Glaucoma filtration surgery(GFS)stands as the most effective intervention for reducing intraocular pressure,a critical component in glaucoma management.Despite its pivotal role,the scarring of the filtration bleb rema...Glaucoma filtration surgery(GFS)stands as the most effective intervention for reducing intraocular pressure,a critical component in glaucoma management.Despite its pivotal role,the scarring of the filtration bleb remains the primary impediment to successful GFS outcomes.Perioperative utilization of antimitotics,while frontline in combating fibrosis and modulating the wound healing process,carries the risk of vision-threatening complications.Given the complexity of the wound healing cascade and the potential insufficiency of targeting a single molecule,there is an imperative to expand therapeutic modalities through combination therapies.This review offers a comprehensive elucidation of the fibrogenesis post-GFS,a synthesis unprecedented in the available literature,and aims to inform the broadening of therapeutic strategies for GFS.展开更多
BACKGROUND With an increase in the elderly population,the frequency of hospitalizations in recent years has also risen at a rapid pace.This,in turn,has resulted in poor outcomes and costly treatments.Hospitalization r...BACKGROUND With an increase in the elderly population,the frequency of hospitalizations in recent years has also risen at a rapid pace.This,in turn,has resulted in poor outcomes and costly treatments.Hospitalization rates increase in elderly patients due to a decline in glomerular filtration rate(GFR).AIM To investigate the connection between GFR and comorbidity and reasons for hospitalization in elderly patients.METHODS We analyzed patients aged 75 years and over who were admitted to the internal medicine clinic of a tertiary hospital in Eskisehir.At admission,we calculated GFR values using the Modification of Diet in Renal Disease study formula and classified them into six categories:G1,G2,G3a,G3b,G4,and G5.We analyzed associations with hospitalization diagnoses and comorbidity factors.RESULTS The average age of the patients was 80.8 years(±4.5 years).GFR was 57.287±29.5 mL/kg/1.73 m2 in women and 61.3±31.5 mL/kg/1.73 m2 in men(P=0.106).Most patients were admitted to the hospital at G2 stage(32.8%).The main reasons for hospitalization were anemia(34.4%and 28.6%)and malnutrition(20.9%and 20.8%)in women and men,respectively(P=0.078).The most frequent comor-bidity leading to hospitalization was arterial hypertension(n=168,28%),fo-llowed by diabetes(n=166,27.7%)(P=0.001).CONCLUSION When evaluating geriatric patients,low GFR alone does not provide sufficient information.Patients’comorbid factors should also be taken into account.There is no association between low GFR during hospitalization and hospitalization-Hamarat H.Aging and GFR related diagnoses.Knowing the GFR value before hospitalization will be more informative in such studies.展开更多
The mechanism of hydrate-based desalination is that water molecules would transfer to the hydrate phase during gas hydrate formation process,while the salt ions would be conversely concentrated in the unreacted saltwa...The mechanism of hydrate-based desalination is that water molecules would transfer to the hydrate phase during gas hydrate formation process,while the salt ions would be conversely concentrated in the unreacted saltwater.However,the salt concentration of hydrate decomposed water and the desalination degree of hydrate phase are still unclear.The biggest challenge is how to effectively separate the hydrate phase and the remaining unreacted salt water,and then decompose the hydrate phase to measure the salt concentration of hydrate melt water.This work developed an apparatus and pressure-driven filtration method to efficiently separate the hydrate phase and the remaining unreacted saltwater.On this basis,the single hydrate phase was obtained,then it was dissociated and the salt concentration of hydrate melt water was measured.The experimental results demonstrate that when the initial salt mass concentration is 0.3% to 8.0%,the salt removal efficiency for NaCl solution is 15.9% to 29.8%by forming CO_(2) hydrate,while for CaCl_(2) solution is 28.9%to 45.5%.The solute CaCl_(2) is easier to be removed than solute NaCl.In addition,the salt removal efficiency for forming CO_(2) hydrate is higher than that for forming methane hydrate.The multi-stage desalination can continuously decrease the salt concentration of hydrate dissociated water,and the salt removal efficiency per stage is around 20%.展开更多
The increasing severity of air pollution necessitates more effective and sustained air filtration technology.Concurrently,the desire for more environmentally friendly,sustainable materials with better filtering perfor...The increasing severity of air pollution necessitates more effective and sustained air filtration technology.Concurrently,the desire for more environmentally friendly,sustainable materials with better filtering performance and less environmental impact drives the move away from conventional synthetic membranes.This review presents lignocellulosic biocomposite(LigBioComp)membranes as an alternative to traditional synthetic membranes.It focuses on their materials,fabrication,and functionalization techniques while exploring challenges and proposing methods for resourceful utilization.Renowned for their abundance and renewable nature,lignocellulosic materials consist of cellulose,hemicellulose,and lignin.Various applications can benefit from their antibacterial properties,large surface area,and remarkable mechanical strength.LigBioComp membranes are fabricated through casting,electrospinning,and freeze-drying,with advancements in fabrication techniques enhancing their performance and applicability.It is suggested to use solvent-free or low-solvent techniques such as Layer-by-Layer assembly to minimize environmental impact.Freeze-drying and electrospinning with green solvents can be used for achieving specific membrane properties,though energy consumption should be considered.Apply dry-wet spinning and solvent casting processes selectively.Functional groups,including carboxyl,hydroxyl,or amino groups,can significantly improve the membrane’s capacity to capture particulate matter.Chemical etching or the precise deposition of nanoparticles can further optimize pore size and distribution.The choice of chemicals and methods is critical in functionalization,with silane coupling agents,polyethyleneimine,and polydopamine.Future research should prioritize refining fabrication methods,advancing functionalization strategies,and conducting performance and recyclability assessments on hybrid and composite materials.This will enhance integrated systems and contribute to the development of smart filters.展开更多
Pure magnesia filter and periclase-spinel filter were prepared using porous MgO powder and Al2O3 micro-powder as raw materials.The filtration efficiency and purification mechanism of the two sets of filters on molten ...Pure magnesia filter and periclase-spinel filter were prepared using porous MgO powder and Al2O3 micro-powder as raw materials.The filtration efficiency and purification mechanism of the two sets of filters on molten steel were investigated through steel casting tests.The results show that on the basis of surviving the thermal shock of molten steel,both filters can significantly reduce the number of non-metallic inclusions and total oxygen content of steel,thereby improving the cleanliness of the molten steel.After the thermal shock of molten steel,cracks were found in the microstructure of pure magnesia filter.Via the diffusion of non-metallic inclusions from steel into MgO grains of the filter to form solid solution,the inclusions were adsorbed to the internal and external surfaces of the pure magnesia filter.The number of inclusions was reduced by 62.5%,and the total oxygen content decreased from 0.892 to 0.265 wt.%after filtration,achieving a filtration efficiency of 70.3%.Compared with the pure magnesia filter,no cracks were found in the microstructure of the periclase-spinel filter.The mass transfer rate was accelerated due to the diffusion of inclusions from steel into MgO and MgAl2O4 grains of the filter,as well as the higher high-temperature liquid content and smaller pore structure of the filter.More non-metallic inclusions were able to enter the interior of the filter,which made the periclase-spinel filter more capable of adsorbing inclusions from steel and reducing total oxygen content.The periclase-spinel filter reduced the number of inclusions in steel by 84.4%and decreased the total oxygen content of the steel from 0.892 to 0.119 wt.%,with a filtration efficiency of 86.7%,demonstrating excellent comprehensive performance.展开更多
