Smartphones are becoming increasingly popular, users are provided with various interface styles with different designed icons. Icon, as an important competent of user interface, is regarded to be more efficient and pl...Smartphones are becoming increasingly popular, users are provided with various interface styles with different designed icons. Icon, as an important competent of user interface, is regarded to be more efficient and pleasurable. However, compared with desktop computers, fewer design principles on smartphone icon were proposed. This paper investigated the effects of icon background shape and the figure/background area ratio on visual search performance and user preference. Icon figures combined with six different geometric background shapes and five different figure/ background area ratios were studied on three different screens in experiments with 40 subjects. The results of an analysis of variance (ANOVA) showed that these two inde- pendent variables (background shape and figure/background area ratio) significantly affected the visual search performance and user preference. On 3.5-in (1 in=0.025 4 m) and 4.0-in displays, unified backgroundwould be optimal, shapes such as square, circle and transitions between them (e.g., rounded square, squircle, etc.) are recommended because backgrounds in these shapes yield a better search time performance and subjective satisfaction for ease of use, search and visual preference. A 60% figure/background area ratio is the most appropriate for smartphone icon design on the 3.5-in screen, while a 50% area ratio could be a suggestion for both relatively optimized search performance and user preference on 4.0-in. In terms of the 4.7-in, icon figure is used di- rectly for its better performance and preference compared with icons with background.展开更多
Background:Over the past few decades,a threefold increase in obesity and type 2 diabetes(T2D)has placed a heavy burden on the health-care system and society.Previous studies have shown correlations between obesity,T2D...Background:Over the past few decades,a threefold increase in obesity and type 2 diabetes(T2D)has placed a heavy burden on the health-care system and society.Previous studies have shown correlations between obesity,T2D,and neurodegenera-tive diseases,including dementia.It is imperative to further understand the relation-ship between obesity,T2D,and cognitive deficits.Methods:This investigation tested and evaluated the cognitive impact of obesity and T2D induced by high-fat diet(HFD)and the effect of the host genetic background on the severity of cognitive decline caused by obesity and T2D in collaborative cross(CC)mice.The CC mice are a genetically diverse panel derived from eight inbred strains.Results:Our findings demonstrated significant variations in the recorded phenotypes across different CC lines compared to the reference mouse line,C57BL/6J.CC037 line exhibited a substantial increase in body weight on HFD,whereas line CC005 ex-hibited differing responses based on sex.Glucose tolerance tests revealed significant variations,with some lines like CC005 showing a marked increase in area under the curve(AUC)values on HFD.Organ weights,including brain,spleen,liver,and kidney,varied significantly among the lines and sexes in response to HFD.Behavioral tests using the Morris water maze indicated that cognitive performance was differentially affected by diet and genetic background.Conclusions:Our study establishes a foundation for future quantitative trait loci map-ping using CC lines and identifying genes underlying the comorbidity of Alzheimer's disease(AD),caused by obesity and T2D.The genetic components may offer new tools for early prediction and prevention.展开更多
Land surface temperature(LST)is the key variable in land-atmosphere interaction,having an important impact on weather and climate forecasting.However,achieving consistent analysis of LST and the atmosphere in assimila...Land surface temperature(LST)is the key variable in land-atmosphere interaction,having an important impact on weather and climate forecasting.However,achieving consistent analysis of LST and the atmosphere in assimilation is quite challenging.This is because there is limited knowledge about the cross-component background error covariance(BEC)between LST and atmospheric state variables.This study aims to clarify whether there is a relationship between the error of LST and atmospheric variables,and whether this relationship varies spatially and temporally.To this end,the BEC coupled with atmospheric variables and LST was constructed(LST-BEC),and its characteristics were analyzed based on the 2023 mei-yu season.The general characteristics of LST-BEC show that the LST is mainly correlated with the atmospheric temperature and the correlation decreases gradually with a rise in atmospheric height,and the error standard deviation of the LST is noticeably larger than that of the low-level atmospheric temperature.The spatiotemporal characteristics of LST-BEC on the heavy-rain day and light-rain day show that the error correlation and error standard deviation of LST and low-level atmospheric temperature and humidity are closely related to the weather background,and also have obvious diurnal variations.These results provide valuable information for strongly coupled land-atmosphere assimilation.展开更多
