期刊文献+
共找到32,087篇文章
< 1 2 250 >
每页显示 20 50 100
Text-Image Feature Fine-Grained Learning for Joint Multimodal Aspect-Based Sentiment Analysis
1
作者 Tianzhi Zhang Gang Zhou +4 位作者 Shuang Zhang Shunhang Li Yepeng Sun Qiankun Pi Shuo Liu 《Computers, Materials & Continua》 SCIE EI 2025年第1期279-305,共27页
Joint Multimodal Aspect-based Sentiment Analysis(JMASA)is a significant task in the research of multimodal fine-grained sentiment analysis,which combines two subtasks:Multimodal Aspect Term Extraction(MATE)and Multimo... Joint Multimodal Aspect-based Sentiment Analysis(JMASA)is a significant task in the research of multimodal fine-grained sentiment analysis,which combines two subtasks:Multimodal Aspect Term Extraction(MATE)and Multimodal Aspect-oriented Sentiment Classification(MASC).Currently,most existing models for JMASA only perform text and image feature encoding from a basic level,but often neglect the in-depth analysis of unimodal intrinsic features,which may lead to the low accuracy of aspect term extraction and the poor ability of sentiment prediction due to the insufficient learning of intra-modal features.Given this problem,we propose a Text-Image Feature Fine-grained Learning(TIFFL)model for JMASA.First,we construct an enhanced adjacency matrix of word dependencies and adopt graph convolutional network to learn the syntactic structure features for text,which addresses the context interference problem of identifying different aspect terms.Then,the adjective-noun pairs extracted from image are introduced to enable the semantic representation of visual features more intuitive,which addresses the ambiguous semantic extraction problem during image feature learning.Thereby,the model performance of aspect term extraction and sentiment polarity prediction can be further optimized and enhanced.Experiments on two Twitter benchmark datasets demonstrate that TIFFL achieves competitive results for JMASA,MATE and MASC,thus validating the effectiveness of our proposed methods. 展开更多
关键词 Multimodal sentiment analysis aspect-based sentiment analysis feature fine-grained learning graph convolutional network adjective-noun pairs
在线阅读 下载PDF
Rate effects of cylindrical cavity expansion in fine-grained soil
2
作者 Cheng Chen Yong Wang +3 位作者 Zhonghua Sun XunWu Xiaowei Geng Xianwei Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第7期4604-4617,共14页
Soil responds to cavity expansion is inherently rate-dependent,especially in the case of fine-grained soils.To better understand such rate effects,self-boring pressuremeter tests were conducted on Kunming peaty soil w... Soil responds to cavity expansion is inherently rate-dependent,especially in the case of fine-grained soils.To better understand such rate effects,self-boring pressuremeter tests were conducted on Kunming peaty soil within a strain rate range of 0.1%/min to 5.0%/min.The results showed a clear dependence of cavity pressure and excess pore pressure(EPP)on strain ratesdboth increased with higher rates for a given radial displacement.In light of the experimental results,three cases of cylindrical cavity expansion were investigated using the finite element method and analytical method,partially drained expansion in Modified Cam-Clay(MCC)soil,and undrained and partially drained expansion in elastoviscoplastic(EVP)soil.The EVP behavior was and modeled using the MCC model and the overstress viscoplastic theory.The results indicated that over the strain rate range of 0.0001%/min and 50%/min,the rate response of cavity pressure for the case of partially drained expansion in MCC soil(permeability coefficient ranging from 5×10^(-6) m/s to 2.5×10^(-11) m/s)is not obvious,while the EPP response during undrained expansion in EVP soil shows rate-independent.Only the partially drained solution for cavity expansion in EVP soil captured the rate-sensitive responses of both cavity pressure and EPP,confirmed by the pressuremeter tests on the Kunming peaty soil,Saint-Herblain clay,and Burswood clay.This suggests that the rate effect results from a combination of drainage-related and time-dependent soil behavior.Parametric studies further demonstrated that both viscous behavior and the overconsolidation ratio significantly influence cylindrical cavity expansion response,and the drainage conditions during expansion can be assessed using a nondimensional velocity. 展开更多
关键词 Pressuremeter test VISCOPLASTICITY Partial drainage Loading rate fine-grained soil
在线阅读 下载PDF
Advancing Acer phenology monitoring:fine-grained identification and analysis by deep learning RESformer
3
作者 Weipeng Jing Huiming Xu +3 位作者 Weitao Zou Wenjun Zhang Chao Li Juntao Gu 《Journal of Forestry Research》 2025年第4期55-66,共12页