Photocatalytic membranes hold significant potential for promoting pollutant degradation and reducing membrane fouling in filtration systems.Although extensive research has been conducted on the independent design of p...Photocatalytic membranes hold significant potential for promoting pollutant degradation and reducing membrane fouling in filtration systems.Although extensive research has been conducted on the independent design of photocatalysts or membrane materials to improve their catalytic and filtration performance,the complex structures and interface mechanisms,as well as insufficient light utilization,are still often overlooked,limiting the overall performance improvement of photocatalytic membranes.This work provides an overview of enhancement strategies involving restricted area effects,external fields,such as mechanical,magnetic,thermal,and electrical fields,as well as coupling techniques with advanced oxidation processes(e.g.,O_(3),Fenton,and persulfate oxidation)for dual enhancement of photocatalysts and membranes.In addition,the synthesis method of photocatalytic membranes and the influence of factors,such as light source type,frequency,and relative position on photocatalytic membrane performance were also studied.Finally,economic feasibility and pollutant removal performance were further evaluated to determine the promising enhancement strategies,paving the way for more efficient and scalable applications of photocatalytic membranes.展开更多
For cone beam computed tomography(CBCT),there has long been a desire to modulate the intensity and distribution of the X-rays to accommodate the patient’s anatomy as the gantry rotates from one projection to another....For cone beam computed tomography(CBCT),there has long been a desire to modulate the intensity and distribution of the X-rays to accommodate the patient’s anatomy as the gantry rotates from one projection to another.This would reduce both image artifacts and radiation dose.However,the current beam modulation setups,such as dynamic bowtie filters,may be too complex for practical use in clinical applications.This study aimed to investigate a simplified dynamic beam filtration strategy for CBCT imaging to reduce image artifacts and radiation dose.In this study,the beam filtration was designed to vary dynamically as the CBCT gantry rotates around the object.Specifically,two distinct components were integrated:the sheet filter part and the bowtie filter part.The dynamic beam filtration setup has two working schemes,one is a combination of dynamic sheet filter and dynamic bowtie filter,denoted as dynamic filterdynamic bowtie(DFDB);the other is a combination of dynamic sheet filter and static bowtie filter,denoted as dynamic filter-static bowtie(DFSB).Numerical imaging experiments were performed for three human body parts:the shoulder,chest,and knee.In addition,the Monte Carlo simulation platform MC-GPU was used to generate the dose distribution maps.Results showed that the proposed DFDB and DFSB beam filtration schemes can significantly reduce the image artifacts and thus improve the CBCT image quality.Depending on the scanned object,the total radiation dose could be reduced by 30%.The proposed simple dynamic beam filtration strategy,especially the DFSB approach,could be beneficial in the future to improve the CBCT image quality with reduced image artifacts and radiation dose.展开更多
In this paper,we study the self-similar solutions of the degenerate diffusion equation ut-div(|▽u^(m)|^(p-2)▽u^(m))=0 of polytropic filtration diffusion in R^(N)×(0,±∞)or(R^(N)/{0})×(0,±∞)with ...In this paper,we study the self-similar solutions of the degenerate diffusion equation ut-div(|▽u^(m)|^(p-2)▽u^(m))=0 of polytropic filtration diffusion in R^(N)×(0,±∞)or(R^(N)/{0})×(0,±∞)with N≥1,m>0,p>1,such that m(p-1)>1.We give a clear classification of the self-similar solutions of the form u(x,t)=(βt)^(-α/β)((βt)^(-1/β)|x|)withα∈R andβ=α[m(p-1)-1]+p,regular or singular at the origin point.The existence and uniqueness of some solutions are established by the phase plane analysis method,and the asymptotic properties of the solutions near the origin and the infinity are also described.This paper extends the classical results of self-similar solutions for degeneratep-Laplace heat equation by Bidaut-Véron[Proc Royal Soc Edinburgh,2009,139:1-43]to the doubly nonlinear degenerate diffusion equations.展开更多
AIM:To develop a 5-fluorouracil(5-FU)mesoporous poly(lactic)acid(PLA)delivery system for glaucoma filtration surgery suitable for a single subconjunctival implantation.METHODS:The 5-FU was infiltration-loaded into mes...AIM:To develop a 5-fluorouracil(5-FU)mesoporous poly(lactic)acid(PLA)delivery system for glaucoma filtration surgery suitable for a single subconjunctival implantation.METHODS:The 5-FU was infiltration-loaded into mesoporous PLA.In vitro and in vivo release experiments and ocular toxicology evaluation of the formulation were performed.The antiproliferative effect of this 5-FU-PLA tablet after glaucoma filtration surgery in rabbits was evaluated.Pathology,immunohistochemistry,and Western blot were used to further validate the inhibitory effect of this sustained release system.RESULTS:Various drug formulations were tested,and two 5-FU-PLA tablets,namely 1.5P15(5-FU 1.5 mg+PLA 15000 Da)and 2.5P15(5-FU 2.5 mg+PLA 15000 Da),had the most suitable release profiles in vitro.Further in vivo studies confirmed the safety and sustained-release profiles of both drugs.Both 5-FU-PLA tablets,relative to the free drugs,significantly inhibited tissue proliferation after glaucoma filtration and improved surgical success.Western blot showed that transforming growth factor-β(TGF-β)and connective tissue growth factor(CTGF)were inhibited by 5-FU after filtration surgery,with the effects of the 5-FU-PLA tablets being more lasting.CONCLUSION:The tested 5-FU-PLA tablets provide a sustained release of 5-FU,which may be used for a single subconjunctival implantation to inhibit proliferation after filtration surgery.展开更多
Aging is an inevitable process that is usually measured by chronological age,with people aged 65 and over being defined as"older individuals".There is disagreement in the current scientific literature regard...Aging is an inevitable process that is usually measured by chronological age,with people aged 65 and over being defined as"older individuals".There is disagreement in the current scientific literature regarding the best methods to estimate glomerular filtration rate(eGFR)in older adults.Several studies suggest the use of an age-adjusted definition to improve accuracy and avoid overdiagnosis.In contrast,some researchers argue that such changes could complicate the classification of chronic kidney disease(CKD).Several formulas,including the Modification of Diet in Renal Disease,CKD-Epidemiology Collaboration,and Cockcroft-Gault equations,are used to estimate eGFR.However,each of these formulas has significant limitations when applied to older adults,primarily due to sarcopenia and malnutrition,which greatly affect both muscle mass and creatinine levels.Alternative formulas,such as the Berlin Initiative Study and the Full Age Spectrum equations,provide more accurate estimates of values for older adults by accounting for age-related physiological changes.In frail older adults,the use of cystatin C leads to better eGFR calculations to assess renal function.Accurate eGFR measurements improve the health of older patients by enabling better medication dosing.A thorough approach that includes multiple calibrated diagnostic methods and a detailed geriatric assessment is necessary for the effective management of kidney disease and other age-related conditions in older adults.展开更多
