The adaptive filtering algorithm with a fixed projection order is unable to adjust its performance in response to changes in the external environment of airborne radars.To overcome this limitation,a new approach is in...The adaptive filtering algorithm with a fixed projection order is unable to adjust its performance in response to changes in the external environment of airborne radars.To overcome this limitation,a new approach is introduced,which is the variable projection order Ekblom norm-promoted adaptive algorithm(VPO-EPAA).The method begins by examining the mean squared deviation(MSD)of the EPAA,deriving a formula for its MSD.Next,it compares the MSD of EPAA at two different projection orders and selects the one that minimizes the MSD as the parameter for the current iteration.Furthermore,the algorithm’s computational complexity is analyzed theoretically.Simulation results from system identification and self-interference cancellation show that the proposed algorithm performs exceptionally well in airborne radar signal self-interference cancellation,even under various noise intensities and types of interference.展开更多
The work proposes a distributed Kalman filtering(KF)algorithm to track a time-varying unknown signal process for a stochastic regression model over network systems in a cooperative way.We provide the stability analysi...The work proposes a distributed Kalman filtering(KF)algorithm to track a time-varying unknown signal process for a stochastic regression model over network systems in a cooperative way.We provide the stability analysis of the proposed distributed KF algorithm without independent and stationary signal assumptions,which implies that the theoretical results are able to be applied to stochastic feedback systems.Note that the main difficulty of stability analysis lies in analyzing the properties of the product of non-independent and non-stationary random matrices involved in the error equation.We employ analysis techniques such as stochastic Lyapunov function,stability theory of stochastic systems,and algebraic graph theory to deal with the above issue.The stochastic spatio-temporal cooperative information condition shows the cooperative property of multiple sensors that even though any local sensor cannot track the time-varying unknown signal,the distributed KF algorithm can be utilized to finish the filtering task in a cooperative way.At last,we illustrate the property of the proposed distributed KF algorithm by a simulation example.展开更多
In the previous studies of heart sounds, the calculation model of small waveform is often used, and new waveform graph is formed through the decomposition and restructuring of small waveform so as to remove the noise ...In the previous studies of heart sounds, the calculation model of small waveform is often used, and new waveform graph is formed through the decomposition and restructuring of small waveform so as to remove the noise from the new waveform. There are a lot of shortcomings in the use of such a method. The features of new waveform are difficult to be controlled, and thus the noise generated by the wave and the interference of wave will be disturbed by the filter to certain degree. In this paper, the integrated faltering algorithm is introduced, and a wave can be used in the studied use of small waveform, and also the high-order algorithm in mathematics is used, so that the frequency is controlled in a certain range, the frequency of heart sounds to be interfered is effectively reduced, and also the harmonic harm generated by the waveform is considered. After the signal sources are protected with some technologies, the effect of filtering and denoising is eventually achieved.展开更多
The electro-hydraulic servo system was studied to cancel the amplitude attenuation and phase delay of its sinusoidal response,by developing a network using normalized least-mean-square (LMS) adaptive filtering algorit...The electro-hydraulic servo system was studied to cancel the amplitude attenuation and phase delay of its sinusoidal response,by developing a network using normalized least-mean-square (LMS) adaptive filtering algorithm.The command input was corrected by weights to generate the desired input for the algorithm,and the feedback was brought into the feedback correction,whose output was the weighted feedback.The weights of the normalized LMS adaptive filtering algorithm were updated on-line according to the estimation error between the desired input and the weighted feedback.Thus,the updated weights were copied to the input correction.The estimation error was forced to zero by the normalized LMS adaptive filtering algorithm such that the weighted feedback was equal to the desired input,making the feedback track the command.The above concept was used as a basis for the development of amplitude phase control.The method has good real-time performance without estimating the system model.The simulation and experiment results show that the proposed amplitude phase control can efficiently cancel the amplitude attenuation and phase delay with high precision.展开更多
Clustering filtering is usually a practical method for light detection and ranging(LiDAR)point clouds filtering according to their characteristic attributes.However,the amount of point cloud data is extremely large in...Clustering filtering is usually a practical method for light detection and ranging(LiDAR)point clouds filtering according to their characteristic attributes.However,the amount of point cloud data is extremely large in practice,making it impossible to cluster point clouds data directly,and the filtering error is also too large.Moreover,many existing filtering algorithms have poor classification results in discontinuous terrain.This article proposes a new fast classification filtering algorithm based on density clustering,which can solve the problem of point clouds classification in discontinuous terrain.Based on the spatial density of LiDAR point clouds,also the features of the ground object point clouds and the terrain point clouds,the point clouds are clustered firstly by their elevations,and then the plane point clouds are selected.Thus the number of samples and feature dimensions of data are reduced.Using the DBSCAN clustering filtering method,the original point clouds are finally divided into noise point clouds,ground object point clouds,and terrain point clouds.The experiment uses 15 sets of data samples provided by the International Society for Photogrammetry and Remote Sensing(ISPRS),and the results of the proposed algorithm are compared with the other eight classical filtering algorithms.Quantitative and qualitative analysis shows that the proposed algorithm has good applicability in urban areas and rural areas,and is significantly better than other classic filtering algorithms in discontinuous terrain,with a total error of about 10%.The results show that the proposed method is feasible and can be used in different terrains.展开更多
