Fiber-shaped energy storage devices(FSESDs)with exceptional flexibility for wearable power sources should be applied with solid electrolytes over liquid electrolytes due to short circuits and leakage issue during defo...Fiber-shaped energy storage devices(FSESDs)with exceptional flexibility for wearable power sources should be applied with solid electrolytes over liquid electrolytes due to short circuits and leakage issue during deformation.Among the solid options,polymer electrolytes are particularly preferred due to their robustness and flexibility,although their low ionic conductivity remains a significant challenge.Here,we present a redox polymer electrolyte(HT_RPE)with 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl(HT)as a multi-functional additive.HT acts as a plasticizer that transforms the glassy state into the rubbery state for improved chain mobility and provides distinctive ion conduction pathway by the self-exchange reaction between radical and oxidized species.These synergetic effects lead to high ionic conductivity(73.5 mS cm−1)based on a lower activation energy of 0.13 eV than other redox additives.Moreover,HT_RPE with a pseudocapacitive characteristic by HT enables an outstanding electrochemical performance of the symmetric FSESDs using carbon-based fiber electrodes(energy density of 25.4 W h kg^(−1) at a power density of 25,000 W kg^(−1))without typical active materials,along with excellent stability(capacitance retention of 91.2%after 8,000 bending cycles).This work highlights a versatile HT_RPE that utilizes the unique functionality of HT for both the high ionic conductivity and improved energy storage capability,providing a promising pathway for next-generation flexible energy storage devices.展开更多
Vitrimers have emerged as a prominent research area in the field of polymer materials.Most of the studies have focused on synthesizing polymers with versatile dynamic crosslinking structures,while the impact of chemic...Vitrimers have emerged as a prominent research area in the field of polymer materials.Most of the studies have focused on synthesizing polymers with versatile dynamic crosslinking structures,while the impact of chemical structure on aggregate structure of vitrimers,particularly during polymer processing,remains insufficiently investigated.The present study employed commercial maleic anhydride-grafted-high density polyethylene(M-g-HDPE)as the matrix and hexanediol as the crosslinker to facilely obtain fiber-shaped HDPE vitrimers through a reaction extrusion and post-drawing process.Through chemical structure characterization,morphology observation,thermal and mechanical properties investigation,as well as aggregate structure analysis,this work revealed the influence of dynamic bonds on the formation of aggregate structures during fiber-shaped vitrimers processing.A small amount of dynamic bonds in HDPE restricts the motion of PE chain during melt-extruding and post-drawing,resulting in a lower orientation of the PE chains.However,lamellar growth and fibril formation during post-drawing at high temperature are enhanced to some extent due to the competition between dynamic bond and chain relaxation.The uneven morphology of fibershaped HDPE vitrimers can be attributed to the stronger elastic effect brought by dynamic bonding,which plays a more dominant role in determining the mechanical properties of fiber-shaped vitrimers compared to aggregate structure.Abstract Vitrimers have emerged as a prominent research area in the field of polymer materials.Most of the studies have focused on synthesizing polymers with versatile dynamic crosslinking structures,while the impact of chemical structure on aggregate structure of vitrimers,particularly during polymer processing,remains insufficiently investigated.The present study employed commercial maleic anhydride-grafted-high density polyethylene(M-g-HDPE)as the matrix and hexanediol as the crosslinker to facilely obtain fiber-shaped HDPE vitrimers through a reaction extrusion and post-drawing process.Through chemical structure characterization,morphology observation,thermal and mechanical properties investigation,as well as aggregate structure analysis,this work revealed the influence of dynamic bonds on the formation of aggregate structures during fiber-shaped vitrimers processing.A small amount of dynamic bonds in HDPE restricts the motion of PE chain during melt-extruding and post-drawing,resulting in a lower orientation of the PE chains.However,lamellar growth and fibril formation during post-drawing at high temperature are enhanced to some extent due to the competition between dynamic bond and chain relaxation.The uneven morphology of fibershaped HDPE vitrimers can be attributed to the stronger elastic effect brought by dynamic bonding,which plays a more dominant role in determining the mechanical properties of fiber-shaped vitrimers compared to aggregate structure.展开更多
