期刊文献+
共找到561,107篇文章
< 1 2 250 >
每页显示 20 50 100
A high-Nb-TiAl alloy with ultrafine-grained structure fabricated by cryomilling and spark plasma sintering 被引量:1
1
作者 Hao Deng Yong-Qiang Wei +3 位作者 Jun Tang Ai-Jun Chen Long-Qing Chen Zu-Xi Xia 《Rare Metals》 SCIE EI CAS CSCD 2023年第5期1678-1685,共8页
In this work,an ultrafine-grained high-Nb-TiAl alloy with a nominal composition of Ti-45Al-8Nb-0.2W-0.2B(at%)was prepared by cryomilling and subsequent spark plasma sintering(SPS)technique.The chemical composition,par... In this work,an ultrafine-grained high-Nb-TiAl alloy with a nominal composition of Ti-45Al-8Nb-0.2W-0.2B(at%)was prepared by cryomilling and subsequent spark plasma sintering(SPS)technique.The chemical composition,particle size,morphology and crystallite size of cryomilled powder were studied.It is found that cryomilling can effectively reduce the particle size and enhance grain refinement.The ingots sintered at 900 and 1000℃ show an equiaxed near-γmicrostructure with grain sizes<700 nm,while the sample sintered at 1100℃exhibits duplex microstructure.Especially,the one sintered at 1000℃ has excellent mechanical properties,whose compression yield strength,fracture strength,bending strength and plastic strain achieve 1310,2174,578 MPa and 16.8%,respectively.The reasons for the effect of cryomilling and the mechanical behavior of sintered ingots were discussed.It is suggested that cryomilling in combination with SPS is an effective way to synthesize high-NbTiAl alloy with ultrafine-grained structure. 展开更多
关键词 CRYOMILLING Spark plasma sintering Titanium aluminide Ultrafine-grained structure
原文传递
Effect of martensitic transformation on nano/ultrafine-grained structure in 304 austenitic stainless steel 被引量:1
2
作者 Na Gong Hui-bin Wu +3 位作者 Gang Niu Jia-ming Cao Da Zhang Tana 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2017年第12期1231-1237,共7页
304 austenitic stainless steel was cold rolled in the range of 20%-80%reductions and then annealed at 700-900°C for 60 sto obtain nano/ultrafine-grained(NG/UFG)structure.Transmission electron microscopy,electro... 304 austenitic stainless steel was cold rolled in the range of 20%-80%reductions and then annealed at 700-900°C for 60 sto obtain nano/ultrafine-grained(NG/UFG)structure.Transmission electron microscopy,electron backscatter diffraction and X-ray diffraction were used to characterize the resulting microstructures.The results showed that with the increase of cold reduction,the content of martensite was increased.The steel performed work hardening during cold-working owing to the occurrence of strain induced martensite which nucleated in single shear bands.Further rolling broke up the lath-type martensite into dislocation-cell type martensite because of the formation of slip bands.Samples annealed at 800-960°C for 60 swere of NG/UFG structure with different percentage of nanocrystalline(60-100 nm)and ultrafine(100-500 nm)grains,submicron size(500-1000 nm)grains and micron size(〉1000 nm)grains.The value of the Gibbs free energy exhibited that the reversion mechanism of the reversion process was shear controlled by the annealing temperature.For a certain annealing time during the reversion process,austenite nucleated first on dislocation-cell type martensite and the grains grew up subsequently and eventually to be micrometer/submicrometer grains,while the nucleation of austenite on lath-type martensite occurred later resulting in nanocrystalline/ultrafine grains.The existence of the NG/UFG structure led to a higher strength and toughness during tensile test. 展开更多
关键词 304 austenitic stainless steel Nano/ultrafine-grained structure Reversion mechanism Lath-type martensite Dislocation-cell type martensite Martensitic transformation
原文传递
Evolution of Deformation Substructure and Mg_(x)Zn_(y)Ca_(z) Metastable Phase in Fine-Grained Mg Alloys
3
作者 Zhen-Liang Li Xin-Lei Zhang 《Acta Metallurgica Sinica(English Letters)》 2025年第1期71-85,共15页
The spray-deposition was used to produce billets of Mg-4Al-1.5Zn-3Ca-1Nd(A alloy)and Mg-13Al-3Zn-3Ca-1Nd(B alloy),and evolution of deformation substructure and Mg_(x)Zn_(y)Ca_(z)metastable phase in fine-grained(3μm)M... The spray-deposition was used to produce billets of Mg-4Al-1.5Zn-3Ca-1Nd(A alloy)and Mg-13Al-3Zn-3Ca-1Nd(B alloy),and evolution of deformation substructure and Mg_(x)Zn_(y)Ca_(z)metastable phase in fine-grained(3μm)Mg alloys was investigated by scanning electron microscopy(SEM),transmission electron microscopy(TEM),X-ray diffraction(XRD),and electron backscattered diffraction(EBSD).It was found that different dislocation configurations were formed in A and B alloys.Redundant free dislocations(RFDs)and dislocation tangles were the ways to form deformation substructure in A alloy,no RFDs except dislocation tangles were found in B alloy.The interaction between nano-scale second phase particles(nano-scale C15 andβ-Mg_(17)(Al,Zn)_(12)phase)and different dislocation configurations had a significant effect on the deformation substructures formation.The mass transfer of Mg_(x)Zn_(y)Ca_(z)metastable phases and the stacking order of stacking faults were conducive to the Mg-Nd-Zn typed long period stacking ordered(LPSO)phases formation.Nano-scale C15 phases,Mg-Nd-Zn typed LPSO phases,c/a ratio,β-Mg_(17)(Al,Zn)_(12)phases were the key factors influencing the formation of textures.Different textures and grain boundary features(GB features)had a significant effect on k-value.The non-basal textures were the main factor affecting k-value in A alloy,while the high-angle grain boundary(HAGB)was the main factor affecting k-value in B alloy. 展开更多
