期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
JShellDetector: A Java FilelessWebshell Detector Based on Program Analysis 被引量:1
1
作者 Xuyan Song Yiting Qin +2 位作者 Xinyao Liu Baojiang Cui Junsong Fu 《Computers, Materials & Continua》 SCIE EI 2023年第4期2061-2078,共18页
Fileless webshell attacks against Java web applications have becomemore frequent in recent years as Java has gained market share. Webshell is amalicious script that can remotely execute commands and invade servers. It... Fileless webshell attacks against Java web applications have becomemore frequent in recent years as Java has gained market share. Webshell is amalicious script that can remotely execute commands and invade servers. Itis widely used in attacks against web applications. In contrast to traditionalfile-based webshells, fileless webshells leave no traces on the hard drive, whichmeans they are invisible to most antivirus software. To make matters worse,although there are some studies on fileless webshells, almost all of themare aimed at web applications developed in the PHP language. The complexmechanism of Java makes researchers face more challenges. To mitigate thisattack, this paper proposes JShellDetector, a fileless webshell detector forJava web applications based on program analysis. JShellDetector uses methodprobes to capture dynamic characteristics of web applications in the JavaVirtual Machine (JVM). When a suspicious class tries to call a specificsensitive method, JShellDetector catches it and converts it from the JVMto a bytecode file. Then, JShellDetector builds a Jimple-based control flowgraph and processes it using taint analysis techniques. A suspicious classis considered malicious if there is a valid path from sources to sinks. Todemonstrate the effectiveness of the proposed approach, we manually collect35 test cases (all open source on GitHub) and test JShellDetector and onlytwo other Java fileless webshell detection tools. The experimental results showthat the detection rate of JShellDetector reaches 77.1%, which is about 11%higher than the other two tools. 展开更多
关键词 Web security fileless webshell Java web application MALWARE
在线阅读 下载PDF
Machine learning based fileless malware traffic classification using image visualization
2
作者 Fikirte Ayalke Demmese Ajaya Neupane +3 位作者 Sajad Khorsandroo May Wang Kaushik Roy Yu Fu 《Cybersecurity》 EI CSCD 2024年第4期1-18,共18页
In today's interconnected world,network traffic is replete with adversarial attacks.As technology evolves,these attacks are also becoming increasingly sophisticated,making them even harder to detect.Fortunately,ar... In today's interconnected world,network traffic is replete with adversarial attacks.As technology evolves,these attacks are also becoming increasingly sophisticated,making them even harder to detect.Fortunately,artificial intelli-gence(Al)and,specifically machine learning(ML),have shown great success in fast and accurate detection,classifica-tion,and even analysis of such threats.Accordingly,there is a growing body of literature addressing how subfields of Al/ML(e.g.,natural language processing(NLP))are getting leveraged to accurately detect evasive malicious patterns in network traffic.In this paper,we