Climate change is a global phenomenon that has profound impacts on ecological dynamics and biodiversity,shaping the interactions between species and their environment.To gain a deeper understanding of the mechanisms d... Climate change is a global phenomenon that has profound impacts on ecological dynamics and biodiversity,shaping the interactions between species and their environment.To gain a deeper understanding of the mechanisms driving climate change,phenological monitoring is essential.Traditional methods of defining phenological phases often rely on fixed thresholds.However,with the development of technology,deep learning-based classification models are now able to more accurately delineate phenological phases from images,enabling phenological monitoring.Despite the significant advancements these models have made in phenological monitoring,they still face challenges in fully capturing the complexity of biotic-environmental interactions,which can limit the fine-grained accuracy of phenological phase identification.To address this,we propose a novel deep learning model,RESformer,designed to monitor tree phenology at a fine-grained level using PhenoCam images.RESformer features a lightweight structure,making it suitable for deployment in resource-constrained environments.It incorporates a dual-branch routing mechanism that considers both global and local information,thereby improving the accuracy of phenological monitoring.To validate the effectiveness of RESformer,we conducted a case study involving 82,118 images taken over two years from four different locations in Wisconsin,focusing on the phenology of Acer.The images were classified into seven distinct phenological stages,with RESformer achieving an overall monitoring accuracy of 96.02%.Furthermore,we compared RESformer with a phenological monitoring approach based on the Green Chromatic Coordinate(GCC)index and ten popular classification models.The results showed that RESformer excelled in fine-grained monitoring,effectively capturing and identifying changes in phenological stages.This finding not only provides strong support for monitoring the phenology of Acer species but also offers valuable insights for understanding ecological trends and developing more effective ecosystem conservation and management strategies. 展开更多
关键词 fine-grained phenological period Acer phenological monitoring Green chromatic coordinate PhenoCam
在线阅读 下载PDF
Evolution of Deformation Substructure and Mg_(x)Zn_(y)Ca_(z) Metastable Phase in Fine-Grained Mg Alloys
4
作者 Zhen-Liang Li Xin-Lei Zhang 《Acta Metallurgica Sinica(English Letters)》 2025年第1期71-85,共15页
The spray-deposition was used to produce billets of Mg-4Al-1.5Zn-3Ca-1Nd(A alloy)and Mg-13Al-3Zn-3Ca-1Nd(B alloy),and evolution of deformation substructure and Mg_(x)Zn_(y)Ca_(z)metastable phase in fine-grained(3μm)M... The spray-deposition was used to produce billets of Mg-4Al-1.5Zn-3Ca-1Nd(A alloy)and Mg-13Al-3Zn-3Ca-1Nd(B alloy),and evolution of deformation substructure and Mg_(x)Zn_(y)Ca_(z)metastable phase in fine-grained(3μm)Mg alloys was investigated by scanning electron microscopy(SEM),transmission electron microscopy(TEM),X-ray diffraction(XRD),and electron backscattered diffraction(EBSD).It was found that different dislocation configurations were formed in A and B alloys.Redundant free dislocations(RFDs)and dislocation tangles were the ways to form deformation substructure in A alloy,no RFDs except dislocation tangles were found in B alloy.The interaction between nano-scale second phase particles(nano-scale C15 andβ-Mg_(17)(Al,Zn)_(12)phase)and different dislocation configurations had a significant effect on the deformation substructures formation.The mass transfer of Mg_(x)Zn_(y)Ca_(z)metastable phases and the stacking order of stacking faults were conducive to the Mg-Nd-Zn typed long period stacking ordered(LPSO)phases formation.Nano-scale C15 phases,Mg-Nd-Zn typed LPSO phases,c/a ratio,β-Mg_(17)(Al,Zn)_(12)phases were the key factors influencing the formation of textures.Different textures and grain boundary features(GB features)had a significant effect on k-value.The non-basal textures were the main factor affecting k-value in A alloy,while the high-angle grain boundary(HAGB)was the main factor affecting k-value in B alloy. 展开更多
关键词 Deformation substructures Metastable phase Textures K-VALUE fine-grained Mg alloys
原文传递
Step-by-step to success:Multi-stage learning driven robust audiovisual fusion network for fine-grained bird species classification
5
作者 Shanshan Xie Jiangjian Xie +6 位作者 Yang Liu Lianshuai Sha Ye Tian Jiahua Dong Diwen Liang Kaijun Pan Junguo Zhang 《Avian Research》 2025年第4期818-831,共14页
Bird monitoring and protection are essential for maintaining biodiversity,and fine-grained bird classification has become a key focus in this field.Audio-visual modalities provide critical cues for this task,but robus... Bird monitoring and protection are essential for maintaining biodiversity,and fine-grained bird classification has become a key focus in this field.Audio-visual modalities provide critical cues for this task,but robust feature extraction and efficient fusion remain major challenges.We introduce a multi-stage fine-grained audiovisual fusion network(MSFG-AVFNet) for fine-grained bird species classification,which addresses these challenges through two key components:(1) the audiovisual feature extraction module,which adopts a multi-stage finetuning strategy to provide high-quality unimodal features,laying a solid foundation for modality fusion;(2) the audiovisual feature fusion module,which combines a max pooling aggregation strategy with a novel audiovisual loss function to achieve effective and robust feature fusion.Experiments were conducted on the self-built AVB81and the publicly available SSW60 datasets,which contain data from 81 and 60 bird species,respectively.Comprehensive experiments demonstrate that our approach achieves notable performance gains,outperforming existing state-of-the-art methods.These results highlight its effectiveness in leveraging audiovisual modalities for fine-grained bird classification and its potential to support ecological monitoring and biodiversity research. 展开更多
