Anisotropic NdFeB/SmCoCuFeZr composite bonded magnets were prepared by warm compaction process. The effects of adding SmCoCuFeZr magnetic powder on the properties of anisotropic bonded NdFeB magnet were investigated i...Anisotropic NdFeB/SmCoCuFeZr composite bonded magnets were prepared by warm compaction process. The effects of adding SmCoCuFeZr magnetic powder on the properties of anisotropic bonded NdFeB magnet were investigated in this work. The results show that, both magnetic properties and temperature stability of the bonded magnet can be improved by adding fine SmCoCuFeZr magnetic powder. In the present study, the optimal content of SmCoCuFeZr magnetic powder was about 20 wt.%, in this case, the Br, Hcj, and(BH)maxof the NdFeB/SmCoCuFeZr composite magnet achieved 0.943 T, 1250 kA/m, and168 kJ/m^3, respectively.展开更多
In this note, we give an elementary and constructive proof for that the additive character group of a locally compact field is isomorphic to itself as an additive topological group.
We present the interior solutions of distributions of magnetized fluid inside a sphere in f(R, T) gravity. Tile magnetized sphere is embedded in an exterior Reissner NordstrOm metric. We assume that all physical qua...We present the interior solutions of distributions of magnetized fluid inside a sphere in f(R, T) gravity. Tile magnetized sphere is embedded in an exterior Reissner NordstrOm metric. We assume that all physical quantities are in static equilibrium. The perfect fluid matter is studied under a particular form of the Lagrangian density f(R, T). The magnetic field profile in modified gravity is calculated. Observational data of neutron stars are used to plot suitable models of magnetized compact objects. We reveal the effect of f(R, T) gravity on the magnetic field profile, with application to neutron stars, especially highly magnetized neutron stars found in x-ray pulsar systems. Finally, the effective potential Veff and innermost stable circular orbits, arising out of the motion of a test particle of negligible mass influenced by attraction or repulsion from the massive center, are discussed.展开更多
基金Project supported by the Natural Science Foundation of Jiangsu Province,China(BK20171408)the Graduate Student Innovation Foundation of Jiangsu Province(201711276005Z)Scientific Foundation of Nanjing Institute of Technology(CKJB201402,and YKJ201506)
文摘Anisotropic NdFeB/SmCoCuFeZr composite bonded magnets were prepared by warm compaction process. The effects of adding SmCoCuFeZr magnetic powder on the properties of anisotropic bonded NdFeB magnet were investigated in this work. The results show that, both magnetic properties and temperature stability of the bonded magnet can be improved by adding fine SmCoCuFeZr magnetic powder. In the present study, the optimal content of SmCoCuFeZr magnetic powder was about 20 wt.%, in this case, the Br, Hcj, and(BH)maxof the NdFeB/SmCoCuFeZr composite magnet achieved 0.943 T, 1250 kA/m, and168 kJ/m^3, respectively.
基金The NNSF(10201013 and 10171046)of Chinathe China Postdoctoral Science Foun-dation.
文摘In this note, we give an elementary and constructive proof for that the additive character group of a locally compact field is isomorphic to itself as an additive topological group.
文摘We present the interior solutions of distributions of magnetized fluid inside a sphere in f(R, T) gravity. Tile magnetized sphere is embedded in an exterior Reissner NordstrOm metric. We assume that all physical quantities are in static equilibrium. The perfect fluid matter is studied under a particular form of the Lagrangian density f(R, T). The magnetic field profile in modified gravity is calculated. Observational data of neutron stars are used to plot suitable models of magnetized compact objects. We reveal the effect of f(R, T) gravity on the magnetic field profile, with application to neutron stars, especially highly magnetized neutron stars found in x-ray pulsar systems. Finally, the effective potential Veff and innermost stable circular orbits, arising out of the motion of a test particle of negligible mass influenced by attraction or repulsion from the massive center, are discussed.