期刊文献+
共找到43,496篇文章
< 1 2 250 >
每页显示 20 50 100
Model-free Predictive Control of Motor Drives:A Review 被引量:2
1
作者 Chenhui Zhou Yongchang Zhang Haitao Yang 《CES Transactions on Electrical Machines and Systems》 2025年第1期76-90,共15页
Model predictive control(MPC)has been deemed as an attractive control method in motor drives by virtue of its simple structure,convenient multi-objective optimization,and satisfactory dynamic performance.However,the s... Model predictive control(MPC)has been deemed as an attractive control method in motor drives by virtue of its simple structure,convenient multi-objective optimization,and satisfactory dynamic performance.However,the strong reliance on mathematical models seriously restrains its practical application.Therefore,improving the robustness of MPC has attained significant attentions in the last two decades,followed by which,model-free predictive control(MFPC)comes into existence.This article aims to reveal the current state of MFPC strategies for motor drives and give the categorization from the perspective of implementation.Based on this review,the principles of the reported MFPC strategies are introduced in detail,as well as the challenges encountered in technology realization.In addition,some of typical and important concepts are experimentally validated via case studies to evaluate the performance and highlight their features.Finally,the future trends of MFPC are discussed based on the current state and reported developments. 展开更多
关键词 model predictive control Motor drives Parameter robustness model-free predictive control
在线阅读 下载PDF
Fault-observer-based iterative learning model predictive controller for trajectory tracking of hypersonic vehicles 被引量:2
2
作者 CUI Peng GAO Changsheng AN Ruoming 《Journal of Systems Engineering and Electronics》 2025年第3期803-813,共11页
This work proposes the application of an iterative learning model predictive control(ILMPC)approach based on an adaptive fault observer(FOBILMPC)for fault-tolerant control and trajectory tracking in air-breathing hype... This work proposes the application of an iterative learning model predictive control(ILMPC)approach based on an adaptive fault observer(FOBILMPC)for fault-tolerant control and trajectory tracking in air-breathing hypersonic vehicles.In order to increase the control amount,this online control legislation makes use of model predictive control(MPC)that is based on the concept of iterative learning control(ILC).By using offline data to decrease the linearized model’s faults,the strategy may effectively increase the robustness of the control system and guarantee that disturbances can be suppressed.An adaptive fault observer is created based on the suggested ILMPC approach in order to enhance overall fault tolerance by estimating and compensating for actuator disturbance and fault degree.During the derivation process,a linearized model of longitudinal dynamics is established.The suggested ILMPC approach is likely to be used in the design of hypersonic vehicle control systems since numerical simulations have demonstrated that it can decrease tracking error and speed up convergence when compared to the offline controller. 展开更多
关键词 hypersonic vehicle actuator fault tracking control iterative learning control(ILC) model predictive control(MPC) fault observer
在线阅读 下载PDF
Modeling and control of automatic voltage regulation for a hydropower plant using advanced model predictive control 被引量:1
3
作者 Ebunle Akupan Rene Willy Stephen Tounsi Fokui 《Global Energy Interconnection》 2025年第2期269-285,共17页
Fluctuating voltage levels in power grids necessitate automatic voltage regulators(AVRs)to ensure stability.This study examined the modeling and control of AVR in hydroelectric power plants using model predictive cont... Fluctuating voltage levels in power grids necessitate automatic voltage regulators(AVRs)to ensure stability.This study examined the modeling and control of AVR in hydroelectric power plants using model predictive control(MPC),which utilizes an extensive mathe-matical model of the voltage regulation system to optimize the control actions over a defined prediction horizon.This predictive feature enables MPC to minimize voltage deviations while accounting for operational constraints,thereby improving stability and performance under dynamic conditions.Thefindings were compared with those derived from an optimal proportional integral derivative(PID)con-troller designed using the artificial bee colony(ABC)algorithm.Although the ABC-PID method adjusts the PID parameters based on historical data,it may be difficult to adapt to real-time changes in system dynamics under constraints.Comprehensive simulations assessed both frameworks,emphasizing performance metrics such as disturbance rejection,response to load changes,and resilience to uncertainties.The results show that both MPC and ABC-PID methods effectively achieved accurate voltage regulation;however,MPC excelled in controlling overshoot and settling time—recording 0.0%and 0.25 s,respectively.This demonstrates greater robustness compared to conventional control methods that optimize PID parameters based on performance criteria derived from actual system behavior,which exhibited settling times and overshoots exceeding 0.41 s and 5.0%,respectively.The controllers were implemented using MATLAB/Simulink software,indicating a significant advancement for power plant engineers pursuing state-of-the-art automatic voltage regulations. 展开更多