BACKGROUND Inadequate glycemic control in patients with type 2 diabetes(T2DM)is a major public health problem and a significant risk factor for the progression of diabetic complications.AIM To evaluate the effects of ...BACKGROUND Inadequate glycemic control in patients with type 2 diabetes(T2DM)is a major public health problem and a significant risk factor for the progression of diabetic complications.AIM To evaluate the effects of intensive and supportive glycemic management strategies over a 12-month period in individuals with T2DM with glycated hemoglobin(HbA1c)≥10%and varying backgrounds of glycemic control.METHODS This prospective observational study investigated glycemic control in patients with poorly controlled T2DM over 12 months.Participants were categorized into four groups based on prior glycemic history:Newly diagnosed,previously well controlled with recent worsening,previously off-target but now worsening,and HbA1c consistently above 10%.HbA1c levels were monitored quarterly,and patients received medical,educational,and dietary support as needed.The analysis focused on the success rates of good glycemic control and the associated factors within each group.RESULTS The study showed significant improvements in HbA1c levels in all participants.The most significant improvement was observed in individuals newly diagnosed with diabetes:65%achieved an HbA1c target of≤7%.The results varied between participants with different glycemic control histories,followed by decreasing success rates:39%in participants with previously good glycemic control,21%in participants whose glycemic control had deteriorated compared to before,and only 10%in participants with persistently poor control,with mean HbA1c levels of 6.3%,7.7%,8.2%,and 9.7%,respectively.After one year,65.2%of the“newly diagnosed patients”,39.3%in the“previously controlled group”,21.9%in the“previously off-target but now worsened'”group and 10%in the“poorly controlled from the start”group had achieved HbA1c levels of 7 and below.CONCLUSION In poorly controlled diabetes,the rate at which treatment goals are achieved is associated with the glycemic background characteristics,emphasizing the need for tailored strategies.Therefore,different and comprehensive treatment approaches are needed for patients with persistent uncontrolled diabetes.展开更多
The Hard X-ray Imager(HXI)payload,a component of China’s Advanced Space-based Solar Observatory satellite,is designed to observe solar X-ray emissions in the 30-200 keV range,with the aim of investigating nonthermal ...The Hard X-ray Imager(HXI)payload,a component of China’s Advanced Space-based Solar Observatory satellite,is designed to observe solar X-ray emissions in the 30-200 keV range,with the aim of investigating nonthermal physical processes during solar flares.Before launch,Geant4 simulations were employed to assess the onorbit background of the HXI instrument,evaluating its performance and potential to achieve its scientific objectives.This study addresses issues identified in previous simulations and conducts further analyses to examine the distribution of background counts across the 99 detectors.The results demonstrate alignment between simulations and observations at low and medium geomagnetic latitudes;however,challenges persist at high geomagnetic latitudes due to limitations in the current albedo photon model.This investigation provides insights into background sources from various particles,enhances understanding of space background characteristics,and offers guidance for background subtraction in imaging processes.展开更多
The turbine blades operate under high temperature and high pressure conditions,and when using radiation thermometry,the influence of radiation from surrounding blades leads to measurement errors.To address this issue,...The turbine blades operate under high temperature and high pressure conditions,and when using radiation thermometry,the influence of radiation from surrounding blades leads to measurement errors.To address this issue,this paper develops a three-dimensional discretized dynamic radiation transfer model based on the blade shape of the turbine.The relationship between the radiation angle coefficient of the surrounding blades and the rotation angle of the blade under test is analyzed.The radiation angle coefficient is calculated using the triangular element method,and temperature inversion is performed based on the effective emissivity to compute the measurement error.The results show that under dynamic high temperature conditions,the temperature measurement error caused by reflection at the selected 60%leaf height point varies with the rotation angle,and the maximum reaches 25.58K.The angular coefficient exhibits periodic fluctuations with changes in rotation angle,and the maximum effective emissivity increases as the rotation angle increases.As the blade height increases,the impact of reflected radiation on radiometric temperature measurement errors shows a decreasing trend.This study provides a reference for radiation thermometry in dynamic high-temperature environments.展开更多