关键词 Audiovisual modality Bird species classification Feature fusion fine-grained
在线阅读 下载PDF
DWDet:A Fine-Grained Object DetectionAlgorithm for Remote Sensing Aircraft
6
作者 Meijing Gao Yonghao Yan +5 位作者 Xiangrui Fan Huanyu Sun Sibo Chen Xu Chen Bingzhou Sun Ning Guan 《Journal of Beijing Institute of Technology》 2025年第4期337-349,共13页
Fine-grained aircraft target detection in remote sensing holds significant research valueand practical applications,particularly in military defense and precision strikes.Given the complex-ity of remote sensing images... Fine-grained aircraft target detection in remote sensing holds significant research valueand practical applications,particularly in military defense and precision strikes.Given the complex-ity of remote sensing images,where targets are often small and similar within categories,detectingthese fine-grained targets is challenging.To address this,we constructed a fine-grained dataset ofremotely sensed airplanes;for the problems of remote sensing fine-grained targets with obvious head-to-tail distributions and large variations in target sizes,we proposed the DWDet fine-grained tar-get detection and recognition algorithm.First,for the problem of unbalanced category distribution,we adopt an adaptive sampling strategy.In addition,we construct a deformable convolutional blockand improve the decoupling head structure to improve the detection effect of the model ondeformed targets.Then,we design a localization loss function,which is used to improve the model’slocalization ability for targets of different scales.The experimental results show that our algorithmimproves the overall accuracy of the model by 4.1%compared to the baseline model,and improvesthe detection accuracy of small targets by 12.2%.The ablation and comparison experiments alsoprove the effectiveness of our algorithm. 展开更多
关键词 remote sensing fine-grained recognition aircraft remote-sensing datasets multi-scaletarget detection
在线阅读 下载PDF
A teacher-student based attention network for fine-grainedimage recognition
7
作者 Ang Li Xueyi Zhang +1 位作者 Peilin Li Bin Kang 《Digital Communications and Networks》 2025年第1期52-59,共8页
Fine-grained Image Recognition(FGIR)task is dedicated to distinguishing similar sub-categories that belong to the same super-category,such as bird species and car types.In order to highlight visual differences,existin... Fine-grained Image Recognition(FGIR)task is dedicated to distinguishing similar sub-categories that belong to the same super-category,such as bird species and car types.In order to highlight visual differences,existing FGIR works often follow two steps:discriminative sub-region localization and local feature representation.However,these works pay less attention on global context information.They neglect a fact that the subtle visual difference in challenging scenarios can be highlighted through exploiting the spatial relationship among different subregions from a global view point.Therefore,in this paper,we consider both global and local information for FGIR,and propose a collaborative teacher-student strategy to reinforce and unity the two types of information.Our framework is implemented mainly by convolutional neural network,referred to Teacher-Student Based Attention Convolutional Neural Network(T-S-ACNN).For fine-grained local information,we choose the classic Multi-Attention Network(MA-Net)as our baseline,and propose a type of boundary constraint to further reduce background noises in the local attention maps.In this way,the discriminative sub-regions tend to appear in the area occupied by fine-grained objects,leading to more accurate sub-region localization.For fine-grained global information,we design a graph convolution based Global Attention Network(GA-Net),which can combine extracted local attention maps from MA-Net with non-local techniques to explore spatial relationship among subregions.At last,we develop a collaborative teacher-student strategy to adaptively determine the attended roles and optimization modes,so as to enhance the cooperative reinforcement of MA-Net and GA-Net.Extensive experiments on CUB-200-2011,Stanford Cars and FGVC Aircraft datasets illustrate the promising performance of our framework. 展开更多
关键词 fine-grained image recognition Collaborative teacher-student strategy Multi-attention Global attention
在线阅读 下载PDF
Discrete and Topological Correspondence Theory for Modal MeetImplication Logic and Modal MeetSemilattice Logic in Filter Semantics
8
作者 Fei Liang Zhiguang Zhao 《逻辑学研究》 2025年第3期25-66,共42页
In the present paper,we give a systematic study of the discrete correspondence the-ory and topological correspondence theory of modal meet-implication logic and moda1 meet-semilattice logic,in the semantics provided i... In the present paper,we give a systematic study of the discrete correspondence the-ory and topological correspondence theory of modal meet-implication logic and moda1 meet-semilattice logic,in the semantics provided in[21].The special features of the present paper include the following three points:the first one is that the semantic structure used is based on a semilattice rather than an ordinary partial order,the second one is that the propositional vari-ables are interpreted as filters rather than upsets,and the nominals,which are the“first-order counterparts of propositional variables,are interpreted as principal filters rather than principal upsets;the third one is that in topological correspondence theory,the collection of admissi-ble valuations is not closed under taking disjunction,which makes the proof of the topological Ackermann 1emma different from existing settings. 展开更多