关键词 Automatic voltage regulation Artificial bee colony Evolutionary techniques model predictive control PID controller HYDROPOWER
在线阅读 下载PDF
Doubly-Fed Pumped Storage Units Participation in Frequency Regulation Control Strategy for New Energy Power Systems Based on Model Predictive Control 被引量:1
4
作者 Yuanxiang Luo Linshu Cai Nan Zhang 《Energy Engineering》 2025年第2期765-783,共19页
Large-scale new energy grid connection leads to the weakening of the system frequency regulation capability,and the system frequency stability is facing unprecedented challenges.In order to solve rapid frequency fluct... Large-scale new energy grid connection leads to the weakening of the system frequency regulation capability,and the system frequency stability is facing unprecedented challenges.In order to solve rapid frequency fluctuation caused by new energy units,this paper proposes a new energy power system frequency regulation strategy with multiple units including the doubly-fed pumped storage unit(DFPSU).Firstly,based on the model predictive control(MPC)theory,the state space equations are established by considering the operating characteristics of the units and the dynamic behavior of the system;secondly,the proportional-differential control link is introduced to minimize the frequency deviation to further optimize the frequency modulation(FM)output of the DFPSU and inhibit the rapid fluctuation of the frequency;lastly,it is verified on theMatlab/Simulink simulation platform,and the results show that the model predictive control with proportional-differential control link can further release the FM potential of the DFPSU,increase the depth of its FM,effectively reduce the frequency deviation of the system and its rate of change,realize the optimization of the active output of the DFPSU and that of other units,and improve the frequency response capability of the system. 展开更多
关键词 Doubly-fed pumped storage unit model predictive control proportional-differential control link frequency regulation
在线阅读 下载PDF
Bifurcations and chaos in indirect field-oriented control of induction motors 被引量:1
5
作者 BoZHANG YiminLU ZongyuanMAO 《控制理论与应用(英文版)》 EI 2004年第4期353-357,共5页
Stability of indirect field-oriented control (IFOC) of induction motor drives is greatly influenced by estimated value of rotor time constant. By choosing estimation error of rotor time constant as bifurcation paramet... Stability of indirect field-oriented control (IFOC) of induction motor drives is greatly influenced by estimated value of rotor time constant. By choosing estimation error of rotor time constant as bifurcation parameter, the conditions of generating Hopf bifurcation in IFOC drives are analyzed. Dynamic responses and Lyapunov exponents show that chaos and limit cycles will arise for some ranges of load torque with certain PI speed controller setting. Stable drives are required for conventional applications, but chaotic rotation can promote efficiency or improve dynamic characteristics of drives. Thus, the study may be a guideline for designing a stable system or an oscillating system. 展开更多
关键词 Induction motor Indirect field-oriented control Hopf bifurcation CHAOS
在线阅读 下载PDF
Modeling and sliding mode control based on inverse compensation of piezo-positioning system
6
作者 LI Zhi-bin XIN Yuan-ze +1 位作者 ZHANG Jian-qiang SUN Chong-shang 《中国光学(中英文)》 北大核心 2025年第1期170-185,共16页
In order to enhance the control performance of piezo-positioning system,the influence of hysteresis characteristics and its compensation method are studied.Hammerstein model is used to represent the dynamic hysteresis... In order to enhance the control performance of piezo-positioning system,the influence of hysteresis characteristics and its compensation method are studied.Hammerstein model is used to represent the dynamic hysteresis nonlinear characteristics of piezo-positioning actuator.The static nonlinear part and dynamic linear part of the Hammerstein model are represented by models obtained through the Prandtl-Ishlinskii(PI)model and Hankel matrix system identification method,respectively.This model demonstrates good generalization capability for typical input frequencies below 200 Hz.A sliding mode inverse compensation tracking control strategy based on P-I inverse model and integral augmentation is proposed.Experimental results show that compared with PID inverse compensation control and sliding mode control without inverse compensation,the sliding mode inverse compensation control has a more ideal step response and no overshoot,moreover,the settling time is only 6.2 ms.In the frequency domain,the system closed-loop tracking bandwidth reaches 119.9 Hz,and the disturbance rejection bandwidth reaches 86.2 Hz.The proposed control strategy can effectively compensate the hysteresis nonlinearity,and improve the tracking accuracy and antidisturbance capability of piezo-positioning system. 展开更多