BACKGROUND Equations for estimation glomerular filtration rate(eGFR)have been associated with poor clinical performance and their clinical accuracy and reliability have been called into question.AIM To assess the long...BACKGROUND Equations for estimation glomerular filtration rate(eGFR)have been associated with poor clinical performance and their clinical accuracy and reliability have been called into question.AIM To assess the longitudinal changes in measured glomerular filtration rate(mGFR)in patients with autosomal dominant polycystic kidney disease(ADPKD).METHODS Analysis of an ambispective data base conducted on consecutive patients diagnosed with ADPKD.The mGFR was assessed by iohexol clearance;while eGFR was calculated by three different formulas:(1)The chronic kidney disease epidemiology collaboration(CKD-EPI);(2)Modification of diet in renal disease(MDRD);and(3)The 24-hour urine creatinine clearance(CrCl).The primary end-points were the mean change in mGFR between the baseline and final visit,as well as the comparison of the mean change in mGFR with the change estimated by the different formulas.RESULTS Thirty-seven patients were included in the study.As compared to baseline,month-6 mGFR was significantly decrease by-4.4 mL/minute±10.3 mL/minute(P=0.0132).However,the CKD-EPI,MDRD,and CrCl formulas underestimated this change by 48.3%,89.0%,and 45.8%respectively,though none of these differences reached statistical significance(P=0.3647;P=0.0505;and P=0.736,respectively).The discrepancies between measured and estimated glomerular filtration rate values,as evaluated by CKD-EPI(r=0.29,P=0.086);MDRD(r=0.19,P=0.272);and CrCl(r=0.09,P=0.683),were not correlated with baseline mGFR values.CONCLUSION This study indicated that eGFR inaccurately reflects the decline in mGFR and cannot reliably track changes over time.This poses significant challenges for clinical decision-making,particularly in treatment strategies.展开更多
The pretreatment for the removal of small molecules from poly(acrylic acid) sodium (PAAS) solution by continuous diafiltration was investigated using ultrafiltration membrane. The effects of PAAS concentration, pH, tr...The pretreatment for the removal of small molecules from poly(acrylic acid) sodium (PAAS) solution by continuous diafiltration was investigated using ultrafiltration membrane. The effects of PAAS concentration, pH, trans-membrane pressure and pretreatment time on the permeate concentration and permeate flux were studied. The results show that the necessary pretreatment time (NPT) increases with PAAS concentration, decreases with TMP. The change trend of permeate flux with time is affected by pH. The permeate fluxes rapidly decrease from the start, and then increase gradually to stable values at pH 5.0, pH 7.0 and pH 9.3. However, it decreases gradually with time till a state value at pH 3.0 (iso-electric point, IEP). The removal of small molecules is easy at pH greater than iso-electric point (IEP). The change of filtration potential with time indicates the similar trend to that of permeation concentration, but the former is more convenient for indication of NPT.展开更多
Cake filtration has been widely used in many chemical processes with more non-Newtonian, highly viscous and compressible materials involved. Neither traditional nor modem filtration theory can be applied in practice ...Cake filtration has been widely used in many chemical processes with more non-Newtonian, highly viscous and compressible materials involved. Neither traditional nor modem filtration theory can be applied in practice "Equivalent cake filtration model" is a recently developed mathematical model to describe cake filtration for both Newtonian and non-Newtonian fluids, in either steady or unsteady filtration stages. This model has two strengths: (1) It can be used to determine equivalent capillary radii and predict filtration quality based on the properties of solid/liquid system and operation parameters; and (2) to calculate cake specific resistance and its variations with time at various cake thickness locations.展开更多
Aim A novel method has been developed for evaluation of the levels of total residual protein in antibiotics produced by fermentation using gel filtration chromatography (GFC) combined with Bradford assay based on dete...Aim A novel method has been developed for evaluation of the levels of total residual protein in antibiotics produced by fermentation using gel filtration chromatography (GFC) combined with Bradford assay based on determination of residual protein in lincomycin hydrochloride. Methods The chromatographic conditions were SuperdexTM peptide column, 0.01 mol*L-1 phosphate buffer solution as mobile phase, and flow rate of 1 mL·min-1. Five hundred microliters of lincomycin hydrochloride solution (3 g of lincomycin hydrochloride dissolved in 10 mL of mobile phase) was injected into the chromatograph and the eluted solution was collected between 6 min and 14.5 min (protein eluted from column within this period), and the residual content of total protein in the eluted solution was assayed using Bradford assay method. Results The average recovery was more than 90% for bovine serum albumin, the calibration equation for the range of 0-12 μg·mL-1 of protein was y=-0.002 4x2+0.064 2x+0.002 9, r2=0.999 9, RSD=0.1%-0.9%, and the LOD and LOQ were 3 and 10 ng·mL-1 of protein, respectively. Conclusion The novel method for determining the residual protein in ferment antibio-tics is simple, rapid, and precise.展开更多
The research on Constructed Soil Rapid Infiltration(CSRI) system is in its infancy at home and abroad.There are several details about the mechanism and application of CSRI system needed to be further studied.A major l...The research on Constructed Soil Rapid Infiltration(CSRI) system is in its infancy at home and abroad.There are several details about the mechanism and application of CSRI system needed to be further studied.A major limitation in the current research is the absence of degradation dynamics of pollutants,and the height of filtration bed in CSRI system currently determined by empirical judgment lacks accuracy and logicality.To solve these two prob-lems,the soil column of CSRI system was utilized to treat domestic wastewater,meanwhile,the NH3-N degradation dynamics were studied according to the Monod equation,the research of Mann A T and the NH3-N degradation law.Then the mathematical model of filtration bed height was built based on NH3-N degradation dynamics equation in the soil column.It has been proven that within a limited range this model can calculate the appropriate height of filtration bed accurately in order to optimize technological parameters of hydraulic load and the concentration of influent NH3-N,improving the effluent quality of CSRI system.展开更多