关键词 topological correspondence theory SEMILATTICE modal meet implication logic modal meet semilattice logic discrete correspondence theory semantic structure propositional variables filter semantics
在线阅读 下载PDF
Experimental Study on the Desiccation Cracking Dynamic Evolution Law of Fine-Grained Coral Soil
9
作者 FANG Hua-qiang DING Xuan-ming +4 位作者 LUO Zhao-gang JIANG Chun-yong LI Yi-fu WANG Hong REN Jun-yu 《China Ocean Engineering》 2025年第4期728-743,共16页
Coralline soils,specialized materials found extensively in the South China Sea,are playing an increasingly vital role in engineering projects.However,like most terrigenous soils,fine-grained coral soil is prone to shr... Coralline soils,specialized materials found extensively in the South China Sea,are playing an increasingly vital role in engineering projects.However,like most terrigenous soils,fine-grained coral soil is prone to shrinkage and cracking,which can significantly affect its engineering properties and ultimately jeopardize engineering safety.This paper presents a desiccation cracking test of fine-grained coral soil,with a particular focus on the thickness effect.The study involved measuring the water content and recording the evolution of desiccation cracking.Advanced image processing technology is employed to analyze the variations in crack parameters,clod parameters,fractal dimensions,frequency distributions,and desiccation cracking propagation velocities of fine-grained coral soil.Furthermore,the dynamic evolution of desiccation cracking under the influence of layer thickness is analyzed.A comprehensive crack evolution model is proposed,encompassing both top-down and bottom-up crack propagation,as well as internal tensile cracking.This work introduces novel metrics for the propagation velocity of the total crack area,the characteristic propagation velocities of desiccation cracks,and the acceleration of crack propagation.Through data fitting,theoretical formulas for soil water evaporation,propagation velocities of desiccation cracks,and crack propagation acceleration are derived,laying a foundation for future soil cracking theories. 展开更多
关键词 fine-grained coral soil desiccation crack layer thickness crack dynamic evolution crack propagation acceleration
在线阅读 下载PDF
Mechanisms of fine-grained sedimentation and reservoir characteristics of shale oil in continental freshwater lacustrine basin:A case study from Chang 7_(3) sub-member of Triassic Yanchang Formation in southwestern Ordos Basin,NW China
10
作者 LIU Xianyang LIU Jiangyan +6 位作者 WANG Xiujuan GUO Qiheng Lv Qiqi YANG Zhi ZHANG Yan ZHANG Zhongyi ZHANG Wenxuan 《Petroleum Exploration and Development》 2025年第1期95-111,共17页
Based on recent advancements in shale oil exploration within the Ordos Basin,this study presents a comprehensive investigation of the paleoenvironment,lithofacies assemblages and distribution,depositional mechanisms,a... Based on recent advancements in shale oil exploration within the Ordos Basin,this study presents a comprehensive investigation of the paleoenvironment,lithofacies assemblages and distribution,depositional mechanisms,and reservoir characteristics of shale oil of fine-grained sediment deposition in continental freshwater lacustrine basins,with a focus on the Chang 7_(3) sub-member of Triassic Yanchang Formation.The research integrates a variety of exploration data,including field outcrops,drilling,logging,core samples,geochemical analyses,and flume simulation.The study indicates that:(1)The paleoenvironment of the Chang 7_(3) deposition is characterized by a warm and humid climate,frequent monsoon events,and a large water depth of freshwater lacustrine basin.The paleogeomorphology exhibits an asymmetrical pattern,with steep slopes in the southwest and gentle slopes in the northeast,which can be subdivided into microgeomorphological units,including depressions and ridges in lakebed,as well as ancient channels.(2)The Chang 7_(3) sub-member is characterized by a diverse array of fine-grained sediments,including very fine sandstone,siltstone,mudstone and tuff.These sediments are primarily distributed in thin interbedded and laminated arrangements vertically.The overall grain size of the sandstone predominantly falls below 62.5μm,with individual layer thicknesses of 0.05–0.64 m.The deposits contain intact plant fragments and display various sedimentary structure,such as wavy bedding,inverse-to-normal grading sequence,and climbing ripple bedding,which indicating a depositional origin associated with density flows.(3)Flume simulation experiments have successfully replicated the transport processes and sedimentary characteristics associated with density flows.The initial phase is characterized by a density-velocity differential,resulting in a thicker,coarser sediment layer at the flow front,while the upper layers are thinner and finer in grain size.During the mid-phase,sliding water effects cause the fluid front to rise and facilitate rapid forward transport.This process generates multiple“new fronts”,enabling the long-distance transport of fine-grained sandstones,such as siltstone and argillaceous siltstone,into the center of the lake basin.