关键词 piezo-positioning system hysteresis nonlinearity Hammerstein model Prandtl-Ishlinskii(P-I)model system identification sliding mode control
在线阅读 下载PDF
Double ESOs-based field-oriented control for PMSM drive system with current sensorless 被引量:1
7
作者 TENG Qing-fang CUI Hong-wei TIAN Jie 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2019年第2期126-133,共8页
A novel double extended state observers(ESOs)-based field-oriented control(FOC)strategy is developed for three-phase permanent magnet synchronous motor(PMSM)drive systems without any phase current sensor.In principle,... A novel double extended state observers(ESOs)-based field-oriented control(FOC)strategy is developed for three-phase permanent magnet synchronous motor(PMSM)drive systems without any phase current sensor.In principle,two current sensors are essential parts of the drive system for implementation of the feedback to achieve high accuracy control.For this purpose,the double ESOs are created to provide feedback stator currents instead of actual current sensors.The first one of the double ESOs is designed to estimate the benchmark value of q-axis stator current,which is a primary premise;While the second is designed to estimate real-time stator currents of d-axis and q-axis simultaneously.The resultant double ESOs can rapidly and accurately give estimation of the actual currents of a-axis,b-axis and c-axis,and the synthesized double ESOs-based FOC strategy for PMSM drive system without any current sensors has satisfactory control performance and strong robustness.Numerical experiments validate the feasibility and effectiveness of the proposed scheme. 展开更多
关键词 permanent magnet synchronous motor(PMSM)drive system extended state observers(ESOs) current sensorless field-oriented control(FOC)
在线阅读 下载PDF
Automatic landing of fixed-wing aircraft with constrained algebraic model predictive control
8
作者 Talha Ulukır Ufuk Dursun İlkerÜstoğlu 《Control Theory and Technology》 2025年第4期688-701,共14页
This article proposes an algebraic model predictive control(MPC)method for automatic landing.While defining the constraint functions in the optimization problem,the tangent hyperbolic function is preferred.Therefore,t... This article proposes an algebraic model predictive control(MPC)method for automatic landing.While defining the constraint functions in the optimization problem,the tangent hyperbolic function is preferred.Therefore,the optimization problem turns into an unconstrained,continuous,and differentiable form.An analytical two-step method is also proposed to solve the rest of the problem.In the first step,it is assumed that only input constraints are active and states are unconstrained.The optimal solution for this case is calculated directly with the optimality condition.The calculated control signal is revised in the second step according to system dynamics and state constraints.Simulation results of the auto-landing system show that the MPC computation speed is significantly increased by the new algebraic MPC(AMPC)without compromising the control performance,which makes the method realistic for using MPC in systems with high-speed changing dynamics. 展开更多
关键词 Automatic landing model predictive control AUTOPILOT Auto-flight Algebraic model predictive control
原文传递
Koopman-Based Robust Model Predictive Control With Online Identification for Nonlinear Dynamical Systems
9
作者 Ruiqi Ke Jingchuan Tang +1 位作者 Zongyu Zuo Yan Shi 《IEEE/CAA Journal of Automatica Sinica》 2025年第9期1947-1949,共3页
Dear Editor,This letter presents a novel approach to the data-driven control of unknown nonlinear systems.By leveraging online sparse identification based on the Koopman operator,a high-dimensional linear system model... Dear Editor,This letter presents a novel approach to the data-driven control of unknown nonlinear systems.By leveraging online sparse identification based on the Koopman operator,a high-dimensional linear system model approximating the actual system is obtained online.The upper bound of the discrepancy between the identified model and the actual system is estimated using real-time prediction error,which is then utilized in the design of a tube-based robust model predictive controller.The effectiveness of the proposed approach is validated by numerical simulation. 展开更多
关键词 koopman operatora online identification tube based control real time prediction error online sparse identification identified model Koopman based control robust model predictive control
在线阅读 下载PDF