New modified combination mathematical models including the pores blocking models and the cake layer models were developed to describe the continuous cross-flow microfiltration in an airlift external loop slurry reacto...New modified combination mathematical models including the pores blocking models and the cake layer models were developed to describe the continuous cross-flow microfiltration in an airlift external loop slurry reactor. The pores blocking models were created based on the standard blocking law and the intermediate blocking law, and then the cake layer models were developed based on the hydrodynamic theory in which the calculation method of porosity of cake layer was newly corrected. The Air-Water-FCC equilibrium catalysts cold model experiment was used to verify the relevant models.Results showed that the calculated values fitted well with experimental data with a relative error of less than 10%.展开更多
The development of formulas estimating glomerular filtration rate(eG FR) from serum creatinine and cystatin C and accounting for certain variables affecting the production rate of these biomarkers, including ethnicity...The development of formulas estimating glomerular filtration rate(eG FR) from serum creatinine and cystatin C and accounting for certain variables affecting the production rate of these biomarkers, including ethnicity, gender and age, has led to the current scheme of diagnosing and staging chronic kidney disease(CKD),which is based on e GFR values and albuminuria.This scheme has been applied extensively in various populations and has led to the current estimates of prevalence of CKD. In addition, this scheme is applied in clinical studies evaluating the risks of CKD and the efficacy of various interventions directed towards improving its course. Disagreements between creatinine-based and cystatin-based e GFR values and between e GFR values and measured GFR have been reported in various cohorts. These disagreements are the consequence of variations in the rate of production and in factors, other than GFR, affecting the rate of removal of creatinine and cystatin C. The disagreements create limitations for all e GFR formulas developed so far. The main limitations are low sensitivity in detecting early CKD in several subjects, e.g., those with hyperfiltration, and poor prediction of the course of CKD. Research efforts in CKD are currently directed towards identification of biomarkers that are better indices of GFR than the current biomarkers and,particularly, biomarkers of early renal tissue injury.展开更多
A simple harmonic motion is proposed to make the membrane move in a simpleharmonic way so as to enhance the membrane filtration, and minimize the membrane fouling andconcentration polarization. The velocity distributi...A simple harmonic motion is proposed to make the membrane move in a simpleharmonic way so as to enhance the membrane filtration, and minimize the membrane fouling andconcentration polarization. The velocity distribution and pressure distribution are deduced from theNavier-Stokes equation on the basis of a laminar flow when the membrane rotates at the speed of Asin(αt). And then the shear stress, shear force, moment of force on the membrane surface and powerconsumed by viscous force are calculated. The velocity distribution demonstrates that the phase ofmembrane velocity does not synchronize with that of shear stress. The simple harmonic motion canresult in self-cleaning, optimize energy utilization, provide the velocity field with instability,and make the feed fluid fluctuation. It also results in higher shear stress on the membrane surfacethan the constant motion when they consume the same quantitative energy.展开更多
The presence of newly emerging pollutants in the aquatic environment poses great challenges for drink-ing water treatment plants.Due to their low concentrations and unknown characteristics,emerging pol-lutants cannot ...The presence of newly emerging pollutants in the aquatic environment poses great challenges for drink-ing water treatment plants.Due to their low concentrations and unknown characteristics,emerging pol-lutants cannot be efficiently removed by conventional water treatment processes,making technically,economically,and environmentally friendly water purification technologies increasingly important.This article introduces a one-step reverse osmosis(OSRO)concept consisting of riverbank filtration(RBF)and reverse osmosis(RO)for drinking water treatment.The OSRO concept combines the relatively low-cost natural pretreatment of river water with an advanced engineered purification system.RBF pro-vides a continuous natural source of water with stable water quality and a robust barrier for contami-nants.With the pre-removal of particles,organic matter,organic micro-pollutants(OMPs),and microbes,RBF becomes an ideal source for a purification system based on RO membranes,in comparison with the direct intake of surface water.OSRO treatment removes almost 99.9%of the particles,pathogens,viruses,and OMPs,as well as the vast majority of nutrients,and thus meets the requirements for the chlorine-free delivery of drinking water with high biostability.The OSRO treatment is cost effective com-pared with the standard conventional series of purification steps involving sprinkling filters,softening,and activated carbon.Artificial bank filtration(ABF),which functions as an artificial recharge in combi-nation with a sand filtration system,is proposed as an alternative for RBF in the OSRO concept to supply drinking water from locally available resources.It is also suggested that the OSRO concept be imple-mented with wind power as an alternative energy source in order to be more sustainable and renewable.An OSRO-based decentralized water system is proposed for water reclaiming and reuse.It is suggested that future water treatment focus on the combination of natural and engineered systems to provide drinking water through technically efficient,financially feasible,resource reusable,and environmentally relevant means.展开更多
Aluminum salt coagulants were used prevalently in various water works. In this article, the effects of filtration on residual aluminum concentration and species distribution were researched by determining the concentr...Aluminum salt coagulants were used prevalently in various water works. In this article, the effects of filtration on residual aluminum concentration and species distribution were researched by determining the concentration of different aluminum species before and after single layer filter, double layer filter, and membrane filtration units. In the research, size exclusion chromatography (SEC) was used to separate colloidal and soluble aluminum, ion exchange chromatography (IEC) was used to separate organic and inorganic aluminum, and inductivity coupled plasma-atomic emission spectrometry (ICP-AES) was used to determine the aluminum concentration. The results showed that the rapid filtration process had the ability of removing residual aluminum from coagulant effluent water, and that double layer filtration was more effective in residual aluminum removal than single layer filtration, while nano filtration was more effective than micro filtration. It was found that when the residual aluminum concentration was below lmg/L in sediment effluent, the residual aluminum concentration in treated water was above 0.2 mg/L. The direct rapid filtration process mainly removed the suspended aluminum. The removal of soluble and colloidal aluminum was always less than 10% and the natural small particles that adsorbed the amount of soluble or small particles aluminum on their surface were difficult to be removed in this process. Micro filtration and nano filtration were good technologies for removing aluminum; the residual aluminum concentration in the effluent was less than 0.05 mg/L.展开更多
基金Supported by Hospital Level Project of the Eye Hospital of China Academy of Chinese Medical Sciences(No.GSP5-40)Internal Project of the Eye Hospital of China Academy of Chinese Medical Sciences(No.1011632).