关键词 Deformation substructures Metastable phase Textures K-VALUE fine-grained Mg alloys
原文传递
Enhanced strength−ductility synergy of ultrafine-grained eutectic−dendrite complex structures in zirconium/nickel electron beam welded joints
4
作者 Xin-yan TENG Guo-qing CHEN +2 位作者 Ge ZHANG Yang XIANG Xue-song LENG 《Transactions of Nonferrous Metals Society of China》 2025年第10期3414-3427,共14页
Insufficient metallurgical compatibility between Zr and Ni can lead to the formation of brittle welds and introduce thermal stress-related challenges during the electron beam welding process.Through the implementation... Insufficient metallurgical compatibility between Zr and Ni can lead to the formation of brittle welds and introduce thermal stress-related challenges during the electron beam welding process.Through the implementation of beam deflection and vibration,a transformation was achieved in the primary Ni_(5)Zr dendrite structure,transitioning from a mass into a layered configuration,consequently resulting in the formation of an ultrafine-grained eutectic−dendrite complex structure.It is revealed that the enhanced strength−ductility synergy of this structure significantly contributes to the high tensile strength and improved plasticity observed in the welded joints.As a result,the welding cracks are effectively mitigated,and notable advancements are achieved in the mechanical properties of Zr/Ni joints,elevating the tensile strength of the joints from 36.4 to 189 MPa.This research not only highlights the potential of this technique in enhancing the strength and ductility of Zr/Ni welded joints but also serves as a valuable reference for future investigations involving welding applications of dissimilar metals. 展开更多
关键词 electron beam welding composite structure strength−ductility synergy mechanical properties
在线阅读 下载PDF
Ultrafine-grained refractory high-entropy alloy with oxygen control and high mechanical performance 被引量:1
5
作者 Yaping Sun Chao Hou +3 位作者 Yurong Li Tielong Han Xuemei Liu Xiaoyan Song 《Journal of Materials Science & Technology》 2025年第12期45-57,共13页
Grain boundary engineering plays a significant role in the improvement of strength and plasticity of alloys. However, in refractory high-entropy alloys, the susceptibility of grain boundaries to oxygen presents a bott... Grain boundary engineering plays a significant role in the improvement of strength and plasticity of alloys. However, in refractory high-entropy alloys, the susceptibility of grain boundaries to oxygen presents a bottleneck in achieving high mechanical performance. Creating a large number of clean grain boundaries in refractory high-entropy alloys is a challenge. In this study, an ultrafine-grained (UFG) NbMoTaW alloy with high grain-boundary cohesion was prepared by powder metallurgy, taking advantages of rapid hot-pressing sintering and full-process inert atmosphere protection from powder synthesis to sintering. By oxygen control and an increase in the proportion of grain boundaries, the segregation of oxygen and formation of oxides at grain boundaries were strongly mitigated, thus the intrinsic high cohesion of the interfaces was preserved. Compared to the coarse-grained alloys prepared by arc-melting and those sintered by traditional powder metallurgy methods, the UFG NbMoTaW alloy demonstrated simultaneously increased strength and plasticity at ambient temperature. The highly cohesive grain boundaries not only reduce brittle fractures effectively but also promote intragranular deformation. Consequently, the UFG NbMoTaW alloy achieved a high yield strength even at elevated temperatures, with a remarkable performance of 1117 MPa at 1200 ℃. This work provides a feasible solution for producing refractory high-entropy alloys with low impurity content, refined microstructure, and excellent mechanical performance. 展开更多
关键词 Refractory high-entropy alloy Ultrafine-grained structure Grain boundary cohesion Mechanical performance High-temperature strength
原文传递
Viscosity and structure relationship with equimolar substitution of CaO with MgO in the CaO–MgO–Al_(2)O_(3)–SiO_(2)slag melts 被引量:1
6
作者 Yong Hou Shuo Zhang +3 位作者 Jie Dang Jia Guo Hanghang Zhou Xuewei Lü 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第1期70-79,共10页