The quantitative trait loci(QTL)-by-environment(Q × E) interaction effect is hard to detect because there are no effective ways to control the genomic background. In this study, we propose a linear mixed model th...The quantitative trait loci(QTL)-by-environment(Q × E) interaction effect is hard to detect because there are no effective ways to control the genomic background. In this study, we propose a linear mixed model that simultaneously analyzes data from multiple environments to detect Q × E interactions. This model incorporates two different kinship matrices derived from the genome-wide markers to control both main and interaction polygenic background effects. Simulation studies demonstrate that our approach is more powerful than the meta-analysis and inclusive composite interval mapping methods. We further analyze four agronomic traits of rice across four environments. A main effect QTL is identified for 1000-grain weight(KGW), while no QTL are found for tiller number. Additionally, a large QTL with a significant Q × E interaction is detected on chromosome 7 affecting grain number, yield, and KGW. This region harbors two important genes, PROG1 and Ghd7. Furthermore, we apply our mixed model to analyze lodging in barley across six environments. The six regions exhibiting Q × E interaction effects identified by our approach overlap with the SNPs previously identified using EM and MCMC-based Bayesian methods, further validating the robustness of our approach. Both simulation studies and empirical data analyses show that our method outperforms all other methods compared.展开更多
Meng Yao Zheng Dian is one of the three classics of Mongolian medicine.It was written by Zhanbra Dorje,who was a famous Mongolian physician.The book was not only related to the author's origin,education and learni...Meng Yao Zheng Dian is one of the three classics of Mongolian medicine.It was written by Zhanbra Dorje,who was a famous Mongolian physician.The book was not only related to the author's origin,education and learning experience,but also closely related to the social development,cultural exchanges between Mongolian and Tibetan,and people's demand for Mongolian medicine at that time.The book in four languages indicates the name of Mongolian medicinal herbs,Mongolian of China,Tibetan of China,Chinese,Manchu medicine academic and cultural exchanges played a positive role in promoting the cultural exchanges,is a vivid embodiment of the cultural exchanges between Chinese nationalities and exchanges and mingling.展开更多
The Aleutian Low(AL)is a dominant feature of the mean circulation in the North Pacific during the winter season.The background stationary wave,air-sea interaction,and transient eddies over the North Pacific exert dist...The Aleutian Low(AL)is a dominant feature of the mean circulation in the North Pacific during the winter season.The background stationary wave,air-sea interaction,and transient eddies over the North Pacific exert distinct impacts on the interannual variations of the AL intensity and position.In this study,we adopt the quasi-geostrophic geopotential tendency equation to investigate the roles of various physical processes in the maintenance and interannual variations of this system.The results show that absolute vorticity advection plays the most important role in the formation and maintenance of AL intensity,while high-frequency transient eddies contribute most to the meridional and zonal shifts of the AL.The high-frequency transient eddy vorticity forcing affects the AL through the barotropic energy conversion process,and,in turn,the AL enhances the high-frequency transient eddies through the baroclinic energy conversion process,forming a positive feedback.The associated high-frequency eddy kinetic energy anomalies exhibit an eastward movement toward the east coast of North America in the years of an intensified AL,which explains why a strengthened AL is often accompanied by an eastward movement.Furthermore,the energy conversion terms of high-frequency transient eddies are mostly located over the extratropical eastern North Pacific,leading to asymmetric features in the zonal movement of the AL.展开更多