In this work, Kendall correlation based collaborative filtering algorithms for the recommender systems are proposed. The Kendall correlation method is used to measure the correlation amongst users by means of consider...In this work, Kendall correlation based collaborative filtering algorithms for the recommender systems are proposed. The Kendall correlation method is used to measure the correlation amongst users by means of considering the relative order of the users' ratings. Kendall based algorithm is based upon a more general model and thus could be more widely applied in e-commerce. Another discovery of this work is that the consideration of only positive correlated neighbors in prediction, in both Pearson and Kendall algorithms, achieves higher accuracy than the consideration of all neighbors, with only a small loss of coverage.展开更多
As the first barrier to protect cyberspace,the CAPTCHA has made significant contributions to maintaining Internet security and preventing malicious attacks.By researching the CAPTCHA,we can find its vulnerability and ...As the first barrier to protect cyberspace,the CAPTCHA has made significant contributions to maintaining Internet security and preventing malicious attacks.By researching the CAPTCHA,we can find its vulnerability and improve the security of CAPTCHA.Recently,many studies have shown that improving the image preprocessing effect of the CAPTCHA,which can achieve a better recognition rate by the state-of-theart machine learning algorithms.There are many kinds of noise and distortion in the CAPTCHA images of this experiment.We propose an adaptive median filtering algorithm based on divide and conquer in this paper.Firstly,the filtering window data quickly sorted by the data correlation,which can greatly improve the filtering efficiency.Secondly,the size of the filtering window is adaptively adjusted according to the noise density.As demonstrated in the experimental results,the proposed scheme can achieve superior performance compared with the conventional median filter.The algorithm can not only effectively detect the noise and remove it,but also has a good effect in preservation details.Therefore,this algorithm can be one of the most strong tools for various CAPTCHA image recognition and related applications.展开更多
Since unmanned ground vehicles often encounter concave and convex obstacles in wild ground, a filtering algorithm using line structured light to detect these long distance obstacles is proposed. For the line structure...Since unmanned ground vehicles often encounter concave and convex obstacles in wild ground, a filtering algorithm using line structured light to detect these long distance obstacles is proposed. For the line structured light image, a ranked-order based adaptively extremum median (RAEM) filter algorithm on salt and pepper noise is presented. In the algorithm, firstly effective points and noise points in a filtering window are differentiated; then the gray values of noise points are replaced by the medium of gray values of the effective pixels, with the efficient points' gray values unchanged; in the end this algorithm is proved to be efficient by experiments. Experimental resuits demonstrate that the image blur, resulting into proposed algorithm can remove noise points effectively and minimize the protecting the edge information as much as possible.展开更多
Research on coke price forecasting is of theoretical and practical signiifcance. Here, the Kalman ifltering algorithm was used to analyze the price of coke. As the only state variable, the historical coke price is sor...Research on coke price forecasting is of theoretical and practical signiifcance. Here, the Kalman ifltering algorithm was used to analyze the price of coke. As the only state variable, the historical coke price is sorted out to build the state space model. The algorithm makes use of innovation composed of the difference between observed and predicted values, and alows us to obtain the optimal estimated value of the coke price via continuous updating and iteration of innovation. Our results show that this algorithm is effective in the ifeld of coke price tracking and forecasting.展开更多
Consumption of clean energy has been increasing in China.Forecasting gas consumption is important to adjusting the energy consumption structure in the future.Based on historical data of gas consumption from 1980 to 20...Consumption of clean energy has been increasing in China.Forecasting gas consumption is important to adjusting the energy consumption structure in the future.Based on historical data of gas consumption from 1980 to 2017,this paper presents a weight method of the inverse deviation of fitted value,and a combined forecast based on a residual auto-regression model and Kalman filtering algorithm is used to forecast gas consumption.Our results show that:(1)The combination forecast is of higher precision:the relative errors of the residual auto-regressive model,the Kalman filtering algorithm and the combination model are within the range(–0.08,0.09),(–0.09,0.32)and(–0.03,0.11),respectively.(2)The combination forecast is of greater stability:the variance of relative error of the residual auto-regressive model,the Kalman filtering algorithm and the combination model are 0.002,0.007 and 0.001,respectively.(3)Provided that other conditions are invariant,the predicted value of gas consumption in 2018 is 241.81×10~9 m^3.Compared to other time-series forecasting methods,this combined model is less restrictive,performs well and the result is more credible.展开更多