Currently,the Al_(2)O_(3)content in the high-alumina slag systems within blast furnaces is generally limited to 16wt%–18.5wt%,making it challenging to overcome this limitation.Unlike most studies that concentrated on... Currently,the Al_(2)O_(3)content in the high-alumina slag systems within blast furnaces is generally limited to 16wt%–18.5wt%,making it challenging to overcome this limitation.Unlike most studies that concentrated on managing the MgO/Al_(2)O_(3)ratio or basicity,this paper explored the effect of equimolar substitution of MgO for CaO on the viscosity and structure of a high-alumina CaO-MgO-Al_(2)O_(3)-SiO_(2)slag system,providing theoretical guidance and data to facilitate the application of high-alumina ores.The results revealed that the viscosity first decreased and then increased with higher MgO substitution,reaching a minimum at 15mol%MgO concentration.Fourier transform infrared spectroscopy(FTIR)results found that the depths of the troughs representing[SiO_(4)]tetrahedra,[AlO_(4)]tetrahedra,and Si-O-Al bending became progressively deeper with increased MgO substitution.Deconvolution of the Raman spectra showed that the average number of bridging oxygens per Si atom and the X_(Q^(3))/X_(Q^(2))(X_(Q^(i))is the molar fraction of Q^(i) unit,and i is the number of bridging oxygens in a[SiO_(4)]tetrahedral unit)ratio increased from 2.30 and 1.02 to 2.52 and 2.14,respectively,indicating a progressive polymerization of the silicate structure.X-ray photoelectron spectroscopy(XPS)results highlighted that non-bridging oxygen content decreased from 77.97mol% to 63.41mol% with increasing MgO concentration,whereas bridging oxygen and free oxygen contents increased.Structural analysis demonstrated a gradual increase in the polymerization degree of the tetrahedral structure with the increase in MgO substitution.However,bond strength is another important factor affecting the slag viscosity.The occurrence of a viscosity minimum can be attributed to the complex evolution of bond strengths of non-bridging oxygens generated during depolymerization of the[SiO_(4)]and[AlO_(4)]tetrahedral structures by CaO and MgO. 展开更多
关键词 ALUMINOSILICATE VISCOSITY structure spectroscopy
在线阅读 下载PDF
Graphene Aerogel Composites with Self‑Organized Nanowires‑Packed Honeycomb Structure for Highly Efficient Electromagnetic Wave Absorption 被引量:1
7
作者 Xiao You Huiying Ouyang +6 位作者 Ruixiang Deng Qiuqi Zhang Zhenzhong Xing Xiaowu Chen Qingliang Shan Jinshan Yang Shaoming Dong 《Nano-Micro Letters》 SCIE EI CAS 2025年第2期533-547,共15页
With vigorous developments in nanotechnology,the elaborate regulation of microstructure shows attractive potential in the design of electromagnetic wave absorbers.Herein,a hierarchical porous structure and composite h... With vigorous developments in nanotechnology,the elaborate regulation of microstructure shows attractive potential in the design of electromagnetic wave absorbers.Herein,a hierarchical porous structure and composite heterogeneous interface are constructed successfully to optimize the electromagnetic loss capacity.The macro–micro-synergistic graphene aerogel formed by the ice template‑assisted 3D printing strategy is cut by silicon carbide nanowires(SiC_(nws))grown in situ,while boron nitride(BN)interfacial structure is introduced on graphene nanoplates.The unique composite structure forces multiple scattering of incident EMWs,ensuring the combined effects of interfacial polarization,conduction networks,and magnetic-dielectric synergy.Therefore,the as-prepared composites present a minimum reflection loss value of−37.8 dB and a wide effective absorption bandwidth(EAB)of 9.2 GHz(from 8.8 to 18.0 GHz)at 2.5 mm.Besides,relying on the intrinsic high-temperature resistance of SiC_(nws) and BN,the EAB also remains above 5.0 GHz after annealing in air environment at 600℃ for 10 h. 展开更多
关键词 Hierarchical porous structure Interface High-temperature resistance Graphene aerogel composites Electromagnetic wave absorption
在线阅读 下载PDF
Copper complexes of anthrahydrazone bearing pyridyl side chain:Synthesis,crystal structure,anticancer activity,and DNA binding 被引量:1
8
作者 HUANG Yao WU Yingshu +5 位作者 BAO Zhichun HUANG Yue TANG Shangfeng LIU Ruixue LIU Yancheng LIANG Hong 《无机化学学报》 北大核心 2025年第1期213-224,共12页
To expand the study on the structures and biological activities of the anthracyclines anticancer drugs and reduce their toxic side effects,the new anthraquinone derivatives,9‑pyridylanthrahydrazone(9‑PAH)and 9,10‑bisp... To expand the study on the structures and biological activities of the anthracyclines anticancer drugs and reduce their toxic side effects,the new anthraquinone derivatives,9‑pyridylanthrahydrazone(9‑PAH)and 9,10‑bispyridylanthrahydrazone(9,10‑PAH)were designed and synthesized.Utilizing 9‑PAH and 9,10‑PAH as promising anticancer ligands,their respective copper complexes,namely[Cu(L1)Cl_(2)]Cl(1)and{[Cu_(4)(μ_(2)‑Cl)_(3)Cl_(4)(9,10‑PAH)_(2)(DMSO)_(2)]Cl_(2)}_(n)(2),were subsequently synthesized,where the new ligand L1 is formed by coupling two 9‑PAH ligands in the coordination reaction.The chemical and crystal structures of 1 and 2 were elucidated by IR,MS,elemental analysis,and single‑crystal X‑ray diffraction.Complex 1 forms a mononuclear structure.L1 coordinates with Cu through its three N atoms,together with two Cl atoms,to form a five‑coordinated square pyramidal geometry.Complex 2 constitutes a polymeric structure,wherein each structural unit centrosymmetrically encompasses two five‑coordinated binuclear copper complexes(Cu1,Cu2)of 9,10‑PAH,with similar square pyramidal geometry.A chlorine atom(Cl_(2)),located at the symmetry center,bridges Cu1 and Cu1A to connect the two binuclear copper structures.Meanwhile,the two five‑coordinated Cu2 atoms symmetrically bridge the adjacent structural units via one coordinated Cl atom,respectively,thus forming a 1D chain‑like polymeric structure.In vitro anticancer activity assessments revealed that 1 and 2 showed significant cytotoxicity even higher than cisplatin.Specifically,the IC_(50)values of 2 against HeLa‑229 and SK‑OV‑3 cancer cell lines were determined to be(5.92±0.32)μmol·L^(-1)and(6.48±0.39)μmol·L^(-1),respectively.2 could also block the proliferation of HeLa‑229 cells in S phase and significantly induce cell apoptosis.In addition,fluorescence quenching competition experiments suggested that 2 might interact with DNA by an intercalative binding mode,offering insights into its underlying anticancer mechanism.CCDC:2388918,1;2388919,2. 展开更多