delve into the current advancements in ML-based network traffic classification using image visualization.Through a rigorous experimental methodology,we first explore the process of network traffic to image conversion.Subsequently,we investigate how machine learning techniques can effectively leverage image visualization to accurately classify evasive malicious traces within network traffic.Through the utilization of production-level tools and utilities in realistic experiments,our proposed solution achieves an impressive accuracy rate of 99.48%in detecting fileless malware,which is widely regarded as one of the most elusive classes of malicious software. 展开更多
关键词 Network security Traffic classification fileless malware Image visualization Machine learning INTRUSION
原文传递
An emerging threat Fileless malware:a survey and research challenges 被引量:6
3
作者 Sudhakar Sushil Kumar 《Cybersecurity》 CSCD 2020年第1期42-53,共12页
With the evolution of cybersecurity countermeasures,the threat landscape has also evolved,especially in malware from traditional file-based malware to sophisticated and multifarious fileless malware.Fileless malware d... With the evolution of cybersecurity countermeasures,the threat landscape has also evolved,especially in malware from traditional file-based malware to sophisticated and multifarious fileless malware.Fileless malware does not use traditional executables to carry-out its activities.So,it does not use the file system,thereby evading signature-based detection system.The fileless malware attack is catastrophic for any enterprise because of its persistence,and power to evade any anti-virus solutions.The malware leverages the power of operating systems,trusted tools to accomplish its malicious intent.To analyze such malware,security professionals use forensic tools to trace the attacker,whereas the attacker might use anti-forensics tools to erase their traces.This survey makes a comprehensive analysis of fileless malware and their detection techniques that are available in the literature.We present a process model to handle fileless malware attacks in the incident response process.In the end,the specific research gaps present in the proposed process model are identified,and associated challenges are highlighted. 展开更多
关键词 fileless malware BOTNET Incident response Memory forensics Incident investigation Memory resident malware ROOTKIT
原文传递
An emerging threat Fileless malware:a survey and research challenges
4
作者 Sudhakar Sushil Kumar 《Cybersecurity》 2018年第1期668-679,共12页
With the evolution of cybersecurity countermeasures,the threat landscape has also evolved,especially in malware from traditional file-based malware to sophisticated and multifarious fileless malware.Fileless malware d... With the evolution of cybersecurity countermeasures,the threat landscape has also evolved,especially in malware from traditional file-based malware to sophisticated and multifarious fileless malware.Fileless malware does not use traditional executables to carry-out its activities.So,it does not use the file system,thereby evading signature-based detection system.The fileless malware attack is catastrophic for any enterprise because of its persistence,and power to evade