Recent theoretical verification of self-similar and dissipative pure-quartic solitons(PQSs)emphasized the similarity between PQS lasers and conventional fiber lasers,but the unique equilibrium mechanism hinders the fo...Recent theoretical verification of self-similar and dissipative pure-quartic solitons(PQSs)emphasized the similarity between PQS lasers and conventional fiber lasers,but the unique equilibrium mechanism hinders the formation of PQS molecules in normal fourth-order dispersion(FOD)regimes.In this paper,we investigated the effect of filters on shaping PQSs in normal FOD based on a passively mode-locked fiber laser model.A bandpass filter eliminates the time pedestal of dissipative PQSs,thus realizing a multi-pulsing state.When the filter bandwidth is appropriate,the effective spectral filtering effect can lower the pulse splitting threshold and enable the coherent restoration from chaotic PQSs to PQS molecules.Additionally,changing the central wavelength of the filter can generate PQSs and PQS molecules with asymmetric intensity distributions.These results are important guides for the manipulation of PQSs and the construction of high repetition-frequency fiber lasers.展开更多
This paper demonstrated the generation of multi-wavelength bound state noise-like pulse(BNLP)in a dispersion-managed composite-filtered fiber laser consisting of nonlinear polarization rotation(NPR)and loop.In the cas...This paper demonstrated the generation of multi-wavelength bound state noise-like pulse(BNLP)in a dispersion-managed composite-filtered fiber laser consisting of nonlinear polarization rotation(NPR)and loop.In the case of BNLP,the generation is caused by the interaction between two noise-like pulses(NLPs)induced by the comb-filtering effect,and bound state level can be artificially controlled in the researches.Our work provides a new method for generating low-coherence pulses and establishes a research idea for the study of the comb-filtering effects.展开更多
The spin caloritronic properties of the Janus VSTe monolayer were investigated using density functional theory(DFT)and the non-equilibrium Green’s function(NEGF)method,implemented in the Atomistix Toolkit(ATK)package...The spin caloritronic properties of the Janus VSTe monolayer were investigated using density functional theory(DFT)and the non-equilibrium Green’s function(NEGF)method,implemented in the Atomistix Toolkit(ATK)package.Our study revealed significant spin-splitting within the Janus VSTe monolayer,which induced spin currents under a temperature gradient across the device.By applying a 1%tensile strain,the Janus VSTe monolayer exhibited a perfect thermal spin filtering effect(SFE),with the spin-up current nearly suppressed to zero.Both the unstrained and strained Janus VSTe monolayers demonstrated excellent spin caloritronic properties,with spin figures of merit of 10.915 and 8.432 at an average temperature of 100 K,respectively.Notably,these properties were found to be sensitive to temperature,performing optimally at lower temperatures.These results suggest a promising avenue for designing spin caloritronic devices aimed at efficient waste heat recovery.展开更多
The global pandemic caused by severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)virus has necessitated rapid,easy-to-use,and accurate diagnostic methods to monitor the virus infection.Herein,a ratiometric flu...The global pandemic caused by severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)virus has necessitated rapid,easy-to-use,and accurate diagnostic methods to monitor the virus infection.Herein,a ratiometric fluorescence enzyme-linked immunosorbent assay(ELISA)was developed using Si-fluorescein isothiocyanate nanoparticles(FITC NPs)for detecting SARSCoV-2 nucleocapsid(N)protein.Si-FITC NPs were prepared by a one-pot hydrothermal method using 3-aminopropyl triethoxysilane(APTES)-FITC as the Si source.This method did not need post-modification and avoided the reduction in quantum yield and stability.The p-nitrophenyl(pNP)produced by the alkaline phosphatase(ALP)-mediated hydrolysis of pnitrophenyl phosphate(pNPP)could quench Si fluorescence in Si-FITC NPs via the inner filter effect.In ELISA,an immunocomplex was formed by the recognition of capture antibody/N protein/reporter antibody.ALP-linked secondary antibody bound to the reporter antibody and induced pNPP hydrolysis to specifically quench Si fluorescence in Si-FITC NPs.The change in fluorescence intensity ratio could be used for detecting N protein,with a wide linearity range(0.01-10.0 and 50-300 ng/mL)and low detection limit(0.002 ng/mL).The concentration of spiked SARS-CoV-2 N protein could be determined accurately in human serum.Moreover,this proposed method can accurately distinguish coronavirus disease 2019(COVID-19)and non-COVID-19 patient samples.Therefore,this simple,sensitive,and accurate method can be applied for the early diagnosis of SARS-CoV-2 virus infection.展开更多
In this paper, the problem how to reduce the GB effect in SC filters is discussed. A new generalbiquadratic SC structure in which the GB effect is reduced is developed. The structure is stray-insensitiveand has very l...In this paper, the problem how to reduce the GB effect in SC filters is discussed. A new generalbiquadratic SC structure in which the GB effect is reduced is developed. The structure is stray-insensitiveand has very low W<sub>0</sub> and Q sensitivities. Using the low-pass SC filter for an example, method of reducingthe GB effect has been shown in detail.展开更多