关键词 anthrahydrazone metal complex crystal structure anticancer activity cell apoptosis
在线阅读 下载PDF
Design Guidelines for Composition of Brazing Filler Metals and Evolution Mechanisms of Typical Microstructures 被引量:4
9
作者 Long Weimin 《稀有金属材料与工程》 北大核心 2025年第4期837-853,共17页
Brazing filler metals are widely applied,which serve as an industrial adhesive in the joining of dissimilar structures.With the continuous emergence of new structures and materials,the demand for novel brazing filler ... Brazing filler metals are widely applied,which serve as an industrial adhesive in the joining of dissimilar structures.With the continuous emergence of new structures and materials,the demand for novel brazing filler metals is ever-increasing.It is of great significance to investigate the optimized composition design methods and to establish systematic design guidelines for brazing filler metals.This study elucidated the fundamental rules for the composition design of brazing filler metals from a three-dimensional perspective encompassing the basic properties of applied brazing filler metals,formability and processability,and overall cost.The basic properties of brazing filler metals refer to their mechanical properties,physicochemical properties,electromagnetic properties,corrosion resistance,and the wettability and fluidity during brazing.The formability and processability of brazing filler metals include the processes of smelting and casting,extrusion,rolling,drawing and ring-making,as well as the processes of granulation,powder production,and the molding of amorphous and microcrystalline structures.The cost of brazing filler metals corresponds to the sum of materials value and manufacturing cost.Improving the comprehensive properties of brazing filler metals requires a comprehensive and systematic consideration of design indicators.Highlighting the unique characteristics of brazing filler metals should focus on relevant technical indicators.Binary or ternary eutectic structures can effectively enhance the flow spreading ability of brazing filler metals,and solid solution structures contribute to the formability.By employing the proposed design guidelines,typical Ag based,Cu based,Zn based brazing filler metals,and Sn based solders were designed and successfully applied in major scientific and engineering projects. 展开更多
关键词 design of brazing filler metals design guidelines for composition Ag based brazing filler metals eutectic structures evolution
原文传递
Characterization and Analysis of Abnormal Grain Structures in WSTi6421 Titanium Alloy AfterβAnnealing Treatment 被引量:1
10
作者 Wang Wensheng Liu Xianghong +5 位作者 Wang Haipeng Wang Kaixuan Tian Yanwen Yan Jianchuan Li Yulu Chen Haisheng 《稀有金属材料与工程》 北大核心 2025年第2期354-362,共9页
As-forged WSTi6421 titanium alloy billet afterβannealing was investigated.Abnormally coarse grains larger than adjacent grains could be observed in the microstructures,forming abnormal grain structures with uneven si... As-forged WSTi6421 titanium alloy billet afterβannealing was investigated.Abnormally coarse grains larger than adjacent grains could be observed in the microstructures,forming abnormal grain structures with uneven size distribution.Through electron backscattered diffraction(EBSD),the forged microstructure at various locations of as-forged WSTi6421 titanium alloy billet was analyzed,revealing that the strength of theβphase cubic texture generated by forging significantly influences the grain size afterβannealing.Heat treatment experiments were conducted within the temperature range from T_(β)−50°C to T_(β)+10°C to observe the macro-and micro-morphologies.Results show that the cubic texture ofβphase caused by forging impacts the texture of the secondaryαphase,which subsequently influences theβphase formed during the post-βannealing process.Moreover,the pinning effect of the residual primaryαphase plays a crucial role in the growth ofβgrains during theβannealing process.EBSD analysis results suggest that the strength ofβphase with cubic texture formed during forging process impacts the orientation distribution differences ofβgrains afterβannealing.Additionally,the development of grains with large orientations within the cubic texture shows a certain degree of selectivity duringβannealing,which is affected by various factors,including the pinning effect of the primaryαphase,the strength of the matrix cubic texture,and the orientation relationship betweenβgrain and matrix.Comprehensively,the stronger the texture in a certain region,the less likely the large misoriented grains suffering secondary growth,thereby aggregating the difference in microstructure and grain orientation distribution across different regions afterβannealing. 展开更多
关键词 WSTi6421 titanium alloy βannealing abnormal grain structure
原文传递
Text-Image Feature Fine-Grained Learning for Joint Multimodal Aspect-Based Sentiment Analysis
11