Generally speaking,the precursors of ozone(O_(3)),nitrogen oxides and volatile organic compounds are very low in desert areas due to the lack of anthropogenic emissions and natural emissions,and thus O_(3)concentratio...Generally speaking,the precursors of ozone(O_(3)),nitrogen oxides and volatile organic compounds are very low in desert areas due to the lack of anthropogenic emissions and natural emissions,and thus O_(3)concentrations are relatively low.However,high summer background concentrations of about 100μg/m^(3)or 60 ppb were found in the Alxa Desert in the highland of northwest China based on continuous summer observations from 2019 to 2021,which was higher than the most of natural background areas or clean areas in world for summer O_(3)background concentrations.The high O_(3)background concentrations were related to surface features and altitude.Heavy-intensity anthropogenic activity areas in desert areas can cause increased O_(3)concentrations or pollution,but also generated O_(3)depleting substances such as nitrous oxide,which eventually reduced the regional O_(3)baseline values.Nitrogen dioxide(NO2)also had a dual effect on O_(3)generation,showing promotion at low concentrations and inhibition at high concentrations.In addition,sand-dust weather reduced O_(3)clearly,but O_(3)eventually stabilized around the background concentration values and did not vary with sand-dust particulate matter.展开更多
In this paper,the nonlinearization of the Lax pair and the Darboux transformation method are used to construct the rogue wave on the elliptic function background in the reduced Maxwell–Bloch system,which is described...In this paper,the nonlinearization of the Lax pair and the Darboux transformation method are used to construct the rogue wave on the elliptic function background in the reduced Maxwell–Bloch system,which is described by four component nonlinear evolution equations(NLEEs).On the background of the Jacobian elliptic function,we obtain the admissible eigenvalues and the corresponding non-periodic eigenfunctions of the model spectrum problem.Then,with the help of the one-fold Darboux transformation and two-fold Darboux transformation,rogue waves on a dn-periodic background and cn-periodic background are derived,respectively.Finally,the corresponding complex dynamical properties and evolutions of the four components are illustrated graphically by choosing suitable parameters.展开更多
The gravitational wave background(GWB) produced by extreme-mass-ratio inspirals(EMRIs) serves as a powerful tool for probing the astrophysical and dynamical processes in galactic centers. EMRI systems are a primary ta...The gravitational wave background(GWB) produced by extreme-mass-ratio inspirals(EMRIs) serves as a powerful tool for probing the astrophysical and dynamical processes in galactic centers. EMRI systems are a primary target for the space-based detector laser interferometer space antenna due to their long-lived signals and high signal-to-noise ratios. This study explores the statistical properties of the GWB from EMRI, focusing on the calculation methods for the GWB, the astrophysical distribution of EMRI sources, and the influence of key parameters, including the spin of supermassive black holes(SMBHs) and the masses of compact objects(COs). By analyzing these factors, we determine the distribution range of the characteristic strain of the GWB from EMRIs. We find that the final eccentricity distributions appear to have negligible effect on the intensity of the GWB due to rapid circularization before they become detectable and the spin of the SMBH enhances the gravitational wave characteristic strain by approximately 1% compared to cases without spin effects. The masses of COs can also significantly affect the characteristic strain of the GWB from EMRIs, with black hole as CO producing a gravitational wave signal intensity that is approximately one order of magnitude higher compared to cases where neutron star or white dwarf are the COs.展开更多
Based on the equivalent circuit model of a two-port optical receiver front-end,the relationship between the equivalent input noise current spectral density and the noise figure is analyzed. The derived relationship ha...Based on the equivalent circuit model of a two-port optical receiver front-end,the relationship between the equivalent input noise current spectral density and the noise figure is analyzed. The derived relationship has universal validity for determining the equivalent input noise current spectral density for optical receiver designs, as verified by measuring a 155Mb/s high-impedance optical receiver front.end. Good agreement between calculated and simulated results has been achieved.展开更多
基金Acknowledgements This research was supported by the National Natural Science Foundation of China (Grant No. 51175458).