(4)A sedimentary model primarily controlled by hyperpynal flows was established for the southwestern part of the basin,highlighting that the frequent occurrence of flood events and the steep slope topography in this area are primary controlling factors for the development of hyperpynal flows.(5)Sandstone and mudstone in the Chang 7_(3) sub-member exhibit micro-and nano-scale pore-throat systems,shale oil is present in various lithologies,while the content of movable oil varies considerably,with sandstone exhibiting the highest content of movable oil.(6)The fine-grained sediment complexes formed by multiple episodes of sandstones and mudstones associated with density flow in the Chang 7_(3) formation exhibit characteristics of“overall oil-bearing with differential storage capacity”.The combination of mudstone with low total organic carbon content(TOC)and siltstone is identified as the most favorable exploration target at present. 展开更多
关键词 fine-grained sedimentation density flow mode flume simulation experiments reservoir characteristics Chang 7_(3)sub-member Triassic Yanchang Formation shale oil Ordos Basin
在线阅读 下载PDF
Zero-shot Fine-grained Classification by Deep Feature Learning with Semantics 被引量:8
11
作者 Ao-Xue Li Ke-Xin Zhang Li-Wei Wang 《International Journal of Automation and computing》 EI CSCD 2019年第5期563-574,共12页
Fine-grained image classification, which aims to distinguish images with subtle distinctions, is a challenging task for two main reasons: lack of sufficient training data for every class and difficulty in learning dis... Fine-grained image classification, which aims to distinguish images with subtle distinctions, is a challenging task for two main reasons: lack of sufficient training data for every class and difficulty in learning discriminative features for representation. In this paper, to address the two issues, we propose a two-phase framework for recognizing images from unseen fine-grained classes, i.e., zeroshot fine-grained classification. In the first feature learning phase, we finetune deep convolutional neural networks using hierarchical semantic structure among fine-grained classes to extract discriminative deep visual features. Meanwhile, a domain adaptation structure is induced into deep convolutional neural networks to avoid domain shift from training data to test data. In the second label inference phase, a semantic directed graph is constructed over attributes of fine-grained classes. Based on this graph, we develop a label propagation algorithm to infer the labels of images in the unseen classes. Experimental results on two benchmark datasets demonstrate that our model outperforms the state-of-the-art zero-shot learning models. In addition, the features obtained by our feature learning model also yield significant gains when they are used by other zero-shot learning models, which shows the flexility of our model in zero-shot finegrained classification. 展开更多
关键词 fine-grained image CLASSIFICATION zero-shot LEARNING DEEP FEATURE LEARNING domain adaptation semantic graph
原文传递
Improving creep strength of the fine-grained heat-affected zone of novel 9Cr martensitic heat-resistant steel via modified thermo-mechanical treatment 被引量:2
12
作者 Jingwen Zhang Liming Yu +6 位作者 Yongchang Liu Ran Ding Chenxi Liu Zongqing Ma Huijun Li Qiuzhi Gao Hui Wang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第5期1037-1047,共11页
The infamous type Ⅳ failure within the fine-grained heat-affected zone (FGHAZ) in G115 steel weldments seriously threatens the safe operation of ultra-supercritical (USC) power plants.In this work,the traditional the... The infamous type Ⅳ failure within the fine-grained heat-affected zone (FGHAZ) in G115 steel weldments seriously threatens the safe operation of ultra-supercritical (USC) power plants.In this work,the traditional thermo-mechanical treatment was modified via the replacement of hot-rolling with cold rolling,i.e.,normalizing,cold rolling,and tempering (NCT),which was developed to improve the creep strength of the FGHAZ in G115 steel weldments.The NCT treatment effectively promoted the dissolution of preformed M_(23)C_(6)particles and relieved the boundary segregation of C and Cr during welding thermal cycling,which accelerated the dispersed reprecipitation of M_(23)C_(6) particles within the fresh reaustenitized grains during post-weld heat treatment.In addition,the precipitation of Cu-rich phases and MX particles was promoted evidently due to the deformation-induced dislocations.As a result,the interacting actions between precipitates,dislocations,and boundaries during creep were reinforced considerably.Following this strategy,the creep rupture life of the FGHAZ in G115 steel weldments can be prolonged by 18.6%,which can further push the application of G115 steel in USC power plants. 展开更多
关键词 G115 steel fine-grained heat-affected zone creep strength element segregation nano-sized precipitates
在线阅读 下载PDF
A Survey on Deep Learning-based Fine-grained Object Classification and Semantic Segmentation 被引量:46
13
作者 Bo Zhao Jiashi Feng +1 位作者 Xiao Wu Shuicheng Yan 《International Journal of Automation and computing》 EI CSCD 2017年第2期119-135,共17页