Moleculardeviceswith highswitchingperformance and/or the perfect spin filtering effect have always been the pursuit with the development of molecular electronics.Hereb,yusingthe 2001.0V nonequilibrium.Green's func...Moleculardeviceswith highswitchingperformance and/or the perfect spin filtering effect have always been the pursuit with the development of molecular electronics.Hereb,yusingthe 2001.0V nonequilibrium.Green's function method in combination with the density functionaltheory,the switching performance and spin filtering properties of dimethyldihydropyrene(DHP)/cyclophanediene(CPD)photoswitchable molecule connected by carbon atomic chains(CACs)to two zigzag graphene nanoribbon electrodes have been theoretically investigated.The results show that DHP is more conductive than CPD and therefore an evident switching effect is demonstrated,and the switching ratio(RON/OFF)can reach 4.5×103.It is further revealed that the RoON/OF of DHP/CPD closely depends on the length of CACs.More specifically,the RoN/OFF values of DHP/CPD with odd-numbered CACs are larger than those with even-numbered CACs.More interestingly,a high or even perfect spin filtering effect can be obtained in these investigated DHP/CPD single-molecule devices.Our study is helpful for future design of single-molecule switches and spin filters and provides a way to optimize their performance by means of varying the length of bridging CACs.展开更多
Most existing reconstruction algorithms for photoacoustic imaging (PAI) assume that transducers used to receive ultrasound signals have infinite bandwidth. When transducers with finite bandwidth are used, this assumpt...Most existing reconstruction algorithms for photoacoustic imaging (PAI) assume that transducers used to receive ultrasound signals have infinite bandwidth. When transducers with finite bandwidth are used, this assumption may result in reduction of the imaging contrast and distortions of reconstructed images. In this paper, we propose a novel method to compensate the finite bandwidth effect in PAI by using an optimal filter in the Fourier domain. Simulation results demonstrate that the use of this method can improve the contrast of the reconstructed images with finite-bandwidth ultrasound transducers.展开更多
Variation of plastic viscosity and extrapolated shear yield stress with the concentration of Dispex A40 for the concentrated Alcoa A16 alpha -Al2O3 suspensions at 0.27 powder volume fraction was investigated at 294 K....Variation of plastic viscosity and extrapolated shear yield stress with the concentration of Dispex A40 for the concentrated Alcoa A16 alpha -Al2O3 suspensions at 0.27 powder volume fraction was investigated at 294 K. An optimum level of Dispex A40 for full deflocculation is found to be at 0.18% mass fraction of the powder, at which the rheological behaviour shows little different to that of adjusting the pH to 4 to obtain full deflocculation. It is demonstrated that the shear stress drop can roughly work as an index for the thixotropy in particular fixed conditions, and consequently an index for the deflocculation as the shear stress drop becomes larger when the level of the flocculation increases, and vice versa. It is also found that the addition of Dispex A40 can prevent the filter cakes from cracking, whereas the cakes at various pH values with polyvinyl alcohol as a sole polymer normally develop cracking during drying.展开更多
Cadmium ion(Cd^(2+))detection technology plays a prominent role in food safety and human health.Herein,we designed and constructed an 2-aminoethyl dihydrogen phosphate(AEP)@upconversion nanoparticles(UCNPs)fluorescenc...Cadmium ion(Cd^(2+))detection technology plays a prominent role in food safety and human health.Herein,we designed and constructed an 2-aminoethyl dihydrogen phosphate(AEP)@upconversion nanoparticles(UCNPs)fluorescence sensor for quantitative detection of Cd^(2+)in paddy rice based on inner filter effect(IFE)combined with enzyme inhibition mechanism.The AEP modification UCNPs can offer a stable fluorescence donor at 658 nm and be quenched by the oxidized tetramethylbenzidine(oxTMB)catalyzed by horseradish peroxidase(HRP)enzymes.Without addition of Cd^(2+),the fluorescence of AEP@UCNPs fluorescence sensor was weaken due to the IFE between AEP@UCNPs and oxTMB.With addition of Cd^(2+),HRP enzyme activity was inhibited by Cd^(2+),leading to the decreased oxTMB,resulting in the enhance upconversion fluorescence intensity.As a result,the fluorescence intensity signal at 658 nm of the IFE-based AEP@UCNPs fluorescence sensor increased linearly with the increase in Cd^(2+)in a wide range from 0.5μmol/L to 6μmol/L and the limit of detection(LOD)was 24.6 n mol/L.In addition,our proposed IFE-based AEP@UCNPs fluorescence sensor can achieve Cd^(2+)detection in paddy rice in 30 min.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.62175116)。
文摘Recent theoretical verification of self-similar and dissipative pure-quartic solitons(PQSs)emphasized the similarity between PQS lasers and conventional fiber lasers,but the unique equilibrium mechanism hinders the formation of PQS molecules in normal fourth-order dispersion(FOD)regimes.In this paper,we investigated the effect of filters on shaping PQSs in normal FOD based on a passively mode-locked fiber laser model.A bandpass filter eliminates the time pedestal of dissipative PQSs,thus realizing a multi-pulsing state.When the filter bandwidth is appropriate,the effective spectral filtering effect can lower the pulse splitting threshold and enable the coherent restoration from chaotic PQSs to PQS molecules.Additionally,changing the central wavelength of the filter can generate PQSs and PQS molecules with asymmetric intensity distributions.These results are important guides for the manipulation of PQSs and the construction of high repetition-frequency fiber lasers.