Rapid development of portable or wearable devices, which is inspired by requirements of instant messaging,health monitoring and handling official business, urgently demands more tiny, flexible and light power sources....Rapid development of portable or wearable devices, which is inspired by requirements of instant messaging,health monitoring and handling official business, urgently demands more tiny, flexible and light power sources. Fibershaped batteries explored in recent years become a prospective candidate to satisfy these demands. With 1D architecture,the fiber-shaped batteries could be adapted to various deformations and integrated into soft textile and other devices.Numerous researches have been reported and achieved huge promotion. To give an overview of fiber-shaped batteries,we summarized the development of fiber-shaped batteries in this review, and discussed the structure and materials in fiber-shaped batteries. The flexibility of batteries with the potential application of the batteries was also exhibited and showed the future perspective. Finally, challenges in this field were discussed, hoping to reveal research direction towards further development of fiber-shaped batteries.展开更多
Fiber-shaped supercapacitors(FSSCs)show great potential in portable and wearable electronics due to their unique advantages of high safety,environmental friendliness,high performances,outstanding flexibility and integ...Fiber-shaped supercapacitors(FSSCs)show great potential in portable and wearable electronics due to their unique advantages of high safety,environmental friendliness,high performances,outstanding flexibility and integrability.They can directly act as the power sources or be easily integrated with other flexible devices to constitute self-powered and sustainable energy suppliers,providing excellent adaptability to irregular surfaces.This review mainly summarizes the recently reported works of FSSCs including preparation methods of various fiber electrodes,construction strategies of FSSCs and multi-functional device integrations,exploration of reaction mechanisms and strategies to improve the electrochemical performance and provision of suggestions on further designing and optimization of FSSCs.Meanwhile,it shares our perspectives on challenges and opportunities in this field,shedding light on the development of high-performance fiber-shaped supercapacitors with multifunctions.展开更多
The rapid evolution of flexible wearable electronics has spurred a growing demand for energy storage devices,characterized by low-cost manufacturing processes,high safety standards,exceptional electrochemical performa...The rapid evolution of flexible wearable electronics has spurred a growing demand for energy storage devices,characterized by low-cost manufacturing processes,high safety standards,exceptional electrochemical performance and robust mechanical properties.Among novel flexible devices,fiber-shaped batteries(FSBs)have emerged as prominent solutions exceptionally suited to future applications,owing to their unique one-dimensional(1D)architecture,remarkable flexibility,potential for miniaturization,adaptability to deformation and compatibility with the conventional textile industry.In the forefront research on fiber-shaped batteries,zincbased FSBs(ZFSBs)have garnered significant attentions,featured by the promising electrochemical properties of metallic Zn.This enthusiasm is driven by the impressive capacity of Zn(820 mAh·g^(-1))and its low redox potential(Zn/Zn^(2+):-0.76 V vs.standard hydrogen electrode).This review aims to consolidate recent achievements in the structural design,fabrication processes and electrode materials of flexible ZFSBs.Notably,we highlight three representative structural configurations:parallel type,twisted type and coaxial type.We also place special emphasis on electrode modifications and electrolyte selection.Furthermore,we delve into the promising development opportunities and anticipate future challenges associated with ZFSBs,emphasizing their potential roles in powering the next generation of wearable electronics.展开更多