作者 Tianzhi Zhang Gang Zhou +4 位作者 Shuang Zhang Shunhang Li Yepeng Sun Qiankun Pi Shuo Liu 《Computers, Materials & Continua》 SCIE EI 2025年第1期279-305,共27页
Joint Multimodal Aspect-based Sentiment Analysis(JMASA)is a significant task in the research of multimodal fine-grained sentiment analysis,which combines two subtasks:Multimodal Aspect Term Extraction(MATE)and Multimo... Joint Multimodal Aspect-based Sentiment Analysis(JMASA)is a significant task in the research of multimodal fine-grained sentiment analysis,which combines two subtasks:Multimodal Aspect Term Extraction(MATE)and Multimodal Aspect-oriented Sentiment Classification(MASC).Currently,most existing models for JMASA only perform text and image feature encoding from a basic level,but often neglect the in-depth analysis of unimodal intrinsic features,which may lead to the low accuracy of aspect term extraction and the poor ability of sentiment prediction due to the insufficient learning of intra-modal features.Given this problem,we propose a Text-Image Feature Fine-grained Learning(TIFFL)model for JMASA.First,we construct an enhanced adjacency matrix of word dependencies and adopt graph convolutional network to learn the syntactic structure features for text,which addresses the context interference problem of identifying different aspect terms.Then,the adjective-noun pairs extracted from image are introduced to enable the semantic representation of visual features more intuitive,which addresses the ambiguous semantic extraction problem during image feature learning.Thereby,the model performance of aspect term extraction and sentiment polarity prediction can be further optimized and enhanced.Experiments on two Twitter benchmark datasets demonstrate that TIFFL achieves competitive results for JMASA,MATE and MASC,thus validating the effectiveness of our proposed methods. 展开更多
关键词 Multimodal sentiment analysis aspect-based sentiment analysis feature fine-grained learning graph convolutional network adjective-noun pairs
在线阅读 下载PDF
SCS-Net:A DNN-based electromagnetic shielding effectiveness analysis method for slotted composite structures 被引量:1
12
作者 Wanli DU Guangzhi CHEN +4 位作者 Ziang ZHANG Xinsong WANG Shunchuan YANG Xingye CHEN Donglin SU 《Chinese Journal of Aeronautics》 2025年第3期505-520,共16页
As the proportion of composite materials used in aircraft continues to increase, the electromagnetic Shielding Effectiveness (SE) of these materials becomes a critical factor in the electromagnetic safety design of ai... As the proportion of composite materials used in aircraft continues to increase, the electromagnetic Shielding Effectiveness (SE) of these materials becomes a critical factor in the electromagnetic safety design of aircraft structures. The assessment of electromagnetic SE for Slotted Composite Structures(SCSs) is particularly challenging due to their complex geometries and there remains a lack of suitable models for accurately predicting the SE performance of these intricate configurations. To address this issue, this paper introduces SCS-Net, a Deep Neural Network (DNN) method designed to accurately predict the SE of SCS. This method considers the impacts of various structural parameters, material properties and incident wave parameters on the SE of SCSs. In order to better model the SCS, an improved Nicolson-Ross-Weir (NRW) method is introduced in this paper to provide an equivalent flat structure for the SCS and to calculate the electromagnetic parameters of the equivalent structure. Additionally, the prediction of SE via DNNs is limited by insufficient test data, which hinders support for large-sample training. To address the issue of limited measured data, this paper develops a Measurement-Computation Fusion (MCF) dataset construction method. The predictions based on the simulation results show that the proposed method maintains an error of less than 0.07 dB within the 8–10 GHz frequency range. Furthermore, a new loss function based on the weighted L1-norm is established to improve the prediction accuracy for these parameters. Compared with traditional loss functions, the new loss function reduces the maximum prediction error for equivalent electromagnetic parameters by 47%. This method significantly improves the prediction accuracy of SCS-Net for measured data, with a maximum improvement of 23.88%. These findings demonstrate that the proposed method enables precise SE prediction and design for composite structures while reducing the number of test samples needed. 展开更多
关键词 Deep neural networkcs Measurement-computation fusion Electromagnetic shielding effectiveness Slotted composite structures structural paranmeters
原文传递
In situ constructing lamella-heterostructured nanoporous CoFe/CoFe_(2)O_(4) and CeO_(2−x) as bifunctional electrocatalyst for high-current-density water splitting 被引量:1
13
作者 Yue Deng Jin Wang +6 位作者 Shao-Fei Zhang Zhi-Jia Zhang Jin-Feng Sun Tian-Tian Li Jian-Li Kang Hao Liu Shi Bai 《Rare Metals》 2025年第2期1053-1066,共14页