Broiler chickens are traditionally weighed by steelyard or platform scale,which is timeconsuming and labor-intensive.Broiler chickens usually exhibit stress-related behavior during weighing.The 3D camera-based weighin...Broiler chickens are traditionally weighed by steelyard or platform scale,which is timeconsuming and labor-intensive.Broiler chickens usually exhibit stress-related behavior during weighing.The 3D camera-based weighing system for broiler chickens can only weigh the broiler chicken in the monitoring area.Usually,it makes poor weight prediction due to poor segmentation especially when the broiler chicken is flapping its wings.To solve these issues,we developed one simple and low-cost weighing system with high stability and accuracy.A validity value extraction method from dynamic weighing was proposed.Then,an improved amplitude-limiting filtering algorithm and a BP neural networks model were developed to avoid accidental interference.The BP neural networks model used daily weight gain,day-age,average velocity,and the weight data after filtering algorithm as the input layer.The weighing system was tested in a commercial Beijing Fatty Chickens house with Beijing Fatty Chickens.We tested thirteen groups of Beijing Fatty Chickens of different weights,from 500 g to 1800 g in intervals of 100 g,using the three different methods:no filtering algorithm or BP neural networks,only the improved amplitude-limiting filtering algorithm and a hybrid of the improved amplitude-limiting filtering algorithm and BP neural networks.The results showed that the hybrid algorithm had a better performance in minimizing the error,lowering from the original 6%down to 3%.The accurate weight data was transmitted to the remote service platform for further decision-making,such as activity analysis,feeding management,and health alerts.展开更多
Ethiopian coffee price is highly fluctuated and has significant effect on the economy of the country. Conducting a research on forecasting coffee price has theoretical and practical importance.This study aims at forec...Ethiopian coffee price is highly fluctuated and has significant effect on the economy of the country. Conducting a research on forecasting coffee price has theoretical and practical importance.This study aims at forecasting the coffee price in Ethiopia. We used daily closed price data of Ethiopian coffee recorded in the period 25 June 2008 to 5 January 2017 obtained from Ethiopia commodity exchange(ECX) market to analyse coffee prices fluctuation. Here, the nature of coffee price is non-stationary and we apply the Kalman filtering algorithm on a single linear state space model to estimate and forecast an optimal value of coffee price. The performance of the algorithm for estimating and forecasting the coffee price is evaluated by using root mean square error(RMSE). Based on the linear state space model and the Kalman filtering algorithm, the root mean square error(RMSE) is 0.000016375, which is small enough, and it indicates that the algorithm performs well.展开更多
The phenomenon of a target echo peak overlapping with the backscattered echo peak significantly undermines the detection range and precision of underwater laser fuzes.To overcome this issue,we propose a four-quadrant ...The phenomenon of a target echo peak overlapping with the backscattered echo peak significantly undermines the detection range and precision of underwater laser fuzes.To overcome this issue,we propose a four-quadrant dual-beam circumferential scanning laser fuze to distinguish various interference signals and provide more real-time data for the backscatter filtering algorithm.This enhances the algorithm loading capability of the fuze.In order to address the problem of insufficient filtering capacity in existing linear backscatter filtering algorithms,we develop a nonlinear backscattering adaptive filter based on the spline adaptive filter least mean square(SAF-LMS)algorithm.We also designed an algorithm pause module to retain the original trend of the target echo peak,improving the time discrimination accuracy and anti-interference capability of the fuze.Finally,experiments are conducted with varying signal-to-noise ratios of the original underwater target echo signals.The experimental results show that the average signal-to-noise ratio before and after filtering can be improved by more than31 d B,with an increase of up to 76%in extreme detection distance.展开更多
The dyadic Green’s function in multi-layer structures for Maxwell equations is a key component for the integral equation method,but time consuming to calculate.A novel algorithm,the Fast Interpolation and Filtering A...The dyadic Green’s function in multi-layer structures for Maxwell equations is a key component for the integral equation method,but time consuming to calculate.A novel algorithm,the Fast Interpolation and Filtering Algorithm(FIFA),for the calculation of the dyadic Green’s function in multi-layer structures is proposed in this paper.We discuss in specific details,ready for use in practical calculations of scattering in layer media,how to apply FIFA to calculate various components of the dyadic Green’s function.The algorithm is based on two techniques:interpolation of Green’s function both in the spectral domain and spatial domain,and low pass filter window based acceleration.Compared to the popular Complex Image Method(CIM),FIFA provides the same speed and overcomes several difficulties associated with CIM while being more general and robust.Specifically,there are no limitations on the frequency range,the number of layers in the structure and the type of Green’s functions to be calculated,and moreover,no need to extract surface wave poles from the spectral form of the Green’s function.Numerical results are given to demonstrate the efficiency and robustness of the proposed method.展开更多
As a part of quantum image processing,quantum image filtering is a crucial technology in the development of quantum computing.Low-pass filtering can effectively achieve anti-aliasing effects on images.Currently,most q...As a part of quantum image processing,quantum image filtering is a crucial technology in the development of quantum computing.Low-pass filtering can effectively achieve anti-aliasing effects on images.Currently,most quantum image filterings are based on classical domains and grayscale images,and there are relatively fewer studies on anti-aliasing in the quantum domain.This paper proposes a scheme for anti-aliasing filtering based on quantum grayscale and color image scaling in the spatial domain.It achieves the effect of anti-aliasing filtering on quantum images during the scaling process.First,we use the novel enhanced quantum representation(NEQR)and the improved quantum representation of color images(INCQI)to represent classical images.Since aliasing phenomena are more pronounced when images are scaled down,this paper focuses only on the anti-aliasing effects in the case of reduction.Subsequently,we perform anti-aliasing filtering on the quantum representation of the original image and then use bilinear interpolation to scale down the image,achieving the anti-aliasing effect.The constructed pyramid model is then used to select an appropriate image for upscaling to the original image size.Finally,the complexity of the circuit is analyzed.Compared to the images experiencing aliasing effects solely due to scaling,applying anti-aliasing filtering to the images results in smoother and clearer outputs.Additionally,the anti-aliasing filtering allows for manual intervention to select the desired level of image smoothness.展开更多