The deep learning technology has shown impressive performance in various vision tasks such as image classification, object detection and semantic segmentation. In particular, recent advances of deep learning technique... The deep learning technology has shown impressive performance in various vision tasks such as image classification, object detection and semantic segmentation. In particular, recent advances of deep learning techniques bring encouraging performance to fine-grained image classification which aims to distinguish subordinate-level categories, such as bird species or dog breeds. This task is extremely challenging due to high intra-class and low inter-class variance. In this paper, we review four types of deep learning based fine-grained image classification approaches, including the general convolutional neural networks (CNNs), part detection based, ensemble of networks based and visual attention based fine-grained image classification approaches. Besides, the deep learning based semantic segmentation approaches are also covered in this paper. The region proposal based and fully convolutional networks based approaches for semantic segmentation are introduced respectively. 展开更多
关键词 Deep learning fine-grained image classification semantic segmentation convolutional neural network (CNN) recurrentneural network (RNN)
原文传递
Using ontology and rules to retrieve the semantics of disaster remote sensing data 被引量:1
14
作者 DONG Yumin LI Ziyang +1 位作者 LI Xuesong LI Xiaohui 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第5期1211-1218,共8页
Remote sensing data plays an important role in natural disaster management.However,with the increase of the variety and quantity of remote sensors,the problem of“knowledge barriers”arises when data users in disaster... Remote sensing data plays an important role in natural disaster management.However,with the increase of the variety and quantity of remote sensors,the problem of“knowledge barriers”arises when data users in disaster field retrieve remote sensing data.To improve this problem,this paper proposes an ontology and rule based retrieval(ORR)method to retrieve disaster remote sensing data,and this method introduces ontology technology to express earthquake disaster and remote sensing knowledge,on this basis,and realizes the task suitability reasoning of earthquake disaster remote sensing data,mining the semantic relationship between remote sensing metadata and disasters.The prototype system is built according to the ORR method,which is compared with the traditional method,using the ORR method to retrieve disaster remote sensing data can reduce the knowledge requirements of data users in the retrieval process and improve data retrieval efficiency. 展开更多
关键词 remote sensing data DISASTER ONTOLOGY semantic reasoning
在线阅读 下载PDF
Fine-Grained Ship Recognition Based on Visible and Near-Infrared Multimodal Remote Sensing Images: Dataset,Methodology and Evaluation
15
作者 Shiwen Song Rui Zhang +1 位作者 Min Hu Feiyao Huang 《Computers, Materials & Continua》 SCIE EI 2024年第6期5243-5271,共29页
Fine-grained recognition of ships based on remote sensing images is crucial to safeguarding maritime rights and interests and maintaining national security.Currently,with the emergence of massive high-resolution multi... Fine-grained recognition of ships based on remote sensing images is crucial to safeguarding maritime rights and interests and maintaining national security.Currently,with the emergence of massive high-resolution multi-modality images,the use of multi-modality images for fine-grained recognition has become a promising technology.Fine-grained recognition of multi-modality images imposes higher requirements on the dataset samples.The key to the problem is how to extract and fuse the complementary features of multi-modality images to obtain more discriminative fusion features.The attention mechanism helps the model to pinpoint the key information in the image,resulting in a significant improvement in the model’s performance.In this paper,a dataset for fine-grained recognition of ships based on visible and near-infrared multi-modality remote sensing images has been proposed first,named Dataset for Multimodal Fine-grained Recognition of Ships(DMFGRS).It includes 1,635 pairs of visible and near-infrared remote sensing images divided into 20 categories,collated from digital orthophotos model provided by commercial remote sensing satellites.DMFGRS provides two types of annotation format files,as well as segmentation mask images corresponding to the ship targets.Then,a Multimodal Information Cross-Enhancement Network(MICE-Net)fusing features of visible and near-infrared remote sensing images,has been proposed.In the network,a dual-branch feature extraction and fusion module has been designed to obtain more expressive features.The Feature Cross Enhancement Module(FCEM)achieves the fusion enhancement of the two modal features by making the channel attention and spatial attention work cross-functionally on the feature map.A benchmark is established by evaluating state-of-the-art object recognition algorithms on DMFGRS.MICE-Net conducted experiments on DMFGRS,and the precision,recall,mAP0.5 and mAP0.5:0.95 reached 87%,77.1%,83.8%and 63.9%,respectively.Extensive experiments demonstrate that the proposed MICE-Net has more excellent performance on DMFGRS.Built on lightweight network YOLO,the model has excellent generalizability,and thus has good potential for application in real-life scenarios. 展开更多
关键词 Multi-modality dataset ship recognition fine-grained recognition attention mechanism