The stability and electrocatalytic efficiency of transition metal oxides for water splitting is determined by geometric and electronic structure,especially under high current densities.Herein,a newly designed lamella-... The stability and electrocatalytic efficiency of transition metal oxides for water splitting is determined by geometric and electronic structure,especially under high current densities.Herein,a newly designed lamella-heterostructured nanoporous CoFe/CoFe_(2)O_(4) and CeO_(2−x),in situ grown on nickel foam(NF),holds great promise as a high-efficient bifunctional electrocatalyst(named R-CoFe/Ce/NF)for water splitting.Experimental characterization verifies surface reconstruction from CoFe alloy/oxide to highly active CoFeOOH during in situ electrochemical polarization.By virtues of three-dimensional nanoporous architecture and abundant electroactive CoFeOOH/CeO_(2−x) heterostructure interfaces,the R-CoFe/Ce/NF electrode achieves low overpotentials for oxygen evolution(η_(10)=227 mV;η_(500)=450 mV)and hydrogen evolution(η_(10)=35 mV;η_(408)=560 mV)reactions with high normalized electrochemical active surface areas,respectively.Additionally,the alkaline full water splitting electrolyzer of R-CoFe/Ce/NF||R-CoFe/Ce/NF achieves a current density of 50 mA·cm^(−2) only at 1.75 V;the decline of activity is satisfactory after 100-h durability test at 300 mA·cm^(−2).Density functional theory also demonstrates that the electron can transfer from CeO_(2−x) by virtue of O atom to CoFeOOH at CoFeOOH/CeO_(2−x) heterointerfaces and enhancing the adsorption of reactant,thus optimizing electronic structure and Gibbs free energies for the improvement of the activity for water splitting. 展开更多
关键词 Lamellar nanoporous structure Electronic structure regulation High current density Theoretical calculation Overall water splitting
原文传递
Multi-interface structure design of bamboo-based carbon/Co/CoO composite electromagnetic wave absorber based on biomimetic honeycomb-shaped superstructure 被引量:2
14
作者 Yanting Wang He Han +2 位作者 Huiyang Bian Yanjun Li Zhichao Lou 《International Journal of Minerals,Metallurgy and Materials》 2025年第3期631-644,共14页
The rapid development of 5G communication technology and smart electronic and electrical equipment will inevitably lead to electromagnetic radiation pollution.Enriching heterointerface polarization relaxation through ... The rapid development of 5G communication technology and smart electronic and electrical equipment will inevitably lead to electromagnetic radiation pollution.Enriching heterointerface polarization relaxation through nanostructure design and interface modifica-tion has proven to be an effective strategy to obtain efficient electromagnetic wave absorption.Here,this work implements an innovative method that combines biomimetic honeycomb superstructure to constrain hierarchical porous heterostructure composed of Co/CoO nano-particles to improve the interfacial polarization intensity.The method effectively controlled the absorption efficiency of Co^(2+)through de-lignification modification of bamboo,and combined with the bionic carbon-based natural hierarchical porous structure to achieve uniform dispersion of nanoparticles,which is conducive to the in-depth construction of heterogeneous interfaces.In addition,the multiphase struc-ture brought about by high-temperature pyrolysis provides the best dielectric loss and impedance matching for the material.Therefore,the obtained bamboo-based Co/CoO multiphase composite showed excellent electromagnetic wave absorption performance,achieving excel-lent reflection loss(RL)of-79 dB and effective absorption band width of 4.12 GHz(6.84-10.96 GHz)at low load of 15wt%.Among them,the material’s optimal radar cross-section(RCS)reduction value can reach 31.9 dB·m^(2).This work provides a new approach to the micro-control and comprehensive optimization of macro-design of microwave absorbers,and offers new ideas for the high-value utiliza-tion of biomass materials. 展开更多
关键词 biomass honeycomb porous heterojunction structure interfacial polarization electromagnetic wave absorption
在线阅读 下载PDF
Janus structure design of polyimide composite foam for absorption-dominated EMI shielding and thermal insulation 被引量:2
15
作者 Ruixing Hao Yaqi Yang +3 位作者 Peiyou He Yaqing Liu Guizhe Zhao Hongji Duan 《Journal of Materials Science & Technology》 2025年第3期317-326,共10页
In the present work,by virtue of the synergistic and independent effects of Janus structure,an asymmetric nickel-chain/multiwall carbon nanotube/polyimide(Ni/MWCNTs/PI)composite foam with absorption-dominated electrom... In the present work,by virtue of the synergistic and independent effects of Janus structure,an asymmetric nickel-chain/multiwall carbon nanotube/polyimide(Ni/MWCNTs/PI)composite foam with absorption-dominated electromagnetic interference(EMI)shielding and thermal insulation performances was successfully fabricated through an ordered casting and directional freeze-drying strategy.Water-soluble polyamic acid(PAA)was chosen to match the oriented freeze-drying method to acquire oriented pores,and the thermal imidization process from PAA to PI exactly eliminated the interface of the multilayered structure.By controlling the electro-magnetic gradient and propagation path of the incident microwaves in the MWCNT/PI and Ni/PI layers,the PI composite foam exhibited an efficient EMI SE of 55.8 dB in the X-band with extremely low reflection characteristics(R=0.22).The asymmetric conductive net-work also greatly preserved the thermal insulation properties of PI.The thermal conductivity(TC)of the Ni/MWCNT/PI composite foam was as low as 0.032 W/(m K).In addition,owing to the elimination of MWCNT/PI and Ni/PI interfaces during the thermal imidization process,the composite foam showed satisfactory compressive strength.The fabricated PI composite foam could provide reliable electromagnetic protection in complex applications and withstand high temperatures,which has great potential in cuttingedge applications such as advanced aircraft. 展开更多