文摘Smartphones are becoming increasingly popular, users are provided with various interface styles with different designed icons. Icon, as an important competent of user interface, is regarded to be more efficient and pleasurable. However, compared with desktop computers, fewer design principles on smartphone icon were proposed. This paper investigated the effects of icon background shape and the figure/background area ratio on visual search performance and user preference. Icon figures combined with six different geometric background shapes and five different figure/ background area ratios were studied on three different screens in experiments with 40 subjects. The results of an analysis of variance (ANOVA) showed that these two inde- pendent variables (background shape and figure/background area ratio) significantly affected the visual search performance and user preference. On 3.5-in (1 in=0.025 4 m) and 4.0-in displays, unified backgroundwould be optimal, shapes such as square, circle and transitions between them (e.g., rounded square, squircle, etc.) are recommended because backgrounds in these shapes yield a better search time performance and subjective satisfaction for ease of use, search and visual preference. A 60% figure/background area ratio is the most appropriate for smartphone icon design on the 3.5-in screen, while a 50% area ratio could be a suggestion for both relatively optimized search performance and user preference on 4.0-in. In terms of the 4.7-in, icon figure is used di- rectly for its better performance and preference compared with icons with background.
文摘Background:Over the past few decades,a threefold increase in obesity and type 2 diabetes(T2D)has placed a heavy burden on the health-care system and society.Previous studies have shown correlations between obesity,T2D,and neurodegenera-tive diseases,including dementia.It is imperative to further understand the relation-ship between obesity,T2D,and cognitive deficits.Methods:This investigation tested and evaluated the cognitive impact of obesity and T2D induced by high-fat diet(HFD)and the effect of the host genetic background on the severity of cognitive decline caused by obesity and T2D in collaborative cross(CC)mice.The CC mice are a genetically diverse panel derived from eight inbred strains.Results:Our findings demonstrated significant variations in the recorded phenotypes across different CC lines compared to the reference mouse line,C57BL/6J.CC037 line exhibited a substantial increase in body weight on HFD,whereas line CC005 ex-hibited differing responses based on sex.Glucose tolerance tests revealed significant variations,with some lines like CC005 showing a marked increase in area under the curve(AUC)values on HFD.Organ weights,including brain,spleen,liver,and kidney,varied significantly among the lines and sexes in response to HFD.Behavioral tests using the Morris water maze indicated that cognitive performance was differentially affected by diet and genetic background.Conclusions:Our study establishes a foundation for future quantitative trait loci map-ping using CC lines and identifying genes underlying the comorbidity of Alzheimer's disease(AD),caused by obesity and T2D.The genetic components may offer new tools for early prediction and prevention.
基金sponsored by the National Natural Science Foundation of China[grant number U2442218]。
文摘Land surface temperature(LST)is the key variable in land-atmosphere interaction,having an important impact on weather and climate forecasting.However,achieving consistent analysis of LST and the atmosphere in assimilation is quite challenging.This is because there is limited knowledge about the cross-component background error covariance(BEC)between LST and atmospheric state variables.This study aims to clarify whether there is a relationship between the error of LST and atmospheric variables,and whether this relationship varies spatially and temporally.To this end,the BEC coupled with atmospheric variables and LST was constructed(LST-BEC),and its characteristics were analyzed based on the 2023 mei-yu season.The general characteristics of LST-BEC show that the LST is mainly correlated with the atmospheric temperature and the correlation decreases gradually with a rise in atmospheric height,and the error standard deviation of the LST is noticeably larger than that of the low-level atmospheric temperature.The spatiotemporal characteristics of LST-BEC on the heavy-rain day and light-rain day show that the error correlation and error standard deviation of LST and low-level atmospheric temperature and humidity are closely related to the weather background,and also have obvious diurnal variations.These results provide valuable information for strongly coupled land-atmosphere assimilation.