Cascade explicit tube model predictive controller:application for a multi-robot system
10
作者 Ehsan Soleimani Amirhossein Nikoofard Erfan Nejabat 《Control Theory and Technology》 2025年第2期237-252,共16页
In recent years,there has been a growing demand for more efficient and robust control strategies in cooperative multi-robot systems.This paper introduces the cascade explicit tube model predictive controller(CET-MPC),... In recent years,there has been a growing demand for more efficient and robust control strategies in cooperative multi-robot systems.This paper introduces the cascade explicit tube model predictive controller(CET-MPC),a control architecture designed specifically for distributed aerial robot systems.By integrating an explicit model predictive controller(MPC)with a tube MPC,our approach significantly reduces online computational demands while enhancing robustness against disturbances such as wind and measurement noise,as well as uncertainties in inertia parameters.Further,we incorporate a cascade controller to minimize steady-state errors and improve system performance dynamically.The results of this assessment provide valuable insights into the effectiveness and reliability of the CET-MPC approach under realistic operating conditions.The simulation results of flight scenarios for multi-agent quadrotors demonstrate the controller’s stability and accurate tracking of the desired path.By addressing the complexities of quadrotors’six degrees of freedom,this controller serves as a versatile solution applicable to a wide range of multi-robot systems with varying degrees of freedom,demonstrating its adaptability and scalability beyond the quadrotor domain. 展开更多
关键词 Explicit model predictive control(MPC) Tube MPC Cascade controller QUADROTOR Multi-agent system Distributed formation control
原文传递
Model Predictive Optimization and Control of Quadruped Whole-Body Locomotion
11
作者 Chao Cun Qunting Yang +2 位作者 Zhijun Li MengChu Zhou Jianxin Pang 《IEEE/CAA Journal of Automatica Sinica》 2025年第10期2103-2114,共12页
In this paper,a framework of model predictive optimization and control for quadruped whole-body locomotion is presented,which enables dynamic balance and minimizes the control effort.First,we propose a hierarchical co... In this paper,a framework of model predictive optimization and control for quadruped whole-body locomotion is presented,which enables dynamic balance and minimizes the control effort.First,we propose a hierarchical control scheme consisting of two modules.The first layer is to find an optimal ground reaction force(GRF)by employing inner model predictive control(MPC)along a full motor gait cycle,ensuring the minimal energy consumption of the system.Based on the output GRF of inner layer,the second layer is designed to prioritize tasks for motor execution sequentially using an outer model predictive control.In inner MPC,an objective function about GRF is designed by using a model with relatively long time horizons.Then a neural network solver is used to obtain the optimal GRF by minimizing the objective function.By using a two-layered MPC architecture,we design a hybrid motion/force controller to handle the impedance of leg joints and robotic uncertainties including external perturbation.Finally,we perform extensive experiments with a quadruped robot,including the crawl and trotting gaits,to verify the proposed control framework. 展开更多
关键词 Hybrid motion/force control model predictive control(MPC) neural-dynamics QUADRUPED whole-body control
在线阅读 下载PDF
Review on Compressor Surge Monitoring,Modeling,and Anti-Surge Control Approaches
12
作者 Jinshi Du Yu Zhang +1 位作者 Miguel Martínez García Adrian Spencer 《Journal of Dynamics, Monitoring and Diagnostics》 2025年第4期292-307,共16页
Compressor surge is a major aerodynamic instability that constrains the performance and reliability of industrial gas turbines.To address this challenge,this paper provides a comprehensive review of recent progress in... Compressor surge is a major aerodynamic instability that constrains the performance and reliability of industrial gas turbines.To address this challenge,this paper provides a comprehensive review of recent progress in surge monitoring,modeling,and control strategies.Key difficulties in early surge detection are identified,including ambiguous precursor signals,strongly coupled system dynamics,and sensor-actuator time delays.The review categorizes existing modeling approaches into high-fidelity computational fluid dynamics(CFD),reducedorder physical models,and data-driven techniques,evaluating each in terms of accuracy,adaptability,and realtime feasibility.In terms of control strategies,both passive and active methods are analyzed,with a particular focus on closed-loop feedback,model predictive control,robust control,and intelligent data-driven approaches.The review concludes by outlining future directions that prioritize model integration,control reliability,and systemlevel coordination for enhanced compressor stability. 展开更多