This paper improves the resampling step of particle filtering(PF) based on a broad interactive genetic algorithm to resolve particle degeneration and particle shortage.For target tracking in image processing,this pa...This paper improves the resampling step of particle filtering(PF) based on a broad interactive genetic algorithm to resolve particle degeneration and particle shortage.For target tracking in image processing,this paper uses the information coming from the particles of the previous fame image and new observation data to self-adaptively determine the selecting range of particles in current fame image.The improved selecting operator with jam gene is used to ensure the diversity of particles in mathematics,and the absolute arithmetical crossing operator whose feasible solution space being close about crossing operation,and non-uniform mutation operator is used to capture all kinds of mutation in this paper.The result of simulating experiment shows that the algorithm of this paper has better iterative estimating capability than extended Kalman filtering(EKF),PF,regularized partide filtering(RPF),and genetic algorithm(GA)-PF.展开更多
Potential high-temperature risks exist in heat-prone components of electric moped charging devices,such as sockets,interfaces,and controllers.Traditional detection methods have limitations in terms of real-time perfor...Potential high-temperature risks exist in heat-prone components of electric moped charging devices,such as sockets,interfaces,and controllers.Traditional detection methods have limitations in terms of real-time performance and monitoring scope.To address this,a temperature detection method based on infrared image processing has been proposed:utilizing the median filtering algorithm to denoise the original infrared image,then applying an image segmentation algorithm to divide the image.展开更多
In order to improve user satisfaction and loyalty on e-commerce websites,recommendation algorithms are used to recommend products that may be of interest to users.Therefore,the accuracy of the recommendation algorithm...In order to improve user satisfaction and loyalty on e-commerce websites,recommendation algorithms are used to recommend products that may be of interest to users.Therefore,the accuracy of the recommendation algorithm is a primary issue.So far,there are three mainstream recommendation algorithms,content-based recommendation algorithms,collaborative filtering algorithms and hybrid recommendation algorithms.Content-based recommendation algorithms and collaborative filtering algorithms have their own shortcomings.The content-based recommendation algorithm has the problem of the diversity of recommended items,while the collaborative filtering algorithm has the problem of data sparsity and scalability.On the basis of these two algorithms,the hybrid recommendation algorithm learns from each other’s strengths and combines the advantages of the two algorithms to provide people with better services.This article will focus on the use of a content-based recommendation algorithm to mine the user’s existing interests,and then combine the collaborative filtering algorithm to establish a potential interest model,mix the existing and potential interests,and calculate with the candidate search content set.The similarity gets the recommendation list.展开更多
Because of the ignored items after linearization,the extended Kalman filter(EKF)becomes a form of suboptimal gradient descent algorithm.The emanative tendency exists in GPS solution when the filter equations are ill-p...Because of the ignored items after linearization,the extended Kalman filter(EKF)becomes a form of suboptimal gradient descent algorithm.The emanative tendency exists in GPS solution when the filter equations are ill-posed.The deviation in the estimation cannot be avoided.Furthermore,the true solution may be lost in pseudorange positioning because the linearized pseudorange equations are partial solutions.To solve the above problems in GPS dynamic positioning by using EKF,a closed-form Kalman filter method called the two-stage algorithm is presented for the nonlinear algebraic solution of GPS dynamic positioning based on the global nonlinear least squares closed algorithm--Bancroft numerical algorithm of American.The method separates the spatial parts from temporal parts during processing the GPS filter problems,and solves the nonlinear GPS dynamic positioning,thus getting stable and reliable dynamic positioning solutions.展开更多
The least means squares (LMS) adaptive filter algorithm was used in active suspension system. By adjusting the weight of adaptive filter, the minimum quadratic performance index was obtained. For two-degree-of-freed...The least means squares (LMS) adaptive filter algorithm was used in active suspension system. By adjusting the weight of adaptive filter, the minimum quadratic performance index was obtained. For two-degree-of-freedom vehicle suspension model, LMS adaptive controller was designed. The acceleration of the sprung mass,the dynamic tyre load between wheels and road,and the dynamic deflection between sprung mass and unsprung mass were determined as the evaluation targets of suspension performance. For LMS adaptive control suspension, compared with passive suspension, acceleration power spectral density of sprung mass acceleration under the road input model decreased 8-10 times in high frequency resonance band or low frequency resonance band. The simulation results show that LMS adaptive control is simple and remarkably effective. It further proves that the active control suspension system can improve both the riding comfort and handling safety in various operation conditions, and the method is fit for the active control of the suspension system.展开更多
基金supported by the Shan⁃dong Provincial Natural Science Foundation(No.ZR2022MF314).