文摘BACKGROUND Inadequate glycemic control in patients with type 2 diabetes(T2DM)is a major public health problem and a significant risk factor for the progression of diabetic complications.AIM To evaluate the effects of intensive and supportive glycemic management strategies over a 12-month period in individuals with T2DM with glycated hemoglobin(HbA1c)≥10%and varying backgrounds of glycemic control.METHODS This prospective observational study investigated glycemic control in patients with poorly controlled T2DM over 12 months.Participants were categorized into four groups based on prior glycemic history:Newly diagnosed,previously well controlled with recent worsening,previously off-target but now worsening,and HbA1c consistently above 10%.HbA1c levels were monitored quarterly,and patients received medical,educational,and dietary support as needed.The analysis focused on the success rates of good glycemic control and the associated factors within each group.RESULTS The study showed significant improvements in HbA1c levels in all participants.The most significant improvement was observed in individuals newly diagnosed with diabetes:65%achieved an HbA1c target of≤7%.The results varied between participants with different glycemic control histories,followed by decreasing success rates:39%in participants with previously good glycemic control,21%in participants whose glycemic control had deteriorated compared to before,and only 10%in participants with persistently poor control,with mean HbA1c levels of 6.3%,7.7%,8.2%,and 9.7%,respectively.After one year,65.2%of the“newly diagnosed patients”,39.3%in the“previously controlled group”,21.9%in the“previously off-target but now worsened'”group and 10%in the“poorly controlled from the start”group had achieved HbA1c levels of 7 and below.CONCLUSION In poorly controlled diabetes,the rate at which treatment goals are achieved is associated with the glycemic background characteristics,emphasizing the need for tailored strategies.Therefore,different and comprehensive treatment approaches are needed for patients with persistent uncontrolled diabetes.
基金supported by the National Natural Science Foundation of China(NSFC,grant Nos.12173100,11973097 and 12022302)the Youth Innovation Promotion Association CAS(Nos.2021317 and Y2021087)+1 种基金the Scientific Instrument Developing Project of the CAS(No.20200077)the Strategic Priority Research Program on Space Science,Chinese Academy of Sciences(No.XDA 15320104).
文摘The Hard X-ray Imager(HXI)payload,a component of China’s Advanced Space-based Solar Observatory satellite,is designed to observe solar X-ray emissions in the 30-200 keV range,with the aim of investigating nonthermal physical processes during solar flares.Before launch,Geant4 simulations were employed to assess the onorbit background of the HXI instrument,evaluating its performance and potential to achieve its scientific objectives.This study addresses issues identified in previous simulations and conducts further analyses to examine the distribution of background counts across the 99 detectors.The results demonstrate alignment between simulations and observations at low and medium geomagnetic latitudes;however,challenges persist at high geomagnetic latitudes due to limitations in the current albedo photon model.This investigation provides insights into background sources from various particles,enhances understanding of space background characteristics,and offers guidance for background subtraction in imaging processes.
文摘The turbine blades operate under high temperature and high pressure conditions,and when using radiation thermometry,the influence of radiation from surrounding blades leads to measurement errors.To address this issue,this paper develops a three-dimensional discretized dynamic radiation transfer model based on the blade shape of the turbine.The relationship between the radiation angle coefficient of the surrounding blades and the rotation angle of the blade under test is analyzed.The radiation angle coefficient is calculated using the triangular element method,and temperature inversion is performed based on the effective emissivity to compute the measurement error.The results show that under dynamic high temperature conditions,the temperature measurement error caused by reflection at the selected 60%leaf height point varies with the rotation angle,and the maximum reaches 25.58K.The angular coefficient exhibits periodic fluctuations with changes in rotation angle,and the maximum effective emissivity increases as the rotation angle increases.As the blade height increases,the impact of reflected radiation on radiometric temperature measurement errors shows a decreasing trend.This study provides a reference for radiation thermometry in dynamic high-temperature environments.