文摘Glaucoma filtration surgery(GFS)stands as the most effective intervention for reducing intraocular pressure,a critical component in glaucoma management.Despite its pivotal role,the scarring of the filtration bleb remains the primary impediment to successful GFS outcomes.Perioperative utilization of antimitotics,while frontline in combating fibrosis and modulating the wound healing process,carries the risk of vision-threatening complications.Given the complexity of the wound healing cascade and the potential insufficiency of targeting a single molecule,there is an imperative to expand therapeutic modalities through combination therapies.This review offers a comprehensive elucidation of the fibrogenesis post-GFS,a synthesis unprecedented in the available literature,and aims to inform the broadening of therapeutic strategies for GFS.
文摘BACKGROUND With an increase in the elderly population,the frequency of hospitalizations in recent years has also risen at a rapid pace.This,in turn,has resulted in poor outcomes and costly treatments.Hospitalization rates increase in elderly patients due to a decline in glomerular filtration rate(GFR).AIM To investigate the connection between GFR and comorbidity and reasons for hospitalization in elderly patients.METHODS We analyzed patients aged 75 years and over who were admitted to the internal medicine clinic of a tertiary hospital in Eskisehir.At admission,we calculated GFR values using the Modification of Diet in Renal Disease study formula and classified them into six categories:G1,G2,G3a,G3b,G4,and G5.We analyzed associations with hospitalization diagnoses and comorbidity factors.RESULTS The average age of the patients was 80.8 years(±4.5 years).GFR was 57.287±29.5 mL/kg/1.73 m2 in women and 61.3±31.5 mL/kg/1.73 m2 in men(P=0.106).Most patients were admitted to the hospital at G2 stage(32.8%).The main reasons for hospitalization were anemia(34.4%and 28.6%)and malnutrition(20.9%and 20.8%)in women and men,respectively(P=0.078).The most frequent comor-bidity leading to hospitalization was arterial hypertension(n=168,28%),fo-llowed by diabetes(n=166,27.7%)(P=0.001).CONCLUSION When evaluating geriatric patients,low GFR alone does not provide sufficient information.Patients’comorbid factors should also be taken into account.There is no association between low GFR during hospitalization and hospitalization-Hamarat H.Aging and GFR related diagnoses.Knowing the GFR value before hospitalization will be more informative in such studies.
基金The financial support from the National Natural Science Foundation of China(22127812,22278433,22178379)the National Key Research and Development Program of China(2021YFC2800902)are gratefully acknowledged。
文摘The mechanism of hydrate-based desalination is that water molecules would transfer to the hydrate phase during gas hydrate formation process,while the salt ions would be conversely concentrated in the unreacted saltwater.However,the salt concentration of hydrate decomposed water and the desalination degree of hydrate phase are still unclear.The biggest challenge is how to effectively separate the hydrate phase and the remaining unreacted salt water,and then decompose the hydrate phase to measure the salt concentration of hydrate melt water.This work developed an apparatus and pressure-driven filtration method to efficiently separate the hydrate phase and the remaining unreacted saltwater.On this basis,the single hydrate phase was obtained,then it was dissociated and the salt concentration of hydrate melt water was measured.The experimental results demonstrate that when the initial salt mass concentration is 0.3% to 8.0%,the salt removal efficiency for NaCl solution is 15.9% to 29.8%by forming CO_(2) hydrate,while for CaCl_(2) solution is 28.9%to 45.5%.The solute CaCl_(2) is easier to be removed than solute NaCl.In addition,the salt removal efficiency for forming CO_(2) hydrate is higher than that for forming methane hydrate.The multi-stage desalination can continuously decrease the salt concentration of hydrate dissociated water,and the salt removal efficiency per stage is around 20%.
基金funded by the Universiti Teknologi Malaysia(UTM)through research Grant Number:06E05.
文摘The increasing severity of air pollution necessitates more effective and sustained air filtration technology.Concurrently,the desire for more environmentally friendly,sustainable materials with better filtering performance and less environmental impact drives the move away from conventional synthetic membranes.This review presents lignocellulosic biocomposite(LigBioComp)membranes as an alternative to traditional synthetic membranes.It focuses on their materials,fabrication,and functionalization techniques while exploring challenges and proposing methods for resourceful utilization.Renowned for their abundance and renewable nature,lignocellulosic materials consist of cellulose,hemicellulose,and lignin.Various applications can benefit from their antibacterial properties,large surface area,and remarkable mechanical strength.LigBioComp membranes are fabricated through casting,electrospinning,and freeze-drying,with advancements in fabrication techniques enhancing their performance and applicability.It is suggested to use solvent-free or low-solvent techniques such as Layer-by-Layer assembly to minimize environmental impact.Freeze-drying and electrospinning with green solvents can be used for achieving specific membrane properties,though energy consumption should be considered.Apply dry-wet spinning and solvent casting processes selectively.Functional groups,including carboxyl,hydroxyl,or amino groups,can significantly improve the membrane’s capacity to capture particulate matter.Chemical etching or the precise deposition of nanoparticles can further optimize pore size and distribution.The choice of chemicals and methods is critical in functionalization,with silane coupling agents,polyethyleneimine,and polydopamine.Future research should prioritize refining fabrication methods,advancing functionalization strategies,and conducting performance and recyclability assessments on hybrid and composite materials.This will enhance integrated systems and contribute to the development of smart filters.