基金supported by the Research Fund of Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology(No.2020B1212030010)。
文摘This paper demonstrated the generation of multi-wavelength bound state noise-like pulse(BNLP)in a dispersion-managed composite-filtered fiber laser consisting of nonlinear polarization rotation(NPR)and loop.In the case of BNLP,the generation is caused by the interaction between two noise-like pulses(NLPs)induced by the comb-filtering effect,and bound state level can be artificially controlled in the researches.Our work provides a new method for generating low-coherence pulses and establishes a research idea for the study of the comb-filtering effects.
基金Project(2022JJ30049)supported by the Natural Science Foundation of Hunan Province,China。
文摘The spin caloritronic properties of the Janus VSTe monolayer were investigated using density functional theory(DFT)and the non-equilibrium Green’s function(NEGF)method,implemented in the Atomistix Toolkit(ATK)package.Our study revealed significant spin-splitting within the Janus VSTe monolayer,which induced spin currents under a temperature gradient across the device.By applying a 1%tensile strain,the Janus VSTe monolayer exhibited a perfect thermal spin filtering effect(SFE),with the spin-up current nearly suppressed to zero.Both the unstrained and strained Janus VSTe monolayers demonstrated excellent spin caloritronic properties,with spin figures of merit of 10.915 and 8.432 at an average temperature of 100 K,respectively.Notably,these properties were found to be sensitive to temperature,performing optimally at lower temperatures.These results suggest a promising avenue for designing spin caloritronic devices aimed at efficient waste heat recovery.
基金supported by the National Key Research and Development Program of China(No.2021YFA0910900)the National Natural Science Foundation(No.22104147)+4 种基金Youth Innovation Promotion Association CAS(No.2021359)the Natural Science Foundation of Guangdong(Nos.2018B030306046 and 2020A1515111130)Guangdong Provincial Key Laboratory of Synthetic Genomics(No.2019B030301006)Shenzhen Science and Technology Program(No.KQTD20180413181837372)Shenzhen Outstanding Talents Training Fund.
文摘The global pandemic caused by severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)virus has necessitated rapid,easy-to-use,and accurate diagnostic methods to monitor the virus infection.Herein,a ratiometric fluorescence enzyme-linked immunosorbent assay(ELISA)was developed using Si-fluorescein isothiocyanate nanoparticles(FITC NPs)for detecting SARSCoV-2 nucleocapsid(N)protein.Si-FITC NPs were prepared by a one-pot hydrothermal method using 3-aminopropyl triethoxysilane(APTES)-FITC as the Si source.This method did not need post-modification and avoided the reduction in quantum yield and stability.The p-nitrophenyl(pNP)produced by the alkaline phosphatase(ALP)-mediated hydrolysis of pnitrophenyl phosphate(pNPP)could quench Si fluorescence in Si-FITC NPs via the inner filter effect.In ELISA,an immunocomplex was formed by the recognition of capture antibody/N protein/reporter antibody.ALP-linked secondary antibody bound to the reporter antibody and induced pNPP hydrolysis to specifically quench Si fluorescence in Si-FITC NPs.The change in fluorescence intensity ratio could be used for detecting N protein,with a wide linearity range(0.01-10.0 and 50-300 ng/mL)and low detection limit(0.002 ng/mL).The concentration of spiked SARS-CoV-2 N protein could be determined accurately in human serum.Moreover,this proposed method can accurately distinguish coronavirus disease 2019(COVID-19)and non-COVID-19 patient samples.Therefore,this simple,sensitive,and accurate method can be applied for the early diagnosis of SARS-CoV-2 virus infection.