关键词 compressor surge intelligent control strategies surge control surge modeling
在线阅读 下载PDF
Atmospheric and Earth System Modeling towards Coordinated Pollution Control and Climate Change Mitigation
13
作者 Yuhang Wang Hongliang Zhang +2 位作者 Yang Gao Bin Zhao Peng Wang 《Frontiers of Environmental Science & Engineering》 2025年第12期317-318,共2页
The intertwined challenges of air pollution and climate change represent a critical environmental dilemma of our time.These issues are inextricably linked through shared emission sources,coupled physical and chemical ... The intertwined challenges of air pollution and climate change represent a critical environmental dilemma of our time.These issues are inextricably linked through shared emission sources,coupled physical and chemical processes,and a common solution space in the transition to a sustainable future.Advanced atmospheric and Earth system modeling is therefore an indispensable tool for developing coordinated strategies that maximize co-benefits.This special issue,“Atmospheric and Earth System Modeling towards Coordinated Pollution Control and Climate Change Mitigation,”showcases cutting-edge research that enhances our modeling capabilities to address this complex nexus.The contributions collectively advance model fidelity and integration across scales,from fundamental particle properties to regional pollution transport and climate impacts. 展开更多
关键词 earth system modeling climate change mitigation atmospheric earth system modeling air pollution developing coordinated strategies pollution control climate change atmospheric modeling
原文传递
An Intelligent Control Method Based on the Artificial Neural Network Model
14
作者 Liangkai Zhou Dan Han +1 位作者 Qinzhe Wang Nv Yang 《Journal of Electronic Research and Application》 2025年第5期299-303,共5页
The topology structure of the artificial neural network is an intelligent control model,which is used for the intelligent vehicle control system and household sweeping robot.When setting the intelligent control system... The topology structure of the artificial neural network is an intelligent control model,which is used for the intelligent vehicle control system and household sweeping robot.When setting the intelligent control system,the connection point of each network is regarded as a neuron in the nervous system,and each connection point has input and output functions.Only when the input of nodes reaches a certain threshold can the output function of nodes be stimulated.Using the networking mode of the artificial neural network model,the mobile node can output in multiple directions.If the input direction of a certain path is the same as that of other nodes,it can choose to avoid and choose another path.The weighted value of each path between nodes is different,which means that the influence of the front node on the current node varies.The control method based on the artificial neural network model can be applied to vehicle control,household sweeping robots,and other fields,and a relatively optimized scheme can be obtained from the aspect of time and energy consumption. 展开更多
关键词 Artificial neural network model control method Optimization scheme
在线阅读 下载PDF
Model Predictive Control Method Based on Data-Driven Approach for Permanent Magnet Synchronous Motor Control System
15
作者 LI Songyang CHEN Wenbo WAN Heng 《Journal of Shanghai Jiaotong university(Science)》 2025年第2期270-279,共10页
Permanent magnet synchronous motor(PMSM)is widely used in alternating current servo systems as it provides high eficiency,high power density,and a wide speed regulation range.The servo system is placing higher demands... Permanent magnet synchronous motor(PMSM)is widely used in alternating current servo systems as it provides high eficiency,high power density,and a wide speed regulation range.The servo system is placing higher demands on its control performance.The model predictive control(MPC)algorithm is emerging as a potential high-performance motor control algorithm due to its capability of handling multiple-input and multipleoutput variables and imposed constraints.For the MPC used in the PMSM control process,there is a nonlinear disturbance caused by the change of electromagnetic parameters or load disturbance that may lead to a mismatch between the nominal model and the controlled object,which causes the prediction error and thus affects the dynamic stability of the control system.This paper proposes a data-driven MPC strategy in which the historical data in an appropriate range are utilized to eliminate the impact of parameter mismatch and further improve the control performance.The stability of the proposed algorithm is proved as the simulation demonstrates the feasibility.Compared with the classical MPC strategy,the superiority of the algorithm has also been verified. 展开更多
关键词 permanent magnet synchronous motor(PMSM) model predictive control(MPC) data-driven model predictive control(DDMPC)
原文传递