文摘The adaptive filtering algorithm with a fixed projection order is unable to adjust its performance in response to changes in the external environment of airborne radars.To overcome this limitation,a new approach is introduced,which is the variable projection order Ekblom norm-promoted adaptive algorithm(VPO-EPAA).The method begins by examining the mean squared deviation(MSD)of the EPAA,deriving a formula for its MSD.Next,it compares the MSD of EPAA at two different projection orders and selects the one that minimizes the MSD as the parameter for the current iteration.Furthermore,the algorithm’s computational complexity is analyzed theoretically.Simulation results from system identification and self-interference cancellation show that the proposed algorithm performs exceptionally well in airborne radar signal self-interference cancellation,even under various noise intensities and types of interference.
基金supported in part by Sichuan Science and Technology Program under Grant No.2025ZNSFSC151in part by the Strategic Priority Research Program of Chinese Academy of Sciences under Grant No.XDA27030201+1 种基金the Natural Science Foundation of China under Grant No.U21B6001in part by the Natural Science Foundation of Tianjin under Grant No.24JCQNJC01930.
文摘The work proposes a distributed Kalman filtering(KF)algorithm to track a time-varying unknown signal process for a stochastic regression model over network systems in a cooperative way.We provide the stability analysis of the proposed distributed KF algorithm without independent and stationary signal assumptions,which implies that the theoretical results are able to be applied to stochastic feedback systems.Note that the main difficulty of stability analysis lies in analyzing the properties of the product of non-independent and non-stationary random matrices involved in the error equation.We employ analysis techniques such as stochastic Lyapunov function,stability theory of stochastic systems,and algebraic graph theory to deal with the above issue.The stochastic spatio-temporal cooperative information condition shows the cooperative property of multiple sensors that even though any local sensor cannot track the time-varying unknown signal,the distributed KF algorithm can be utilized to finish the filtering task in a cooperative way.At last,we illustrate the property of the proposed distributed KF algorithm by a simulation example.
文摘In the previous studies of heart sounds, the calculation model of small waveform is often used, and new waveform graph is formed through the decomposition and restructuring of small waveform so as to remove the noise from the new waveform. There are a lot of shortcomings in the use of such a method. The features of new waveform are difficult to be controlled, and thus the noise generated by the wave and the interference of wave will be disturbed by the filter to certain degree. In this paper, the integrated faltering algorithm is introduced, and a wave can be used in the studied use of small waveform, and also the high-order algorithm in mathematics is used, so that the frequency is controlled in a certain range, the frequency of heart sounds to be interfered is effectively reduced, and also the harmonic harm generated by the waveform is considered. After the signal sources are protected with some technologies, the effect of filtering and denoising is eventually achieved.
基金Project(50905037) supported by the National Natural Science Foundation of ChinaProject(20092304120014) supported by Specialized Research Fund for the Doctoral Program of Higher Education of China+2 种基金 Project(20100471021) supported by the China Postdoctoral Science Foundation Project(LBH-Q09134) supported by Heilongjiang Postdoctoral Science-Research Foundation,China Project (HEUFT09013) supported by the Foundation of Harbin Engineering University,China
文摘The electro-hydraulic servo system was studied to cancel the amplitude attenuation and phase delay of its sinusoidal response,by developing a network using normalized least-mean-square (LMS) adaptive filtering algorithm.The command input was corrected by weights to generate the desired input for the algorithm,and the feedback was brought into the feedback correction,whose output was the weighted feedback.The weights of the normalized LMS adaptive filtering algorithm were updated on-line according to the estimation error between the desired input and the weighted feedback.Thus,the updated weights were copied to the input correction.The estimation error was forced to zero by the normalized LMS adaptive filtering algorithm such that the weighted feedback was equal to the desired input,making the feedback track the command.The above concept was used as a basis for the development of amplitude phase control.The method has good real-time performance without estimating the system model.The simulation and experiment results show that the proposed amplitude phase control can efficiently cancel the amplitude attenuation and phase delay with high precision.
基金The Natural Science Foundation of Hunan Province,China(No.2020JJ4601)Open Fund of the Key Laboratory of Highway Engi-neering of Ministry of Education(No.kfj190203).
文摘Clustering filtering is usually a practical method for light detection and ranging(LiDAR)point clouds filtering according to their characteristic attributes.However,the amount of point cloud data is extremely large in practice,making it impossible to cluster point clouds data directly,and the filtering error is also too large.Moreover,many existing filtering algorithms have poor classification results in discontinuous terrain.This article proposes a new fast classification filtering algorithm based on density clustering,which can solve the problem of point clouds classification in discontinuous terrain.Based on the spatial density of LiDAR point clouds,also the features of the ground object point clouds and the terrain point clouds,the point clouds are clustered firstly by their elevations,and then the plane point clouds are selected.Thus the number of samples and feature dimensions of data are reduced.Using the DBSCAN clustering filtering method,the original point clouds are finally divided into noise point clouds,ground object point clouds,and terrain point clouds.The experiment uses 15 sets of data samples provided by the International Society for Photogrammetry and Remote Sensing(ISPRS),and the results of the proposed algorithm are compared with the other eight classical filtering algorithms.Quantitative and qualitative analysis shows that the proposed algorithm has good applicability in urban areas and rural areas,and is significantly better than other classic filtering algorithms in discontinuous terrain,with a total error of about 10%.The results show that the proposed method is feasible and can be used in different terrains.