在线阅读 下载PDF
Integrating Ontology-Based Approaches with Deep Learning Models for Fine-Grained Sentiment Analysis
16
作者 Longgang Zhao Seok-Won Lee 《Computers, Materials & Continua》 SCIE EI 2024年第10期1855-1877,共23页
Although sentiment analysis is pivotal to understanding user preferences,existing models face significant challenges in handling context-dependent sentiments,sarcasm,and nuanced emotions.This study addresses these cha... Although sentiment analysis is pivotal to understanding user preferences,existing models face significant challenges in handling context-dependent sentiments,sarcasm,and nuanced emotions.This study addresses these challenges by integrating ontology-based methods with deep learning models,thereby enhancing sentiment analysis accuracy in complex domains such as film reviews and restaurant feedback.The framework comprises explicit topic recognition,followed by implicit topic identification to mitigate topic interference in subsequent sentiment analysis.In the context of sentiment analysis,we develop an expanded sentiment lexicon based on domainspecific corpora by leveraging techniques such as word-frequency analysis and word embedding.Furthermore,we introduce a sentiment recognition method based on both ontology-derived sentiment features and sentiment lexicons.We evaluate the performance of our system using a dataset of 10,500 restaurant reviews,focusing on sentiment classification accuracy.The incorporation of specialized lexicons and ontology structures enables the framework to discern subtle sentiment variations and context-specific expressions,thereby improving the overall sentiment-analysis performance.Experimental results demonstrate that the integration of ontology-based methods and deep learning models significantly improves sentiment analysis accuracy. 展开更多
关键词 Deep learning ONTOLOGY fine-grained sentiment analysis online reviews
在线阅读 下载PDF
Fine-grained grid computing model for Wi-Fi indoor localization in complex environments
17
作者 Yan Liang Song Chen +1 位作者 Xin Dong Tu Liu 《Journal of Electronic Science and Technology》 EI CAS CSCD 2024年第1期42-52,共11页
The fingerprinting-based approach using the wireless local area network(WLAN)is widely used for indoor localization.However,the construction of the fingerprint database is quite time-consuming.Especially when the posi... The fingerprinting-based approach using the wireless local area network(WLAN)is widely used for indoor localization.However,the construction of the fingerprint database is quite time-consuming.Especially when the position of the access point(AP)or wall changes,updating the fingerprint database in real-time is difficult.An appropriate indoor localization approach,which has a low implementation cost,excellent real-time performance,and high localization accuracy and fully considers complex indoor environment factors,is preferred in location-based services(LBSs)applications.In this paper,we proposed a fine-grained grid computing(FGGC)model to achieve decimeter-level localization accuracy.Reference points(RPs)are generated in the grid by the FGGC model.Then,the received signal strength(RSS)values at each RP are calculated with the attenuation factors,such as the frequency band,three-dimensional propagation distance,and walls in complex environments.As a result,the fingerprint database can be established automatically without manual measurement,and the efficiency and cost that the FGGC model takes for the fingerprint database are superior to previous methods.The proposed indoor localization approach,which estimates the position step by step from the approximate grid location to the fine-grained location,can achieve higher real-time performance and localization accuracy simultaneously.The mean error of the proposed model is 0.36 m,far lower than that of previous approaches.Thus,the proposed model is feasible to improve the efficiency and accuracy of Wi-Fi indoor localization.It also shows high-accuracy performance with a fast running speed even under a large-size grid.The results indicate that the proposed method can also be suitable for precise marketing,indoor navigation,and emergency rescue. 展开更多
关键词 fine-grained grid computing (FGGC) Indoor localization Path loss Random forest Reference points(RPs)
在线阅读 下载PDF
Enhancing Deep Learning Semantics:The Diffusion Sampling and Label-Driven Co-Attention Approach
18
作者 ChunhuaWang Wenqian Shang +1 位作者 Tong Yi Haibin Zhu 《Computers, Materials & Continua》 SCIE EI 2024年第5期1939-1956,共18页
The advent of self-attention mechanisms within Transformer models has significantly propelled the advancement of deep learning algorithms,yielding outstanding achievements across diverse domains.Nonetheless,self-atten... The advent of self-attention mechanisms within Transformer models has significantly propelled the advancement of deep learning algorithms,yielding outstanding achievements across diverse domains.Nonetheless,self-attention mechanisms falter when applied to datasets with intricate semantic content and extensive dependency structures.In response,this paper introduces a Diffusion Sampling and Label-Driven Co-attention Neural Network(DSLD),which adopts a diffusion sampling method to capture more comprehensive semantic information of the data.Additionally,themodel leverages the joint correlation information of labels and data to introduce the computation of text representation,correcting semantic representationbiases in thedata,andincreasing the accuracyof semantic representation.Ultimately,the model computes the corresponding classification results by synthesizing these rich data semantic representations.Experiments on seven benchmark datasets show that our proposed model achieves competitive results compared to state-of-the-art methods. 展开更多