T-S Fuzzy Based Model Predictive Control Method for the Direct Yaw Moment Control System Design
16
作者 Faan Wang Xinqi Liu +3 位作者 Guodong Yin Liwei Xu Jinhao Liang Yanbo Lu 《Chinese Journal of Mechanical Engineering》 2025年第5期379-389,共11页
Distributed drive electric vehicles(DDEVs)endow the ability to improve vehicle stability performance through direct yaw-moment control(DYC).However,the nonlinear characteristics pose a great challenge to vehicle dynam... Distributed drive electric vehicles(DDEVs)endow the ability to improve vehicle stability performance through direct yaw-moment control(DYC).However,the nonlinear characteristics pose a great challenge to vehicle dynamics control.For this purpose,this paper studies the DYC through the Takagi-Sugeno(T-S)fuzzy-based model predictive control to deal with the nonlinear challenge.First,a T-S fuzzy-based vehicle dynamics model is established to describe the time-varying tire cornering stiffness and vehicle speeds,and thus the uncertain parameters can be represented by the norm-bounded uncertainties.Then,a robust model predictive control(MPC)is developed to guarantee vehicle handling stability.A feasible solution can be obtained through a set of linear matrix inequalities(LMIs).Finally,the tests are conducted by the Carsim/Simulink joint platform to verify the proposed method.The comparative results show that the proposed strategy can effectively guarantee the vehicle’s lateral stability while handling the nonlinear challenge. 展开更多
关键词 Distributed drive electric vehicles Direct yaw moment control Lateral stability Robust model predictive control
在线阅读 下载PDF
Digital model for rapid prediction and autonomous control of die forging force for aluminum alloy aviation components
17
作者 Hao Hu Fan Zhao +5 位作者 Daoxiang Wu Zhengan Wang Zhilei Wang Zhihao Zhang Weidong Li Jianxin Xie 《International Journal of Minerals,Metallurgy and Materials》 2025年第9期2189-2199,共11页
Digital modeling and autonomous control of the die forging process are significant challenges in realizing high-quality intelli-gent forging of components.Using the die forging of AA2014 aluminum alloy as a case study... Digital modeling and autonomous control of the die forging process are significant challenges in realizing high-quality intelli-gent forging of components.Using the die forging of AA2014 aluminum alloy as a case study,a machine-learning-assisted method for di-gital modeling of the forging force and autonomous control in response to forging parameter disturbances was proposed.First,finite ele-ment simulations of the forging processes were conducted under varying friction factors,die temperatures,billet temperatures,and for-ging velocities,and the sample data,including process parameters and forging force under different forging strokes,were gathered.Pre-diction models for the forging force were established using the support vector regression algorithm.The prediction error of F_(f),that is,the forging force required to fill the die cavity fully,was as low as 4.1%.To further improve the prediction accuracy of the model for the ac-tual F_(f),two rounds of iterative forging experiments were conducted using the Bayesian optimization algorithm,and the prediction error of F_(f) in the forging experiments was reduced from 6.0%to 1.5%.Finally,the prediction model of F_(f) combined with a genetic algorithm was used to establish an autonomous optimization strategy for the forging velocity at each stage of the forging stroke,when the billet and die temperatures were disturbed,which realized the autonomous control in response to disturbances.In cases of−20 or−40℃ reductions in the die and billet temperatures,forging experiments conducted with the autonomous optimization strategy maintained the measured F_(f) around the target value of 180 t,with the relative error ranging from−1.3%to+3.1%.This work provides a reference for the study of di-gital modeling and autonomous optimization control of quality factors in the forging process. 展开更多
关键词 aluminum alloy forging force prediction model machine learning intelligent control
在线阅读 下载PDF
Enhanced Tube-Based Event-Triggered Stochastic Model Predictive Control With Additive Uncertainties
18
作者 Chenxi Gu Xinli Wang +3 位作者 Kang Li Xiaohong Yin Shaoyuan Li Lei Wang 《IEEE/CAA Journal of Automatica Sinica》 2025年第3期596-605,共10页