关键词 Electromagnetic interference shielding(EMI) Thermal insulation POLYIMIDE Janus structure Low reflection
原文传递
Dynamic Structural Colors in Helical Superstructures:from Supramolecules to Polymers 被引量:1
16
作者 Bo Ji Lang Qin Yan-Lei Yu 《Chinese Journal of Polymer Science》 2025年第3期406-428,共23页
Cholesteric liquid crystals(CLCs)exhibit unique helical superstructures that selectively reflect circularly polarized light,enabling them to dynamically respond to environmental changes with tunable structural colors.... Cholesteric liquid crystals(CLCs)exhibit unique helical superstructures that selectively reflect circularly polarized light,enabling them to dynamically respond to environmental changes with tunable structural colors.This dynamic color-changing capability is crucial for applications that require adaptable optical properties,positioning CLCs as key materials in advanced photonic technologies.This review focuses on the mechanisms of dynamic color tuning in CLCs across various forms,including small molecules,cholesteric liquid crystal elastomers(CLCEs),and cholesteric liquid crystal networks(CLCNs),and emphasizes the distinct responsive coloration each structure provides.Key developments in photochromic mechanisms based on azobenzene,dithienylethene,and molecular motor switches,are discussed for their roles in enhancing the stability and tuning range of CLCs.We examine the color-changing behaviors of CLCEs under mechanical stimuli and CLCNs under swelling,highlighting the advantages of each form.Following this,applications of dynamic color-tuning CLCs in information encryption,adaptive camouflage,and smart sensing technologies are explored.The review concludes with an outlook on current challenges and future directions in CLC research,particularly in biomimetic systems and dynamic photonic devices,aiming to broaden their functional applications and impact. 展开更多
关键词 structural colors Cholesteric liquid crystals Elastomers Polymer network
原文传递
Customizing solid electrolyte interphase with bilayer spatial structure to mitigate swelling towards long-term life lithium battery 被引量:1
17
作者 Dongni Zhao Hongcheng Liang +6 位作者 Shumin Wu Yin Quan Xinyi Hu Jingni Li Peng Wang Xiaoling Cui Shiyou Li 《Journal of Energy Chemistry》 2025年第6期702-712,I0015,共12页
The swelling behavior and stability in solid electrolyte interphase(SEI)have been proved to determine the battery cycle life.A high swollen,unstable SEI shows a high permeability to electrolyte,which results in the ra... The swelling behavior and stability in solid electrolyte interphase(SEI)have been proved to determine the battery cycle life.A high swollen,unstable SEI shows a high permeability to electrolyte,which results in the rapid battery performance degradation.Here,we customize two SEIs with different spatial structures(bilayer and mosaic)by simply regulating the proportion of additive fluoroethylene carbonate.Surprisingly,due to the uniform distribution of dense inorganic nano-crystals in the inner,the bilayer SEI exhibits low-swelling and excellent mechanical properties,so the undesirable side reactions of the electrolyte are effectively suppressed.In addition,we put forward the growth rate of swelling ratio(GSR)as a key indicator to reveal the swelling change in SEI.The GSR of bilayer SEI merely increases from1.73 to 3.16 after the 300th cycle,which enables the corresponding graphite‖Li battery to achieve longer cycle stability.The capacity retention is improved by 47.5% after 300 cycles at 0.5 C.The correlation among SEI spatial structure,swelling behavior,and battery performance provides a new direction for electrolyte optimization and interphase structure design of high energy density batteries. 展开更多
关键词 Lithium battery SEI film Spatial structure Swelling behavior Cycle-stable
在线阅读 下载PDF
Deciphering environmental factors influencing phytoplankton community structure in a polluted urban river 被引量:2
18
作者 Xiaxia Li Kai Chen +7 位作者 Chao Wang Tianyu Zhuo Hongtao Li Yong Wu Xiaohui Lei Ming Li Bin Chen Beibei Chai 《Journal of Environmental Sciences》 2025年第2期375-386,共12页
Tuojiang River Basin is a first-class tributary of the upper reaches of the Yangtze River—which is the longest river in China.As phytoplankton are sensitive indicators of trophic changes inwater bodies,characterizing... Tuojiang River Basin is a first-class tributary of the upper reaches of the Yangtze River—which is the longest river in China.As phytoplankton are sensitive indicators of trophic changes inwater bodies,characterizing phytoplankton communities and their growth influencing factors in polluted urban rivers can provide new ideas for pollution control.Here,we used direct microscopic count and environmental DNA(eDNA)metabarcoding methods to investigate phytoplankton community structure in Tuojiang River Basin(Chengdu,Sichuan Province,China).The association between phytoplankton community structure and water environmental factors was evaluated by Mantel analysis.Additional environmental monitoring data were used