基金supported by the National Key Research and Development Programs of China(2024YFF1000100 and 2021YFD1301102)the National Natural Science Foundation of China (32172702)+3 种基金the State Key Laboratory of Animal Biotech Breeding (XQSWYZQZ-KFYX-4)Zaozhuang Elite Industrial Innovation ProgramAgricultural Science and Technology Innovation Program (ASTIP-IAS-TS-6)supported by the United States National Science Foundation (NSF) Collaborative Research Grant (DBI-1458515)
文摘The quantitative trait loci(QTL)-by-environment(Q × E) interaction effect is hard to detect because there are no effective ways to control the genomic background. In this study, we propose a linear mixed model that simultaneously analyzes data from multiple environments to detect Q × E interactions. This model incorporates two different kinship matrices derived from the genome-wide markers to control both main and interaction polygenic background effects. Simulation studies demonstrate that our approach is more powerful than the meta-analysis and inclusive composite interval mapping methods. We further analyze four agronomic traits of rice across four environments. A main effect QTL is identified for 1000-grain weight(KGW), while no QTL are found for tiller number. Additionally, a large QTL with a significant Q × E interaction is detected on chromosome 7 affecting grain number, yield, and KGW. This region harbors two important genes, PROG1 and Ghd7. Furthermore, we apply our mixed model to analyze lodging in barley across six environments. The six regions exhibiting Q × E interaction effects identified by our approach overlap with the SNPs previously identified using EM and MCMC-based Bayesian methods, further validating the robustness of our approach. Both simulation studies and empirical data analyses show that our method outperforms all other methods compared.
基金General project of the National Social Science Foundation,“Research on the History of Exchanges between Traditional Chinese Medicine and Mongolian Medicine from the Perspective of Strengthening the Consciousness of the Chinese Nation's Community”(Project No.:21BMZ078)。
文摘Meng Yao Zheng Dian is one of the three classics of Mongolian medicine.It was written by Zhanbra Dorje,who was a famous Mongolian physician.The book was not only related to the author's origin,education and learning experience,but also closely related to the social development,cultural exchanges between Mongolian and Tibetan,and people's demand for Mongolian medicine at that time.The book in four languages indicates the name of Mongolian medicinal herbs,Mongolian of China,Tibetan of China,Chinese,Manchu medicine academic and cultural exchanges played a positive role in promoting the cultural exchanges,is a vivid embodiment of the cultural exchanges between Chinese nationalities and exchanges and mingling.
基金partially supported by the National Natural Science Foundation of China(Grant Nos.42088101 and 42175023)the Innovation Group Project of Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)(Grant No.316323005)the Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies(Grant No.2020B1212060025)。
文摘The Aleutian Low(AL)is a dominant feature of the mean circulation in the North Pacific during the winter season.The background stationary wave,air-sea interaction,and transient eddies over the North Pacific exert distinct impacts on the interannual variations of the AL intensity and position.In this study,we adopt the quasi-geostrophic geopotential tendency equation to investigate the roles of various physical processes in the maintenance and interannual variations of this system.The results show that absolute vorticity advection plays the most important role in the formation and maintenance of AL intensity,while high-frequency transient eddies contribute most to the meridional and zonal shifts of the AL.The high-frequency transient eddy vorticity forcing affects the AL through the barotropic energy conversion process,and,in turn,the AL enhances the high-frequency transient eddies through the baroclinic energy conversion process,forming a positive feedback.The associated high-frequency eddy kinetic energy anomalies exhibit an eastward movement toward the east coast of North America in the years of an intensified AL,which explains why a strengthened AL is often accompanied by an eastward movement.Furthermore,the energy conversion terms of high-frequency transient eddies are mostly located over the extratropical eastern North Pacific,leading to asymmetric features in the zonal movement of the AL.
基金supported by the Ministry of Science and Technology of China(No.2022YFF0802501)Inner Mongolia Autonomous Region Science and Technology Program(Nos.2021GG0100 and 2022YFHH0116).