基金Supported by the National Natural Science Foun-dation of China (60573095)
文摘In this work, Kendall correlation based collaborative filtering algorithms for the recommender systems are proposed. The Kendall correlation method is used to measure the correlation amongst users by means of considering the relative order of the users' ratings. Kendall based algorithm is based upon a more general model and thus could be more widely applied in e-commerce. Another discovery of this work is that the consideration of only positive correlated neighbors in prediction, in both Pearson and Kendall algorithms, achieves higher accuracy than the consideration of all neighbors, with only a small loss of coverage.
基金This work is supported by the National Natural Science Foundation of China(No.61772561)the Key Research&Development Plan of Hunan Province(No.2018NK2012)+2 种基金the Postgraduate Research and Innovation Project of Hunan Province(No.CX2018B447)the Postgraduate Science and Technology Innovation Foundation of Cent ral South University of Forestry and Technology(20183027)the Key Laboratory for Dig ital Dongting Lake Basin of Hunan Province.
文摘As the first barrier to protect cyberspace,the CAPTCHA has made significant contributions to maintaining Internet security and preventing malicious attacks.By researching the CAPTCHA,we can find its vulnerability and improve the security of CAPTCHA.Recently,many studies have shown that improving the image preprocessing effect of the CAPTCHA,which can achieve a better recognition rate by the state-of-theart machine learning algorithms.There are many kinds of noise and distortion in the CAPTCHA images of this experiment.We propose an adaptive median filtering algorithm based on divide and conquer in this paper.Firstly,the filtering window data quickly sorted by the data correlation,which can greatly improve the filtering efficiency.Secondly,the size of the filtering window is adaptively adjusted according to the noise density.As demonstrated in the experimental results,the proposed scheme can achieve superior performance compared with the conventional median filter.The algorithm can not only effectively detect the noise and remove it,but also has a good effect in preservation details.Therefore,this algorithm can be one of the most strong tools for various CAPTCHA image recognition and related applications.
基金Supported by the National Natural Science Foundation of China(61273346)the National Defense Key Fundamental Research Program of China(A20130010)the Program for the Fundamental Research of Beijing Institute of Technology(2016CX02010)
文摘Since unmanned ground vehicles often encounter concave and convex obstacles in wild ground, a filtering algorithm using line structured light to detect these long distance obstacles is proposed. For the line structured light image, a ranked-order based adaptively extremum median (RAEM) filter algorithm on salt and pepper noise is presented. In the algorithm, firstly effective points and noise points in a filtering window are differentiated; then the gray values of noise points are replaced by the medium of gray values of the effective pixels, with the efficient points' gray values unchanged; in the end this algorithm is proved to be efficient by experiments. Experimental resuits demonstrate that the image blur, resulting into proposed algorithm can remove noise points effectively and minimize the protecting the edge information as much as possible.
基金National Natural Science Foundation in China(No.71173141),National Natural Science Foundation in China(No.71373170)development projects in Higher Education Institution of Shanxi Province of China(No.20111312)+1 种基金special funds projects in Higher Education Institution of Shanxi Province of China(No.201246)soft science research project in Shanxi Province of China(No.2013041015-04)
文摘Research on coke price forecasting is of theoretical and practical signiifcance. Here, the Kalman ifltering algorithm was used to analyze the price of coke. As the only state variable, the historical coke price is sorted out to build the state space model. The algorithm makes use of innovation composed of the difference between observed and predicted values, and alows us to obtain the optimal estimated value of the coke price via continuous updating and iteration of innovation. Our results show that this algorithm is effective in the ifeld of coke price tracking and forecasting.
基金Soft Science Research Project in Shanxi Province of China(2017041030-5)Science Fund Projects in North University of China(XJJ2016037)
文摘Consumption of clean energy has been increasing in China.Forecasting gas consumption is important to adjusting the energy consumption structure in the future.Based on historical data of gas consumption from 1980 to 2017,this paper presents a weight method of the inverse deviation of fitted value,and a combined forecast based on a residual auto-regression model and Kalman filtering algorithm is used to forecast gas consumption.Our results show that:(1)The combination forecast is of higher precision:the relative errors of the residual auto-regressive model,the Kalman filtering algorithm and the combination model are within the range(–0.08,0.09),(–0.09,0.32)and(–0.03,0.11),respectively.(2)The combination forecast is of greater stability:the variance of relative error of the residual auto-regressive model,the Kalman filtering algorithm and the combination model are 0.002,0.007 and 0.001,respectively.(3)Provided that other conditions are invariant,the predicted value of gas consumption in 2018 is 241.81×10~9 m^3.Compared to other time-series forecasting methods,this combined model is less restrictive,performs well and the result is more credible.
