corel-low images to test our method. Compared with typical RBF kernel SVM, the Histogram Intersection kernel SVM performs better than RBF kernel SVM.