基金supported by the Key Project of the National Natural Science Foundation of China(Grant No.U21A2058 and U1860205)the Natural Science Funds of Hubei Province for Distinguished Young Scholars(Grant No.2020CFA088).
文摘Pure magnesia filter and periclase-spinel filter were prepared using porous MgO powder and Al2O3 micro-powder as raw materials.The filtration efficiency and purification mechanism of the two sets of filters on molten steel were investigated through steel casting tests.The results show that on the basis of surviving the thermal shock of molten steel,both filters can significantly reduce the number of non-metallic inclusions and total oxygen content of steel,thereby improving the cleanliness of the molten steel.After the thermal shock of molten steel,cracks were found in the microstructure of pure magnesia filter.Via the diffusion of non-metallic inclusions from steel into MgO grains of the filter to form solid solution,the inclusions were adsorbed to the internal and external surfaces of the pure magnesia filter.The number of inclusions was reduced by 62.5%,and the total oxygen content decreased from 0.892 to 0.265 wt.%after filtration,achieving a filtration efficiency of 70.3%.Compared with the pure magnesia filter,no cracks were found in the microstructure of the periclase-spinel filter.The mass transfer rate was accelerated due to the diffusion of inclusions from steel into MgO and MgAl2O4 grains of the filter,as well as the higher high-temperature liquid content and smaller pore structure of the filter.More non-metallic inclusions were able to enter the interior of the filter,which made the periclase-spinel filter more capable of adsorbing inclusions from steel and reducing total oxygen content.The periclase-spinel filter reduced the number of inclusions in steel by 84.4%and decreased the total oxygen content of the steel from 0.892 to 0.119 wt.%,with a filtration efficiency of 86.7%,demonstrating excellent comprehensive performance.
基金supported by the BRICS STI Framework Programme(No.52261145703)the Higher Education Discipline Innovation Project(National 111 Project,No.B16016)the Guangxi Key Research and Development Plan Project(AB24010117).
文摘Photocatalytic membranes hold significant potential for promoting pollutant degradation and reducing membrane fouling in filtration systems.Although extensive research has been conducted on the independent design of photocatalysts or membrane materials to improve their catalytic and filtration performance,the complex structures and interface mechanisms,as well as insufficient light utilization,are still often overlooked,limiting the overall performance improvement of photocatalytic membranes.This work provides an overview of enhancement strategies involving restricted area effects,external fields,such as mechanical,magnetic,thermal,and electrical fields,as well as coupling techniques with advanced oxidation processes(e.g.,O_(3),Fenton,and persulfate oxidation)for dual enhancement of photocatalysts and membranes.In addition,the synthesis method of photocatalytic membranes and the influence of factors,such as light source type,frequency,and relative position on photocatalytic membrane performance were also studied.Finally,economic feasibility and pollutant removal performance were further evaluated to determine the promising enhancement strategies,paving the way for more efficient and scalable applications of photocatalytic membranes.
文摘For cone beam computed tomography(CBCT),there has long been a desire to modulate the intensity and distribution of the X-rays to accommodate the patient’s anatomy as the gantry rotates from one projection to another.This would reduce both image artifacts and radiation dose.However,the current beam modulation setups,such as dynamic bowtie filters,may be too complex for practical use in clinical applications.This study aimed to investigate a simplified dynamic beam filtration strategy for CBCT imaging to reduce image artifacts and radiation dose.In this study,the beam filtration was designed to vary dynamically as the CBCT gantry rotates around the object.Specifically,two distinct components were integrated:the sheet filter part and the bowtie filter part.The dynamic beam filtration setup has two working schemes,one is a combination of dynamic sheet filter and dynamic bowtie filter,denoted as dynamic filterdynamic bowtie(DFDB);the other is a combination of dynamic sheet filter and static bowtie filter,denoted as dynamic filter-static bowtie(DFSB).Numerical imaging experiments were performed for three human body parts:the shoulder,chest,and knee.In addition,the Monte Carlo simulation platform MC-GPU was used to generate the dose distribution maps.Results showed that the proposed DFDB and DFSB beam filtration schemes can significantly reduce the image artifacts and thus improve the CBCT image quality.Depending on the scanned object,the total radiation dose could be reduced by 30%.The proposed simple dynamic beam filtration strategy,especially the DFSB approach,could be beneficial in the future to improve the CBCT image quality with reduced image artifacts and radiation dose.
基金supported by the NSFC(12271178,12171166)the Guangzhou Basic and Applied Basic Research Foundation(2024A04J2022)the TCL Young Scholar(2024-2027).
文摘In this paper,we study the self-similar solutions of the degenerate diffusion equation ut-div(|▽u^(m)|^(p-2)▽u^(m))=0 of polytropic filtration diffusion in R^(N)×(0,±∞)or(R^(N)/{0})×(0,±∞)with N≥1,m>0,p>1,such that m(p-1)>1.We give a clear classification of the self-similar solutions of the form u(x,t)=(βt)^(-α/β)((βt)^(-1/β)|x|)withα∈R andβ=α[m(p-1)-1]+p,regular or singular at the origin point.The existence and uniqueness of some solutions are established by the phase plane analysis method,and the asymptotic properties of the solutions near the origin and the infinity are also described.This paper extends the classical results of self-similar solutions for degeneratep-Laplace heat equation by Bidaut-Véron[Proc Royal Soc Edinburgh,2009,139:1-43]to the doubly nonlinear degenerate diffusion equations.
基金Supported by the National Natural Science Foundation of China(No.82301211)Beijing Natural Science Foundation(No.J230028).
文摘AIM:To develop a 5-fluorouracil(5-FU)mesoporous poly(lactic)acid(PLA)delivery system for glaucoma filtration surgery suitable for a single subconjunctival implantation.METHODS:The 5-FU was infiltration-loaded into mesoporous PLA.In vitro and in vivo release experiments and ocular toxicology evaluation of the formulation were performed.The antiproliferative effect of this 5-FU-PLA tablet after glaucoma filtration surgery in rabbits was evaluated.Pathology,immunohistochemistry,and Western blot were used to further validate the inhibitory effect of this sustained release system.RESULTS:Various drug formulations were tested,and two 5-FU-PLA tablets,namely 1.5P15(5-FU 1.5 mg+PLA 15000 Da)and 2.5P15(5-FU 2.5 mg+PLA 15000 Da),had the most suitable release profiles in vitro.Further in vivo studies confirmed the safety and sustained-release profiles of both drugs.Both 5-FU-PLA tablets,relative to the free drugs,significantly inhibited tissue proliferation after glaucoma filtration and improved surgical success.Western blot showed that transforming growth factor-β(TGF-β)and connective tissue growth factor(CTGF)were inhibited by 5-FU after filtration surgery,with the effects of the 5-FU-PLA tablets being more lasting.CONCLUSION:The tested 5-FU-PLA tablets provide a sustained release of 5-FU,which may be used for a single subconjunctival implantation to inhibit proliferation after filtration surgery.