As a promising candidate for future demand, fiber-shaped electrochemical energy storage devices, such as supercapacitors and lithium-ion batteries have obtained considerable attention from academy to industry. Carbon ...As a promising candidate for future demand, fiber-shaped electrochemical energy storage devices, such as supercapacitors and lithium-ion batteries have obtained considerable attention from academy to industry. Carbon nanomaterials, such as carbon nanotube and graphene, have been widely investigated as electrode materials due to their merits of light weight, flexibility and high capacitance. In this review, recent progress of carbon nanomaterials in flexible fiber-shaped energy storage devices has been summarized in accordance with the development of fibrous electrodes, including the diversified electrode preparation, functional and intelligent device structure, and large-scale production of fibrous electrodes or devices.展开更多
Graphene fiber supercapacitors(GFSCs)have garnered significant attention due to their exceptional features,including high power density,rapid charge/discharge rates,prolonged cycling durability,and versatile weaving c...Graphene fiber supercapacitors(GFSCs)have garnered significant attention due to their exceptional features,including high power density,rapid charge/discharge rates,prolonged cycling durability,and versatile weaving capabilities.Nevertheless,inherent challenges in graphene fibers(GFs),particularly the restricted ion-accessible specific surface area(SSA)and sluggish ion transport kinetics,hinder the achievement of optimal capacitance and rate performance.Despite existing reviews on GFSCs,a notable gap exists in thoroughly exploring the kinetics governing the energy storage process in GFSCs.This review aims to address this gap by thoroughly analyzing the energy storage mechanism,fabrication methodologies,property manipulation,and wearable applications of GFSCs.Through theoretical analysis of the energy storage process,specific parameters in advanced GF fabrication methodologies are carefully summarized,which can be used to modulate nano/micro-structures,thereby enhancing energy storage kinetics.In particular,enhanced ion storage is realized by creating more ion-accessible SSA and introducing extra-capacitive components,while accelerated ion transport is achieved by shortening the transport channel length and improving the accessibility of electrolyte ions.Building on the established structure-property relationship,several critical strategies for constructing optimal surface and structure profiles of GF electrodes are summarized.Capitalizing on the exceptional flexibility and wearability of GFSCs,the review further underscores their potential as foundational elements for constructing multifunctional e-textiles using conventional textile technologies.In conclusion,this review provides insights into current challenges and suggests potential research directions for GFSCs.展开更多
基金supported by Korea Institute of Science and Technology(KIST)Institutional Program and Open Research Program(ORP)This work was also supported by grant from the National Research Foundation(NRF)of Korea government(RS-2024-00433159 and RS-2023-00208313)from ITECH R&D program of MOTIE/KEIT(RS-2023-00257573).
文摘Fiber-shaped energy storage devices(FSESDs)with exceptional flexibility for wearable power sources should be applied with solid electrolytes over liquid electrolytes due to short circuits and leakage issue during deformation.Among the solid options,polymer electrolytes are particularly preferred due to their robustness and flexibility,although their low ionic conductivity remains a significant challenge.Here,we present a redox polymer electrolyte(HT_RPE)with 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl(HT)as a multi-functional additive.HT acts as a plasticizer that transforms the glassy state into the rubbery state for improved chain mobility and provides distinctive ion conduction pathway by the self-exchange reaction between radical and oxidized species.These synergetic effects lead to high ionic conductivity(73.5 mS cm−1)based on a lower activation energy of 0.13 eV than other redox additives.Moreover,HT_RPE with a pseudocapacitive characteristic by HT enables an outstanding electrochemical performance of the symmetric FSESDs using carbon-based fiber electrodes(energy density of 25.4 W h kg^(−1) at a power density of 25,000 W kg^(−1))without typical active materials,along with excellent stability(capacitance retention of 91.2%after 8,000 bending cycles).This work highlights a versatile HT_RPE that utilizes the unique functionality of HT for both the high ionic conductivity and improved energy storage capability,providing a promising pathway for next-generation flexible energy storage devices.