关键词 semantic representation sampling attention label-driven co-attention attention mechanisms
在线阅读 下载PDF
A novel strategy for fine-grained semantic verification of civil aviation radiotelephony read-backs 被引量:2
19
作者 Guimin JIA Junxian LI 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2022年第12期266-277,共12页
During the flight of the aircraft,the pilot must repeat the instruction sent by the controller,and the controller must further confirm these read-backs,in this way to further ensure the safety of air transportation.Ho... During the flight of the aircraft,the pilot must repeat the instruction sent by the controller,and the controller must further confirm these read-backs,in this way to further ensure the safety of air transportation.However,fatigue,tension,negligence and other human factors may prevent the controller from realizing read-back errors in time,which is a huge hidden danger for the safety of civil aviation transportation.This paper proposes a novel strategy to implement fine-grained semantic verification of radiotelephony read-backs by introducing interaction layer and attention mechanism at the output of BiLSTM model.Compared with the traditional twochannel verification strategy,the interaction layer is added to obtain fine-grained semantic matching relation representation,rather than connecting the BiLSTM output vectors to obtain the overall semantic representation of the sentence.And by adding attention layer,the new strategy can capture the potential semantic relation between the read-backs and the instructions,which is applicable to non-standard diction and abbreviated read-backs in real radiotelephony communications.Extensive experiments are conducted and the results show that the proposed new strategy is more effective than the traditional method for read-backs checking,and the average test accuracy of the new strategy based on the Chinese ATC radiotelephony read-backs corpus can reach 93.03%. 展开更多
关键词 Attention mechanism BiLSTM Interaction layer Radiotelephony read-backs semantic verification
原文传递
Organic matter enrichment model of fine-grained rocks in volcanic rift lacustrine basin:A case study of lower submember of second member of Lower Cretaceous Shahezi Formation in Lishu rift depression of Songliao Basin,NE China
20
作者 XIE Huanyu JIANG Zaixing +1 位作者 WANG Li XUE Xinyu 《Petroleum Exploration and Development》 SCIE 2024年第5期1232-1246,共15页
Based on sedimentary characteristics of the fine-grained rocks of the lower submember of second member of the Lower Cretaceous Shahezi Formation(K_(1)sh_(2)^(L))in the Lishu rift depression,combined with methods of or... Based on sedimentary characteristics of the fine-grained rocks of the lower submember of second member of the Lower Cretaceous Shahezi Formation(K_(1)sh_(2)^(L))in the Lishu rift depression,combined with methods of organic petrology,analysis of major and trace elements as well as biological marker compound,the enrichment conditions and enrichment model of organic matter in the fine-grained sedimentary rocks in volcanic rift lacustrine basin are investigated.The change of sedimentary paleoenvironment controls the vertical distribution of different lithofacies types in the K_(1)sh_(2)^(L)and divides it into the upper and lower parts.The lower part contains massive siliceous mudstone with bioclast-bearing siliceous mudstone,whereas the upper part is mostly composed of laminated siliceous shale and laminated fine-grained mixed shale.The kerogen types of organic matter in the lower and upper parts are typesⅡ_(2)–Ⅲand typesⅠ–Ⅱ_(1),respectively.The organic carbon content in the upper part is higher than that in the lower part generally.The enrichment of organic matter in volcanic rift lacustrine basin is subjected to three favorable conditions.First,continuous enhancement of rifting is the direct factor increasing the paleo-water depth,and the rise of base level leads to the expansion of deep-water mudstone/shale deposition range.Second,relatively strong underwater volcanic eruption and rifting are simultaneous,and such event can provide a lot of nutrients for the lake basin,which is conducive to the bloom of algae,resulting in higher productivity of typesⅠ–Ⅱ_(1)kerogen.Third,the relatively dry paleoclimate leads to a decrease in input of fresh water and terrestrial materials,including TypeⅢkerogen from terrestrial higher plants,resulting in a water body with higher salinity and anoxic stratification,which is more favorable for preservation of organic matter.The organic matter enrichment model of fine-grained sedimentary rocks of volcanic rift lacustrine basin is established,which is of reference significance to the understanding of the organic matter enrichment mechanism of fine-grained sedimentary rocks of Shahezi Formation in Songliao Basin and even in the northeast China. 展开更多
关键词 fine-grained sedimentary rocks organic matter sources RIFTING volcanic activity Lower Cretaceous Shahezi Formation Lishu rift depression Songliao Basin
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部