文摘Aging is an inevitable process that is usually measured by chronological age,with people aged 65 and over being defined as"older individuals".There is disagreement in the current scientific literature regarding the best methods to estimate glomerular filtration rate(eGFR)in older adults.Several studies suggest the use of an age-adjusted definition to improve accuracy and avoid overdiagnosis.In contrast,some researchers argue that such changes could complicate the classification of chronic kidney disease(CKD).Several formulas,including the Modification of Diet in Renal Disease,CKD-Epidemiology Collaboration,and Cockcroft-Gault equations,are used to estimate eGFR.However,each of these formulas has significant limitations when applied to older adults,primarily due to sarcopenia and malnutrition,which greatly affect both muscle mass and creatinine levels.Alternative formulas,such as the Berlin Initiative Study and the Full Age Spectrum equations,provide more accurate estimates of values for older adults by accounting for age-related physiological changes.In frail older adults,the use of cystatin C leads to better eGFR calculations to assess renal function.Accurate eGFR measurements improve the health of older patients by enabling better medication dosing.A thorough approach that includes multiple calibrated diagnostic methods and a detailed geriatric assessment is necessary for the effective management of kidney disease and other age-related conditions in older adults.
文摘BACKGROUND Equations for estimation glomerular filtration rate(eGFR)have been associated with poor clinical performance and their clinical accuracy and reliability have been called into question.AIM To assess the longitudinal changes in measured glomerular filtration rate(mGFR)in patients with autosomal dominant polycystic kidney disease(ADPKD).METHODS Analysis of an ambispective data base conducted on consecutive patients diagnosed with ADPKD.The mGFR was assessed by iohexol clearance;while eGFR was calculated by three different formulas:(1)The chronic kidney disease epidemiology collaboration(CKD-EPI);(2)Modification of diet in renal disease(MDRD);and(3)The 24-hour urine creatinine clearance(CrCl).The primary end-points were the mean change in mGFR between the baseline and final visit,as well as the comparison of the mean change in mGFR with the change estimated by the different formulas.RESULTS Thirty-seven patients were included in the study.As compared to baseline,month-6 mGFR was significantly decrease by-4.4 mL/minute±10.3 mL/minute(P=0.0132).However,the CKD-EPI,MDRD,and CrCl formulas underestimated this change by 48.3%,89.0%,and 45.8%respectively,though none of these differences reached statistical significance(P=0.3647;P=0.0505;and P=0.736,respectively).The discrepancies between measured and estimated glomerular filtration rate values,as evaluated by CKD-EPI(r=0.29,P=0.086);MDRD(r=0.19,P=0.272);and CrCl(r=0.09,P=0.683),were not correlated with baseline mGFR values.CONCLUSION This study indicated that eGFR inaccurately reflects the decline in mGFR and cannot reliably track changes over time.This poses significant challenges for clinical decision-making,particularly in treatment strategies.
基金Projects(21176264,21476265)supported by the National Natural Science Foundation of China
文摘The pretreatment for the removal of small molecules from poly(acrylic acid) sodium (PAAS) solution by continuous diafiltration was investigated using ultrafiltration membrane. The effects of PAAS concentration, pH, trans-membrane pressure and pretreatment time on the permeate concentration and permeate flux were studied. The results show that the necessary pretreatment time (NPT) increases with PAAS concentration, decreases with TMP. The change trend of permeate flux with time is affected by pH. The permeate fluxes rapidly decrease from the start, and then increase gradually to stable values at pH 5.0, pH 7.0 and pH 9.3. However, it decreases gradually with time till a state value at pH 3.0 (iso-electric point, IEP). The removal of small molecules is easy at pH greater than iso-electric point (IEP). The change of filtration potential with time indicates the similar trend to that of permeation concentration, but the former is more convenient for indication of NPT.
文摘Cake filtration has been widely used in many chemical processes with more non-Newtonian, highly viscous and compressible materials involved. Neither traditional nor modem filtration theory can be applied in practice "Equivalent cake filtration model" is a recently developed mathematical model to describe cake filtration for both Newtonian and non-Newtonian fluids, in either steady or unsteady filtration stages. This model has two strengths: (1) It can be used to determine equivalent capillary radii and predict filtration quality based on the properties of solid/liquid system and operation parameters; and (2) to calculate cake specific resistance and its variations with time at various cake thickness locations.
文摘Aim A novel method has been developed for evaluation of the levels of total residual protein in antibiotics produced by fermentation using gel filtration chromatography (GFC) combined with Bradford assay based on determination of residual protein in lincomycin hydrochloride. Methods The chromatographic conditions were SuperdexTM peptide column, 0.01 mol*L-1 phosphate buffer solution as mobile phase, and flow rate of 1 mL·min-1. Five hundred microliters of lincomycin hydrochloride solution (3 g of lincomycin hydrochloride dissolved in 10 mL of mobile phase) was injected into the chromatograph and the eluted solution was collected between 6 min and 14.5 min (protein eluted from column within this period), and the residual content of total protein in the eluted solution was assayed using Bradford assay method. Results The average recovery was more than 90% for bovine serum albumin, the calibration equation for the range of 0-12 μg·mL-1 of protein was y=-0.002 4x2+0.064 2x+0.002 9, r2=0.999 9, RSD=0.1%-0.9%, and the LOD and LOQ were 3 and 10 ng·mL-1 of protein, respectively. Conclusion The novel method for determining the residual protein in ferment antibio-tics is simple, rapid, and precise.