基金financially supported by the National Natural Science Foundation of China(Nos.22278065 and 22073015)。
文摘Vitrimers have emerged as a prominent research area in the field of polymer materials.Most of the studies have focused on synthesizing polymers with versatile dynamic crosslinking structures,while the impact of chemical structure on aggregate structure of vitrimers,particularly during polymer processing,remains insufficiently investigated.The present study employed commercial maleic anhydride-grafted-high density polyethylene(M-g-HDPE)as the matrix and hexanediol as the crosslinker to facilely obtain fiber-shaped HDPE vitrimers through a reaction extrusion and post-drawing process.Through chemical structure characterization,morphology observation,thermal and mechanical properties investigation,as well as aggregate structure analysis,this work revealed the influence of dynamic bonds on the formation of aggregate structures during fiber-shaped vitrimers processing.A small amount of dynamic bonds in HDPE restricts the motion of PE chain during melt-extruding and post-drawing,resulting in a lower orientation of the PE chains.However,lamellar growth and fibril formation during post-drawing at high temperature are enhanced to some extent due to the competition between dynamic bond and chain relaxation.The uneven morphology of fibershaped HDPE vitrimers can be attributed to the stronger elastic effect brought by dynamic bonding,which plays a more dominant role in determining the mechanical properties of fiber-shaped vitrimers compared to aggregate structure.Abstract Vitrimers have emerged as a prominent research area in the field of polymer materials.Most of the studies have focused on synthesizing polymers with versatile dynamic crosslinking structures,while the impact of chemical structure on aggregate structure of vitrimers,particularly during polymer processing,remains insufficiently investigated.The present study employed commercial maleic anhydride-grafted-high density polyethylene(M-g-HDPE)as the matrix and hexanediol as the crosslinker to facilely obtain fiber-shaped HDPE vitrimers through a reaction extrusion and post-drawing process.Through chemical structure characterization,morphology observation,thermal and mechanical properties investigation,as well as aggregate structure analysis,this work revealed the influence of dynamic bonds on the formation of aggregate structures during fiber-shaped vitrimers processing.A small amount of dynamic bonds in HDPE restricts the motion of PE chain during melt-extruding and post-drawing,resulting in a lower orientation of the PE chains.However,lamellar growth and fibril formation during post-drawing at high temperature are enhanced to some extent due to the competition between dynamic bond and chain relaxation.The uneven morphology of fibershaped HDPE vitrimers can be attributed to the stronger elastic effect brought by dynamic bonding,which plays a more dominant role in determining the mechanical properties of fiber-shaped vitrimers compared to aggregate structure.
基金Project(2016YFB0901503) supported by National Key Research and Development Program of ChinaProjects(22075320,21875284) supported by the National Natureal Science Foundation of China。
文摘Rapid development of portable or wearable devices, which is inspired by requirements of instant messaging,health monitoring and handling official business, urgently demands more tiny, flexible and light power sources. Fibershaped batteries explored in recent years become a prospective candidate to satisfy these demands. With 1D architecture,the fiber-shaped batteries could be adapted to various deformations and integrated into soft textile and other devices.Numerous researches have been reported and achieved huge promotion. To give an overview of fiber-shaped batteries,we summarized the development of fiber-shaped batteries in this review, and discussed the structure and materials in fiber-shaped batteries. The flexibility of batteries with the potential application of the batteries was also exhibited and showed the future perspective. Finally, challenges in this field were discussed, hoping to reveal research direction towards further development of fiber-shaped batteries.
基金upported by the National Natural Science Foundation of China(No.21875226)the Science Fund for Distinguished Young Scholars of Sichuan Province(No.2017JQ0036)the Chengdu Rongpiao Talent plan,the Sichuan'Ten-thousand Talents Program",the"QianYingBaiTuan"Plan of China Mianyang Science City,the Science Foundation of Institute of Chemical Materials(No.O11100301)the"Global Experts Recruitment"program.
文摘Fiber-shaped supercapacitors(FSSCs)show great potential in portable and wearable electronics due to their unique advantages of high safety,environmental friendliness,high performances,outstanding flexibility and integrability.They can directly act as the power sources or be easily integrated with other flexible devices to constitute self-powered and sustainable energy suppliers,providing excellent adaptability to irregular surfaces.This review mainly summarizes the recently reported works of FSSCs including preparation methods of various fiber electrodes,construction strategies of FSSCs and multi-functional device integrations,exploration of reaction mechanisms and strategies to improve the electrochemical performance and provision of suggestions on further designing and optimization of FSSCs.Meanwhile,it shares our perspectives on challenges and opportunities in this field,shedding light on the development of high-performance fiber-shaped supercapacitors with multifunctions.