基金supported by Key Technologies Research and Development Program(CN),funding number,2018YFE0108500the International Cooperation Fund Project of Beijing Academy of Agriculture and Forestry Sciences,funding number 2019HP002Beijing Science and Technology Planning,funding number Z191100004019007。
文摘Broiler chickens are traditionally weighed by steelyard or platform scale,which is timeconsuming and labor-intensive.Broiler chickens usually exhibit stress-related behavior during weighing.The 3D camera-based weighing system for broiler chickens can only weigh the broiler chicken in the monitoring area.Usually,it makes poor weight prediction due to poor segmentation especially when the broiler chicken is flapping its wings.To solve these issues,we developed one simple and low-cost weighing system with high stability and accuracy.A validity value extraction method from dynamic weighing was proposed.Then,an improved amplitude-limiting filtering algorithm and a BP neural networks model were developed to avoid accidental interference.The BP neural networks model used daily weight gain,day-age,average velocity,and the weight data after filtering algorithm as the input layer.The weighing system was tested in a commercial Beijing Fatty Chickens house with Beijing Fatty Chickens.We tested thirteen groups of Beijing Fatty Chickens of different weights,from 500 g to 1800 g in intervals of 100 g,using the three different methods:no filtering algorithm or BP neural networks,only the improved amplitude-limiting filtering algorithm and a hybrid of the improved amplitude-limiting filtering algorithm and BP neural networks.The results showed that the hybrid algorithm had a better performance in minimizing the error,lowering from the original 6%down to 3%.The accurate weight data was transmitted to the remote service platform for further decision-making,such as activity analysis,feeding management,and health alerts.
文摘Ethiopian coffee price is highly fluctuated and has significant effect on the economy of the country. Conducting a research on forecasting coffee price has theoretical and practical importance.This study aims at forecasting the coffee price in Ethiopia. We used daily closed price data of Ethiopian coffee recorded in the period 25 June 2008 to 5 January 2017 obtained from Ethiopia commodity exchange(ECX) market to analyse coffee prices fluctuation. Here, the nature of coffee price is non-stationary and we apply the Kalman filtering algorithm on a single linear state space model to estimate and forecast an optimal value of coffee price. The performance of the algorithm for estimating and forecasting the coffee price is evaluated by using root mean square error(RMSE). Based on the linear state space model and the Kalman filtering algorithm, the root mean square error(RMSE) is 0.000016375, which is small enough, and it indicates that the algorithm performs well.
基金supported by the 2021 Open Project Fund of Science and Technology on Electromechanical Dynamic Control Laboratory,grant number 212-C-J-F-QT-2022-0020China Postdoctoral Science Foundation,grant number 2021M701713+1 种基金Postgraduate Research&Practice Innovation Program of Jiangsu Province,grant number KYCX23_0511the Jiangsu Funding Program for Excellent Postdoctoral Talent,grant number 20220ZB245。
文摘The phenomenon of a target echo peak overlapping with the backscattered echo peak significantly undermines the detection range and precision of underwater laser fuzes.To overcome this issue,we propose a four-quadrant dual-beam circumferential scanning laser fuze to distinguish various interference signals and provide more real-time data for the backscatter filtering algorithm.This enhances the algorithm loading capability of the fuze.In order to address the problem of insufficient filtering capacity in existing linear backscatter filtering algorithms,we develop a nonlinear backscattering adaptive filter based on the spline adaptive filter least mean square(SAF-LMS)algorithm.We also designed an algorithm pause module to retain the original trend of the target echo peak,improving the time discrimination accuracy and anti-interference capability of the fuze.Finally,experiments are conducted with varying signal-to-noise ratios of the original underwater target echo signals.The experimental results show that the average signal-to-noise ratio before and after filtering can be improved by more than31 d B,with an increase of up to 76%in extreme detection distance.
文摘The dyadic Green’s function in multi-layer structures for Maxwell equations is a key component for the integral equation method,but time consuming to calculate.A novel algorithm,the Fast Interpolation and Filtering Algorithm(FIFA),for the calculation of the dyadic Green’s function in multi-layer structures is proposed in this paper.We discuss in specific details,ready for use in practical calculations of scattering in layer media,how to apply FIFA to calculate various components of the dyadic Green’s function.The algorithm is based on two techniques:interpolation of Green’s function both in the spectral domain and spatial domain,and low pass filter window based acceleration.Compared to the popular Complex Image Method(CIM),FIFA provides the same speed and overcomes several difficulties associated with CIM while being more general and robust.Specifically,there are no limitations on the frequency range,the number of layers in the structure and the type of Green’s functions to be calculated,and moreover,no need to extract surface wave poles from the spectral form of the Green’s function.Numerical results are given to demonstrate the efficiency and robustness of the proposed method.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.62172268 and 62302289)the Shanghai Science and Technology Project(Grant Nos.21JC1402800 and 23YF1416200)。
文摘As a part of quantum image processing,quantum image filtering is a crucial technology in the development of quantum computing.Low-pass filtering can effectively achieve anti-aliasing effects on images.Currently,most quantum image filterings are based on classical domains and grayscale images,and there are relatively fewer studies on anti-aliasing in the quantum domain.This paper proposes a scheme for anti-aliasing filtering based on quantum grayscale and color image scaling in the spatial domain.It achieves the effect of anti-aliasing filtering on quantum images during the scaling process.First,we use the novel enhanced quantum representation(NEQR)and the improved quantum representation of color images(INCQI)to represent classical images.Since aliasing phenomena are more pronounced when images are scaled down,this paper focuses only on the anti-aliasing effects in the case of reduction.Subsequently,we perform anti-aliasing filtering on the quantum representation of the original image and then use bilinear interpolation to scale down the image,achieving the anti-aliasing effect.The constructed pyramid model is then used to select an appropriate image for upscaling to the original image size.Finally,the complexity of the circuit is analyzed.Compared to the images experiencing aliasing effects solely due to scaling,applying anti-aliasing filtering to the images results in smoother and clearer outputs.Additionally,the anti-aliasing filtering allows for manual intervention to select the desired level of image smoothness.