文摘In this paper, the problem how to reduce the GB effect in SC filters is discussed. A new generalbiquadratic SC structure in which the GB effect is reduced is developed. The structure is stray-insensitiveand has very low W<sub>0</sub> and Q sensitivities. Using the low-pass SC filter for an example, method of reducingthe GB effect has been shown in detail.
基金This work is supported by the National Natural Sci-ence Foundation China(No.22173052 of and No.11974217).
文摘Moleculardeviceswith highswitchingperformance and/or the perfect spin filtering effect have always been the pursuit with the development of molecular electronics.Hereb,yusingthe 2001.0V nonequilibrium.Green's function method in combination with the density functionaltheory,the switching performance and spin filtering properties of dimethyldihydropyrene(DHP)/cyclophanediene(CPD)photoswitchable molecule connected by carbon atomic chains(CACs)to two zigzag graphene nanoribbon electrodes have been theoretically investigated.The results show that DHP is more conductive than CPD and therefore an evident switching effect is demonstrated,and the switching ratio(RON/OFF)can reach 4.5×103.It is further revealed that the RoON/OF of DHP/CPD closely depends on the length of CACs.More specifically,the RoN/OFF values of DHP/CPD with odd-numbered CACs are larger than those with even-numbered CACs.More interestingly,a high or even perfect spin filtering effect can be obtained in these investigated DHP/CPD single-molecule devices.Our study is helpful for future design of single-molecule switches and spin filters and provides a way to optimize their performance by means of varying the length of bridging CACs.
文摘Most existing reconstruction algorithms for photoacoustic imaging (PAI) assume that transducers used to receive ultrasound signals have infinite bandwidth. When transducers with finite bandwidth are used, this assumption may result in reduction of the imaging contrast and distortions of reconstructed images. In this paper, we propose a novel method to compensate the finite bandwidth effect in PAI by using an optimal filter in the Fourier domain. Simulation results demonstrate that the use of this method can improve the contrast of the reconstructed images with finite-bandwidth ultrasound transducers.
文摘Variation of plastic viscosity and extrapolated shear yield stress with the concentration of Dispex A40 for the concentrated Alcoa A16 alpha -Al2O3 suspensions at 0.27 powder volume fraction was investigated at 294 K. An optimum level of Dispex A40 for full deflocculation is found to be at 0.18% mass fraction of the powder, at which the rheological behaviour shows little different to that of adjusting the pH to 4 to obtain full deflocculation. It is demonstrated that the shear stress drop can roughly work as an index for the thixotropy in particular fixed conditions, and consequently an index for the deflocculation as the shear stress drop becomes larger when the level of the flocculation increases, and vice versa. It is also found that the addition of Dispex A40 can prevent the filter cakes from cracking, whereas the cakes at various pH values with polyvinyl alcohol as a sole polymer normally develop cracking during drying.
基金financially supported by the National Natural Science Foundation of China(32202132,32172229)Young Elite Scientists Sponsorship Program by CAST(2022QNRC001)the Priority Academic Program Development of Jiangsu Higher Educations(PAPD)。
文摘Cadmium ion(Cd^(2+))detection technology plays a prominent role in food safety and human health.Herein,we designed and constructed an 2-aminoethyl dihydrogen phosphate(AEP)@upconversion nanoparticles(UCNPs)fluorescence sensor for quantitative detection of Cd^(2+)in paddy rice based on inner filter effect(IFE)combined with enzyme inhibition mechanism.The AEP modification UCNPs can offer a stable fluorescence donor at 658 nm and be quenched by the oxidized tetramethylbenzidine(oxTMB)catalyzed by horseradish peroxidase(HRP)enzymes.Without addition of Cd^(2+),the fluorescence of AEP@UCNPs fluorescence sensor was weaken due to the IFE between AEP@UCNPs and oxTMB.With addition of Cd^(2+),HRP enzyme activity was inhibited by Cd^(2+),leading to the decreased oxTMB,resulting in the enhance upconversion fluorescence intensity.As a result,the fluorescence intensity signal at 658 nm of the IFE-based AEP@UCNPs fluorescence sensor increased linearly with the increase in Cd^(2+)in a wide range from 0.5μmol/L to 6μmol/L and the limit of detection(LOD)was 24.6 n mol/L.In addition,our proposed IFE-based AEP@UCNPs fluorescence sensor can achieve Cd^(2+)detection in paddy rice in 30 min.