基金supported by the National Natural Science Foundation of China(Nos.52201222 and 62174085)Jiangsu Specially-Appointed Professors Program,and the Natural Science Foundation of Jiangsu Higher Education Institutions(No.22KJB430008).
文摘The rapid evolution of flexible wearable electronics has spurred a growing demand for energy storage devices,characterized by low-cost manufacturing processes,high safety standards,exceptional electrochemical performance and robust mechanical properties.Among novel flexible devices,fiber-shaped batteries(FSBs)have emerged as prominent solutions exceptionally suited to future applications,owing to their unique one-dimensional(1D)architecture,remarkable flexibility,potential for miniaturization,adaptability to deformation and compatibility with the conventional textile industry.In the forefront research on fiber-shaped batteries,zincbased FSBs(ZFSBs)have garnered significant attentions,featured by the promising electrochemical properties of metallic Zn.This enthusiasm is driven by the impressive capacity of Zn(820 mAh·g^(-1))and its low redox potential(Zn/Zn^(2+):-0.76 V vs.standard hydrogen electrode).This review aims to consolidate recent achievements in the structural design,fabrication processes and electrode materials of flexible ZFSBs.Notably,we highlight three representative structural configurations:parallel type,twisted type and coaxial type.We also place special emphasis on electrode modifications and electrolyte selection.Furthermore,we delve into the promising development opportunities and anticipate future challenges associated with ZFSBs,emphasizing their potential roles in powering the next generation of wearable electronics.
基金supported by the National Natural Science Foundation of China(Nos.21634003,21604012)
文摘As a promising candidate for future demand, fiber-shaped electrochemical energy storage devices, such as supercapacitors and lithium-ion batteries have obtained considerable attention from academy to industry. Carbon nanomaterials, such as carbon nanotube and graphene, have been widely investigated as electrode materials due to their merits of light weight, flexibility and high capacitance. In this review, recent progress of carbon nanomaterials in flexible fiber-shaped energy storage devices has been summarized in accordance with the development of fibrous electrodes, including the diversified electrode preparation, functional and intelligent device structure, and large-scale production of fibrous electrodes or devices.
基金Shanghai Municipal Commission for Science and Technology,Grant/Award Number:23ZR1402500National Natural Science Foundation of China,Grant/Award Number:51973034+1 种基金National Scholarship CouncilNational Key Research and Development Program of China,Grant/Award Number:2023YFB3809800.
文摘Graphene fiber supercapacitors(GFSCs)have garnered significant attention due to their exceptional features,including high power density,rapid charge/discharge rates,prolonged cycling durability,and versatile weaving capabilities.Nevertheless,inherent challenges in graphene fibers(GFs),particularly the restricted ion-accessible specific surface area(SSA)and sluggish ion transport kinetics,hinder the achievement of optimal capacitance and rate performance.Despite existing reviews on GFSCs,a notable gap exists in thoroughly exploring the kinetics governing the energy storage process in GFSCs.This review aims to address this gap by thoroughly analyzing the energy storage mechanism,fabrication methodologies,property manipulation,and wearable applications of GFSCs.Through theoretical analysis of the energy storage process,specific parameters in advanced GF fabrication methodologies are carefully summarized,which can be used to modulate nano/micro-structures,thereby enhancing energy storage kinetics.In particular,enhanced ion storage is realized by creating more ion-accessible SSA and introducing extra-capacitive components,while accelerated ion transport is achieved by shortening the transport channel length and improving the accessibility of electrolyte ions.Building on the established structure-property relationship,several critical strategies for constructing optimal surface and structure profiles of GF electrodes are summarized.Capitalizing on the exceptional flexibility and wearability of GFSCs,the review further underscores their potential as foundational elements for constructing multifunctional e-textiles using conventional textile technologies.In conclusion,this review provides insights into current challenges and suggests potential research directions for GFSCs.