基金supported by the National Natural Science Foundation of China(61302145)
文摘This paper improves the resampling step of particle filtering(PF) based on a broad interactive genetic algorithm to resolve particle degeneration and particle shortage.For target tracking in image processing,this paper uses the information coming from the particles of the previous fame image and new observation data to self-adaptively determine the selecting range of particles in current fame image.The improved selecting operator with jam gene is used to ensure the diversity of particles in mathematics,and the absolute arithmetical crossing operator whose feasible solution space being close about crossing operation,and non-uniform mutation operator is used to capture all kinds of mutation in this paper.The result of simulating experiment shows that the algorithm of this paper has better iterative estimating capability than extended Kalman filtering(EKF),PF,regularized partide filtering(RPF),and genetic algorithm(GA)-PF.
基金supported by the National Key Research and Development Project of China(No.2023YFB3709605)the National Natural Science Foundation of China(No.62073193)the National College Student Innovation Training Program(No.202310422122)。
文摘Potential high-temperature risks exist in heat-prone components of electric moped charging devices,such as sockets,interfaces,and controllers.Traditional detection methods have limitations in terms of real-time performance and monitoring scope.To address this,a temperature detection method based on infrared image processing has been proposed:utilizing the median filtering algorithm to denoise the original infrared image,then applying an image segmentation algorithm to divide the image.
基金This work was supported in part by the National Natural Science Foundation of China,Grant No.72073041Open Foundation for the University Innovation Platform in the Hunan Province,Grant No.18K103+4 种基金2011 Collaborative Innovation Center for Development and Utilization of Finance and Economics Big Data Property.Hunan Provincial Key Laboratory of Finance&Economics Big Data Science and Technology2020 Hunan Provincial Higher Education Teaching Reform Research Project under Grant HNJG-2020-1130,HNJG-2020-11242020 General Project of Hunan Social Science Fund under Grant 20B16Scientific Research Project of Education Department of Hunan Province(Grand No.20K021)Social Science Foundation of Hunan Province(Grant No.17YBA049).
文摘In order to improve user satisfaction and loyalty on e-commerce websites,recommendation algorithms are used to recommend products that may be of interest to users.Therefore,the accuracy of the recommendation algorithm is a primary issue.So far,there are three mainstream recommendation algorithms,content-based recommendation algorithms,collaborative filtering algorithms and hybrid recommendation algorithms.Content-based recommendation algorithms and collaborative filtering algorithms have their own shortcomings.The content-based recommendation algorithm has the problem of the diversity of recommended items,while the collaborative filtering algorithm has the problem of data sparsity and scalability.On the basis of these two algorithms,the hybrid recommendation algorithm learns from each other’s strengths and combines the advantages of the two algorithms to provide people with better services.This article will focus on the use of a content-based recommendation algorithm to mine the user’s existing interests,and then combine the collaborative filtering algorithm to establish a potential interest model,mix the existing and potential interests,and calculate with the candidate search content set.The similarity gets the recommendation list.
文摘Because of the ignored items after linearization,the extended Kalman filter(EKF)becomes a form of suboptimal gradient descent algorithm.The emanative tendency exists in GPS solution when the filter equations are ill-posed.The deviation in the estimation cannot be avoided.Furthermore,the true solution may be lost in pseudorange positioning because the linearized pseudorange equations are partial solutions.To solve the above problems in GPS dynamic positioning by using EKF,a closed-form Kalman filter method called the two-stage algorithm is presented for the nonlinear algebraic solution of GPS dynamic positioning based on the global nonlinear least squares closed algorithm--Bancroft numerical algorithm of American.The method separates the spatial parts from temporal parts during processing the GPS filter problems,and solves the nonlinear GPS dynamic positioning,thus getting stable and reliable dynamic positioning solutions.
文摘The least means squares (LMS) adaptive filter algorithm was used in active suspension system. By adjusting the weight of adaptive filter, the minimum quadratic performance index was obtained. For two-degree-of-freedom vehicle suspension model, LMS adaptive controller was designed. The acceleration of the sprung mass,the dynamic tyre load between wheels and road,and the dynamic deflection between sprung mass and unsprung mass were determined as the evaluation targets of suspension performance. For LMS adaptive control suspension, compared with passive suspension, acceleration power spectral density of sprung mass acceleration under the road input model decreased 8-10 times in high frequency resonance band or low frequency resonance band. The simulation results show that LMS adaptive control is simple and remarkably effective. It further proves that the active control suspension system can improve both the riding comfort and handling safety in various operation conditions, and the method is fit for the active control of the suspension system.