基金Under the auspices of Foundational Research Fund of Science Application in Sichuan Province (No. 05J029-098)
文摘The research on Constructed Soil Rapid Infiltration(CSRI) system is in its infancy at home and abroad.There are several details about the mechanism and application of CSRI system needed to be further studied.A major limitation in the current research is the absence of degradation dynamics of pollutants,and the height of filtration bed in CSRI system currently determined by empirical judgment lacks accuracy and logicality.To solve these two prob-lems,the soil column of CSRI system was utilized to treat domestic wastewater,meanwhile,the NH3-N degradation dynamics were studied according to the Monod equation,the research of Mann A T and the NH3-N degradation law.Then the mathematical model of filtration bed height was built based on NH3-N degradation dynamics equation in the soil column.It has been proven that within a limited range this model can calculate the appropriate height of filtration bed accurately in order to optimize technological parameters of hydraulic load and the concentration of influent NH3-N,improving the effluent quality of CSRI system.
基金financially supported by the National Key Research & Development Program of China (2016YFB0301600)
文摘New modified combination mathematical models including the pores blocking models and the cake layer models were developed to describe the continuous cross-flow microfiltration in an airlift external loop slurry reactor. The pores blocking models were created based on the standard blocking law and the intermediate blocking law, and then the cake layer models were developed based on the hydrodynamic theory in which the calculation method of porosity of cake layer was newly corrected. The Air-Water-FCC equilibrium catalysts cold model experiment was used to verify the relevant models.Results showed that the calculated values fitted well with experimental data with a relative error of less than 10%.
基金the Research Service of the Raymond G. Murphy VA Medical Center for its support of this work
文摘The development of formulas estimating glomerular filtration rate(eG FR) from serum creatinine and cystatin C and accounting for certain variables affecting the production rate of these biomarkers, including ethnicity, gender and age, has led to the current scheme of diagnosing and staging chronic kidney disease(CKD),which is based on e GFR values and albuminuria.This scheme has been applied extensively in various populations and has led to the current estimates of prevalence of CKD. In addition, this scheme is applied in clinical studies evaluating the risks of CKD and the efficacy of various interventions directed towards improving its course. Disagreements between creatinine-based and cystatin-based e GFR values and between e GFR values and measured GFR have been reported in various cohorts. These disagreements are the consequence of variations in the rate of production and in factors, other than GFR, affecting the rate of removal of creatinine and cystatin C. The disagreements create limitations for all e GFR formulas developed so far. The main limitations are low sensitivity in detecting early CKD in several subjects, e.g., those with hyperfiltration, and poor prediction of the course of CKD. Research efforts in CKD are currently directed towards identification of biomarkers that are better indices of GFR than the current biomarkers and,particularly, biomarkers of early renal tissue injury.
文摘A simple harmonic motion is proposed to make the membrane move in a simpleharmonic way so as to enhance the membrane filtration, and minimize the membrane fouling andconcentration polarization. The velocity distribution and pressure distribution are deduced from theNavier-Stokes equation on the basis of a laminar flow when the membrane rotates at the speed of Asin(αt). And then the shear stress, shear force, moment of force on the membrane surface and powerconsumed by viscous force are calculated. The velocity distribution demonstrates that the phase ofmembrane velocity does not synchronize with that of shear stress. The simple harmonic motion canresult in self-cleaning, optimize energy utilization, provide the velocity field with instability,and make the feed fluid fluctuation. It also results in higher shear stress on the membrane surfacethan the constant motion when they consume the same quantitative energy.
基金support from the National Key Research and Development(R&D)program of China(2018YFE0204100)the National Natural Science Foundation of China for International Cooperation and Exchange(51820105011).
文摘The presence of newly emerging pollutants in the aquatic environment poses great challenges for drink-ing water treatment plants.Due to their low concentrations and unknown characteristics,emerging pol-lutants cannot be efficiently removed by conventional water treatment processes,making technically,economically,and environmentally friendly water purification technologies increasingly important.This article introduces a one-step reverse osmosis(OSRO)concept consisting of riverbank filtration(RBF)and reverse osmosis(RO)for drinking water treatment.The OSRO concept combines the relatively low-cost natural pretreatment of river water with an advanced engineered purification system.RBF pro-vides a continuous natural source of water with stable water quality and a robust barrier for contami-nants.With the pre-removal of particles,organic matter,organic micro-pollutants(OMPs),and microbes,RBF becomes an ideal source for a purification system based on RO membranes,in comparison with the direct intake of surface water.OSRO treatment removes almost 99.9%of the particles,pathogens,viruses,and OMPs,as well as the vast majority of nutrients,and thus meets the requirements for the chlorine-free delivery of drinking water with high biostability.The OSRO treatment is cost effective com-pared with the standard conventional series of purification steps involving sprinkling filters,softening,and activated carbon.Artificial bank filtration(ABF),which functions as an artificial recharge in combi-nation with a sand filtration system,is proposed as an alternative for RBF in the OSRO concept to supply drinking water from locally available resources.It is also suggested that the OSRO concept be imple-mented with wind power as an alternative energy source in order to be more sustainable and renewable.An OSRO-based decentralized water system is proposed for water reclaiming and reuse.It is suggested that future water treatment focus on the combination of natural and engineered systems to provide drinking water through technically efficient,financially feasible,resource reusable,and environmentally relevant means.
基金Project supported by the National Natural Science Foundation of China(No. 50238020)the American Aluminum Foundation.
文摘Aluminum salt coagulants were used prevalently in various water works. In this article, the effects of filtration on residual aluminum concentration and species distribution were researched by determining the concentration of different aluminum species before and after single layer filter, double layer filter, and membrane filtration units. In the research, size exclusion chromatography (SEC) was used to separate colloidal and soluble aluminum, ion exchange chromatography (IEC) was used to separate organic and inorganic aluminum, and inductivity coupled plasma-atomic emission spectrometry (ICP-AES) was used to determine the aluminum concentration. The results showed that the rapid filtration process had the ability of removing residual aluminum from coagulant effluent water, and that double layer filtration was more effective in residual aluminum removal than single layer filtration, while nano filtration was more effective than micro filtration. It was found that when the residual aluminum concentration was below lmg/L in sediment effluent, the residual aluminum concentration in treated water was above 0.2 mg/L. The direct rapid filtration process mainly removed the suspended aluminum. The removal of soluble and colloidal aluminum was always less than 10% and the natural small particles that adsorbed the amount of soluble or small particles aluminum on their surface were difficult to be removed in this process. Micro filtration and nano filtration were good technologies for removing aluminum; the residual aluminum concentration in the effluent was less than 0.05 mg/L.