This paper proposes an event-triggered stochastic model predictive control for discrete-time linear time-invariant(LTI)systems under additive stochastic disturbances.It first constructs a probabilistic invariant set a... This paper proposes an event-triggered stochastic model predictive control for discrete-time linear time-invariant(LTI)systems under additive stochastic disturbances.It first constructs a probabilistic invariant set and a probabilistic reachable set based on the priori knowledge of system uncertainties.Assisted with enhanced robust tubes,the chance constraints are then formulated into a deterministic form.To alleviate the online computational burden,a novel event-triggered stochastic model predictive control is developed,where the triggering condition is designed based on the past and future optimal trajectory tracking errors in order to achieve a good trade-off between system resource utilization and control performance.Two triggering parametersσandγare used to adjust the frequency of solving the optimization problem.The probabilistic feasibility and stability of the system under the event-triggered mechanism are also examined.Finally,numerical studies on the control of a heating,ventilation,and air conditioning(HVAC)system confirm the efficacy of the proposed control. 展开更多
关键词 Event-triggered mechanism HEATING ventilation and air conditioning(HVAC)control probabilistic reachable set stochastic model predictive control
在线阅读 下载PDF
A spinal circuit model with an asymmetric cervical-lumbar layout for limb coordination and gait control in quadrupeds
19
作者 Qinghua ZHU Fang HAN Qingyun WANG 《Applied Mathematics and Mechanics(English Edition)》 2025年第8期1433-1450,I0006-I0009,共22页
In quadrupeds,the cervical and lumbar circuits work together to achieve the speed-dependent gait expression.While most studies have focused on how local lumbar circuits regulate limb coordination and gaits,relatively ... In quadrupeds,the cervical and lumbar circuits work together to achieve the speed-dependent gait expression.While most studies have focused on how local lumbar circuits regulate limb coordination and gaits,relatively few studies are known about cervical circuits and even less about locomotor gaits.We use the previously published models by Danner et al.(DANNER,S.M.,SHEVTSOVA,N.A.,FRIGON,A.,and RYBAK,I.A.Computational modeling of spinal circuits controlling limb coordination and gaits in quadrupeds.e Life,6,e31050(2017))as a basis,and modify it by proposing an asymmetric organization of cervical and lumbar circuits.First,the model reproduces the typical speed-dependent gait expression in mice and more biologically appropriate locomotor parameters,including the gallop gait,locomotor frequencies,and limb coordination of the forelimbs.Then,the model replicates the locomotor features regulated by the M-current.The walk frequency increases with the M-current without affecting the interlimb coordination or gaits.Furthermore,the model reveals the interaction mechanism between the brainstem drive and ionic currents in regulating quadrupedal locomotion.Finally,the model demonstrates the dynamical properties of locomotor gaits.Trot and bound are identified as attractor gaits,walk as a semi-attractor gait,and gallop as a transitional gait,with predictable transitions between these gaits.The model suggests that cervical-lumbar circuits are asymmetrically recruited during quadrupedal locomotion,thereby providing new insights into the neural control of speed-dependent gait expression. 展开更多
关键词 locomotor control cervical-lumbar asymmetrical spinal circuit computational modeling ionic current GAIT
在线阅读 下载PDF
Coordinated control of decarbonization efficiency and oxygen absorption rate in Ruhrstahl–Heraeus degasser based on mechanism model and BP neural network
20
作者 Lu-heng Jiang Min Wang +3 位作者 Jia-qi Zhao Cheng Yao Li-dong Xing Xin-gang Ai 《Journal of Iron and Steel Research International》 2025年第3期606-618,共13页
A mathematical model of the decarburization reaction zone was established for the Ruhrstahl–Heraeus (RH) forced oxygen blowing decarburization process by Matlab R2022b software. For the problem of inaccurate predicti... A mathematical model of the decarburization reaction zone was established for the Ruhrstahl–Heraeus (RH) forced oxygen blowing decarburization process by Matlab R2022b software. For the problem of inaccurate prediction due to the large variation range of oxygen absorption rate under different process conditions, we statistically analyzed the main factors affecting the oxygen absorption rate. The backpropagation neural network was used to train and predict the oxygen absorption rate and was used to calculate the RH decarburization reaction zone model. We designed and developed a mathematical modeling software with process control of decarburization in RH degasser, which can realize the change of operating process parameters in the dynamic prediction process. The optimized mathematical model has more than 95% of the furnaces whose absolute error in calculation of carbon content is within ± 5 × 10^(−6), more than 90% of the heats whose relative error in calculation of oxygen content is within ± 15%, and the average absolute error of calculation of oxygen content is 26.4 × 10^(−6). Finally, we studied the influence of oxygen blowing timing, oxygen blowing volume and initial oxygen content on the forced decarburization process. 展开更多
关键词 Ruhrstahl-Heraeus degasser Mathematical model Forced decarburization Oxygen absorption rate Process control
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部