to pinpoint major factors that influenced phytoplankton growth based on structural equation modeling.At the phylum level,the dominant phytoplankton taxa identified by the conventional microscopic method mainly belonged to Bacillariophyta,Chlorophyta,and Cyanophyta,in contrast with Chlorophyta,Dinophyceae,and Bacillariophyta identified by eDNA metabarcoding.Inα-diversity analysis,eDNA metabarcoding detected greater species diversity and achieved higher precision than the microscopic method.Phytoplankton growth was largely limited by phosphorus based on the nitrogen-to-phosphorus ratios>16:1 in all water samples.Redundancy analysis and structural equation modeling also confirmed that the nitrogen-to-phosphorus ratio was the principal factor influencing phytoplankton growth.The results could be useful for implementing comprehensive management of the river basin environment.It is recommended to control the discharge of point-and surface-source pollutants and the concentration of dissolved oxygen in areas with excessive nutrients(e.g.,Jianyang-Ziyang).Algae monitoring techniques and removal strategies should be improved in 201 Hospital,Hongrihe Bridge and Colmar Town areas. 展开更多
关键词 Environmental DNA Microscopic count Phytoplankton growth structural equation modeling Tuojiang River Basin
原文传递
High-burn-up structure evolution in polycrystalline UO_(2):Phase-field modeling investigation 被引量:1
19
作者 Dan Sun Yanbo Jiang +4 位作者 Chuanbao Tang Yong Xin Zhipeng Sun Wenbo Liu Yuanming Li 《Chinese Physics B》 2025年第2期378-386,共9页
Understanding the evolution of microstructures in nuclear fuels under high-burn-up conditions is critical for extending fuel refueling cycles and enhancing nuclear reactor safety.In this study,a phase-field model is p... Understanding the evolution of microstructures in nuclear fuels under high-burn-up conditions is critical for extending fuel refueling cycles and enhancing nuclear reactor safety.In this study,a phase-field model is proposed to examine the evolution of high-burn-up structures in polycrystalline UO_(2).The formation and growth of recrystallized grains were initially investigated.It was demonstrated that recrystallization kinetics adhere to the Kolmogorov–Johnson–Mehl–Avrami(KJMA)equation,and that recrystallization represents a process of free-energy reduction.Subsequently,the microstructural evolution in UO_(2) was analyzed as the burn up increased.Gas bubbles acted as additional nucleation sites,thereby augmenting the recrystallization kinetics,whereas the presence of recrystallized grains accelerated bubble growth by increasing the number of grain boundaries.The observed variations in the recrystallization kinetics and porosity with burn-up closely align with experimental findings.Furthermore,the influence of grain size on microstructure evolution was investigated.Larger grain sizes were found to decrease porosity and the occurrence of high-burn-up structures. 展开更多
关键词 high-burn-up structure phase field uranium dioxide gas bubble RECRYSTALLIZATION
原文传递
Revealing Hetero-Deformation Induced(HDI)Hardening and Dislocation Activity in a Dual-Heterostructure Magnesium Matrix Composite 被引量:1
20
作者 Lingling Fan Ran Ni +7 位作者 Lingbao Ren Peng Xiao Ying Zeng Dongdi Yin Hajo Dieringa Yuanding Huang Gaofeng Quan Wei Feng 《Journal of Magnesium and Alloys》 2025年第2期902-921,共20页
Integrating a heterogeneous structure can significantly enhance the strength-ductility synergy of composites.However,the relationship between hetero-deformation induced(HDI)strain hardening and dislocation activity ca... Integrating a heterogeneous structure can significantly enhance the strength-ductility synergy of composites.However,the relationship between hetero-deformation induced(HDI)strain hardening and dislocation activity caused by heterogeneous structures in the magnesium matrix composite remains unclear.In this study,a dual-heterogeneous TiC/AZ61 composite exhibits significantly improved plastic elongation(PEL)by nearly one time compared to uniform FG composite,meanwhile maintaining a high strength(UTS:417 MPa).This is because more severe deformation inhomogeneity in heterogeneous structure leads to more geometrically necessary dislocations(GNDs)accumulation and stronger HDI stress,resulting in higher HDI hardening compared to FG and CG composites.During the early stage of plastic deformation,the pile-up types of GND in the FG zone and CG zone are significantly different.GNDs tend to form substructures in the FG zone instead of the CG zone.They only accumulate at grain boundaries of the CG region,thereby leading to obviously increased back stress in the CG region.In the late deformation stage,the elevated HDI stress activates the new〈c+a〉dislocations in the CG region,resulting in dislocation entanglements and even the formation of substructures,further driving the high hardening in the heterogeneous composite.However,For CG composite,〈c+a〉dislocations are not activated even under large plastic strains,and only〈a〉dislocations pile up at grain boundaries and twin boundaries.Our work provides an in-depth understanding of dislocation variation and HDI hardening in heterogeneous magnesium-based composites. 展开更多
关键词 Mg-matrix composite Heterogeneous structure HDI hardening GND density DISLOCATION
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部