any anti-virus solutions.The malware leverages the power of operating systems,trusted tools to accomplish its malicious intent.To analyze such malware,security professionals use forensic tools to trace the attacker,whereas the attacker might use anti-forensics tools to erase their traces.This survey makes a comprehensive analysis of fileless malware and their detection techniques that are available in the literature.We present a process model to handle fileless malware attacks in the incident response process.In the end,the specific research gaps present in the proposed process model are identified,and associated challenges are highlighted. 展开更多
关键词 fileless malware BOTNET Incident response Memory forensics Incident investigation Memory resident malware ROOTKIT
原文传递
一种针对Tomcat Filter型的MemShell检测技术研究 被引量:1
5
作者 蔡国宝 张昆 +4 位作者 曲博 李俊 袁方 李振宇 丁勇 《信息安全学报》 CSCD 2023年第4期153-162,共10页
近些年来,随着计算机技术的不断发展和应用,Web应用技术也在快速更迭,与其一起发展的还有木马后门技术,但传统的木马后门技术已经不能满足攻击者的需求,因而基于内存攻击的方式不断涌现,包括powershell内存载入攻击、.NET assembly托管... 近些年来,随着计算机技术的不断发展和应用,Web应用技术也在快速更迭,与其一起发展的还有木马后门技术,但传统的木马后门技术已经不能满足攻击者的需求,因而基于内存攻击的方式不断涌现,包括powershell内存载入攻击、.NET assembly托管代码注入攻击以及内存马(Memory WebShell,MemShell)攻击等,这些攻击方式为现有的安全防御检测机制带来了极大的挑战。因而业界对面向解决基于内存的攻击尤其是内存马的攻击展现出了强烈的需求。但当前业内针对内存马的检测能力较弱,学术界也缺乏对该领域的研究工作,所以本文提出了一种针对Tomcat Filter型的内存马检测方法。通过研究发现,内存马其最核心技术便是无文件(Fileless)及不落地(Living off the Land),但尽管如此,内存马最终会在内存中展现其功能并执行命令,所以内存是所有威胁的交汇点,因此本文将Java虚拟机(Java Virtual Machine,JVM)作为起始点,首先利用JVM内存扫描技术遍历出JVM内存中加载的所有Filter类型对象,但需要注意的是这些对象并非都是有威胁的,并且每一个对象都具有一定的特征,所以可以对这些特征通过人工经验进行分类并且筛选出具有代表性的特征向量,然后获取每一个Filter类型对象的所有代表特征向量,并根据特征向量的值梳理出异常表现序列;最后,利用朴素贝叶斯算法将大量正常和异常的Filter对象的异常表现序列作为训练样本,计算出对应项的条件概率并形成贝叶斯分类器。利用训练出的贝叶斯分类器就可以构建出一个内存马检测模型,该模型能够有效得针对该类型的内存马进行检测。实验结果表明,本文提出的方法针对Tomcat Filter型内存马的检测,实现了零误报率和94.07%的召回率。 展开更多
关键词 远程控制 内存马 无文件后门 朴素贝叶斯分类算法 异常表现序列
在线阅读 下载PDF
“无文件”恶意软件的攻击与防护 被引量:5
6
作者 蒋晓晶 《信息安全与通信保密》 2017年第9期40-47,共8页
随着恶意软件的不断演变,出现了一种以"无文件"形式存在的恶意软件,它难以被发现,且危害巨大,威胁着全球范围的银行、通讯企业和政府机构。本文首先对"无文件"恶意软件的定义和历史做了介绍,然后对其使用的攻击技... 随着恶意软件的不断演变,出现了一种以"无文件"形式存在的恶意软件,它难以被发现,且危害巨大,威胁着全球范围的银行、通讯企业和政府机构。本文首先对"无文件"恶意软件的定义和历史做了介绍,然后对其使用的攻击技术作了详细阐述。最后,本文分析了"无文件"恶意软件带来的挑战及应对措施。 展开更多
关键词 无文件 恶意软件 攻击与防护
在线阅读 下载PDF
基于CimCmdlets的横向移动攻击检测研究与实现 被引量:2
7
作者 李杰 滕斌 曹国江 《通信技术》 2019年第12期3005-3009,共5页
网络攻击者常借助横向移动攻击在网络中进行系统性地运动和渗透,以期寻找到有价值的数据或资产,由于此类攻击往往无文件存储痕迹,给入侵检测和取证分析带来了很大的挑战。在对横向移动攻击的概念和涉及的技术进行介绍的基础上,围绕对其... 网络攻击者常借助横向移动攻击在网络中进行系统性地运动和渗透,以期寻找到有价值的数据或资产,由于此类攻击往往无文件存储痕迹,给入侵检测和取证分析带来了很大的挑战。在对横向移动攻击的概念和涉及的技术进行介绍的基础上,围绕对其攻击行为的检测研究,基于CimCmdlets确定总体的技术路线和检测方法,并给出了真实系统中的测试和评估结果。 展开更多
关键词 无文件 横向移动 CimCmdlets 检测方法
在线阅读 下载PDF
基于无文件攻击技术与防御综述
8
作者 林明亮 彭贵超 《新一代信息技术》 2021年第17期31-35,共5页
因为攻击面的多样性,层出不穷的样本以及攻击者和安全研究者之间的技术对抗,网络空间安全检测问题是一个复杂的问题。近些年出现了一种为了不留痕迹改变了传播和行为方式的攻击。因为其不留痕迹,常规基于文件的检测和分析方式将不再有... 因为攻击面的多样性,层出不穷的样本以及攻击者和安全研究者之间的技术对抗,网络空间安全检测问题是一个复杂的问题。近些年出现了一种为了不留痕迹改变了传播和行为方式的攻击。因为其不留痕迹,常规基于文件的检测和分析方式将不再有效。随着网络安全技术的发展,网络攻击的威胁面也相应地更宽了,尤其是恶意代码从传统基于文件的恶意代码演变到复杂多样的无文件恶意代码。无文件恶意代码不用传统的可执行文件的方式来执行自身的行为,所以它不依赖于文件系统,并以此来规避基于特征的检测系统。因为其可持续性以及规避检测的特性,对任何单位来说无文件恶意代码攻击都是灾难性的。这类恶意代码利用操作系统自身可信的工具来执行其恶意的行为。为了分析这类恶意代码,安全专家使用取证工具来追踪攻击者,反之,攻击者也会使用反取证工具来清除攻击痕迹。本文主要研究无文件攻击的原理,在现代攻防中的应用,并提出针对这类攻击的防御体系。 展开更多
关键词 无文件攻击 恶意代码 网络安全 病毒
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部