文摘Generally speaking,the precursors of ozone(O_(3)),nitrogen oxides and volatile organic compounds are very low in desert areas due to the lack of anthropogenic emissions and natural emissions,and thus O_(3)concentrations are relatively low.However,high summer background concentrations of about 100μg/m^(3)or 60 ppb were found in the Alxa Desert in the highland of northwest China based on continuous summer observations from 2019 to 2021,which was higher than the most of natural background areas or clean areas in world for summer O_(3)background concentrations.The high O_(3)background concentrations were related to surface features and altitude.Heavy-intensity anthropogenic activity areas in desert areas can cause increased O_(3)concentrations or pollution,but also generated O_(3)depleting substances such as nitrous oxide,which eventually reduced the regional O_(3)baseline values.Nitrogen dioxide(NO2)also had a dual effect on O_(3)generation,showing promotion at low concentrations and inhibition at high concentrations.In addition,sand-dust weather reduced O_(3)clearly,but O_(3)eventually stabilized around the background concentration values and did not vary with sand-dust particulate matter.
基金supported by the National Natural Science Foundation of China(Grant No.12361052)the Program for Innovative Research Team in Universities of Inner Mongolia Autonomous Region(Grant No.NMGIRT2414)+3 种基金the Fundamental Research Funds for the Inner Mongolia Normal University,China(Grant Nos.2022JBTD007,2022JBXC013)Graduate Students'Research and Innovation Fund of Inner Mongolia Autonomous Region(Grant No.B20231053Z)the Key Laboratory of Infinite-Dimensional Hamiltonian System and Its Algorithm Application(Inner Mongolia Normal University),the Ministry of Education(Grant Nos.2023KFZR01,2023KFZR02)the First-Class Disciplines Project,Inner Mongolia Autonomous Region,China(Grant No.YLXKZX-NSD-001)。
文摘In this paper,the nonlinearization of the Lax pair and the Darboux transformation method are used to construct the rogue wave on the elliptic function background in the reduced Maxwell–Bloch system,which is described by four component nonlinear evolution equations(NLEEs).On the background of the Jacobian elliptic function,we obtain the admissible eigenvalues and the corresponding non-periodic eigenfunctions of the model spectrum problem.Then,with the help of the one-fold Darboux transformation and two-fold Darboux transformation,rogue waves on a dn-periodic background and cn-periodic background are derived,respectively.Finally,the corresponding complex dynamical properties and evolutions of the four components are illustrated graphically by choosing suitable parameters.
基金supported by the National Key R&D Program of China (Grant No. 2020YFC2201400)。
文摘The gravitational wave background(GWB) produced by extreme-mass-ratio inspirals(EMRIs) serves as a powerful tool for probing the astrophysical and dynamical processes in galactic centers. EMRI systems are a primary target for the space-based detector laser interferometer space antenna due to their long-lived signals and high signal-to-noise ratios. This study explores the statistical properties of the GWB from EMRI, focusing on the calculation methods for the GWB, the astrophysical distribution of EMRI sources, and the influence of key parameters, including the spin of supermassive black holes(SMBHs) and the masses of compact objects(COs). By analyzing these factors, we determine the distribution range of the characteristic strain of the GWB from EMRIs. We find that the final eccentricity distributions appear to have negligible effect on the intensity of the GWB due to rapid circularization before they become detectable and the spin of the SMBH enhances the gravitational wave characteristic strain by approximately 1% compared to cases without spin effects. The masses of COs can also significantly affect the characteristic strain of the GWB from EMRIs, with black hole as CO producing a gravitational wave signal intensity that is approximately one order of magnitude higher compared to cases where neutron star or white dwarf are the COs.
文摘Based on the equivalent circuit model of a two-port optical receiver front-end,the relationship between the equivalent input noise current spectral density and the noise figure is analyzed. The derived relationship has universal validity for determining the equivalent input noise current spectral density for optical receiver designs, as verified by measuring a 155Mb/s high-impedance optical receiver front.end. Good agreement between calculated and simulated results has been achieved.