The interfacial debonding in fiber-reinforced plastic(FRP)strengthened repair material will affect the bonding strength and lead to failure of the repair without warning.Unfortunately the interfacial damage is normall...The interfacial debonding in fiber-reinforced plastic(FRP)strengthened repair material will affect the bonding strength and lead to failure of the repair without warning.Unfortunately the interfacial damage is normally invisible and often in the form of a patch rather than a through-width crack.Therefore,a debonding patch detection technique based on fiber optic interferometry is proposed.A quasi-impulse loading is applied with a rubberhead hammer and the total elongation of a surface-mounted optical fiber along the length of the repair material is measured as a function of load position.When a debonding patch is present,the induced sudden slope or sign change on the plot of fiber integral strain v.s.load position will reveal the extent and the location of the debonded area.The results of the study indicate that the proposed technique is applicable for debonding patch detection in repaired members under various support conditions.展开更多
An ultrasonic sensitivity-improved fiber-optic Fabry-Perot interferometer (FPI) is proposed and employed for ultra- sonic imaging of seismic physical models (SPMs). The FPI comprises a flexible ultra-thin gold fil...An ultrasonic sensitivity-improved fiber-optic Fabry-Perot interferometer (FPI) is proposed and employed for ultra- sonic imaging of seismic physical models (SPMs). The FPI comprises a flexible ultra-thin gold film and the end face of a graded-index multimode fiber (MMF), both of which are enclosed in a ceramic tube. The MMF in a specified length can collimate the diverged light beam and compensate for the light loss inside the air cavity, leading to an increased spectral fringe visibility and thus a steeper spectral slope. By using the spectral sideband filtering technique, the collimated FP1 shows an improved ultrasonic response. Moreover, two-dimensional images of two SPMs are achieved in air by recon- structing the pulse-echo signals through using the time-of-flight approach. The proposed sensor with easy fabrication and compact size can be a good candidate for high-sensitivity and high-precision nondestructive testing of SPMs.展开更多
In order to improve the multiplexing capability of the optical sensors based on the lower interferential optic fiber sensing technology and the white light fiber-optic Mach-Zehnder interferometer,reflective ladder top...In order to improve the multiplexing capability of the optical sensors based on the lower interferential optic fiber sensing technology and the white light fiber-optic Mach-Zehnder interferometer,reflective ladder topology network ( RLT) with tailored formula was proposed. The topology network consists of 6 rungs sensing elements linked by 5 couplers. Two cases with different choices of couplers were contrasted: one is equal coupling ratio,and the other is tailored coupling ratio. Through the simulation of these two cases,the detailed multiplexing capability was analyzed,and accordingly the experiments were also carried out. The simulation results showed that,the tailored formula enhances the multiplexing capability of the structure. In the first case, the maximum number of sensors which can be multiplexed is 8,and in the other case is 12 fiber optic sensors. The experimental results have a good agreement with numerical simulation results. Thus,it is considered expedient to incorporate RLT into large-scale building,grounds,bridges,dams,tunnels,highways and perimeter security.展开更多
Fiber optic Mach Zehnder interferometer(MZI) can be used as wavelength multiplexers and demultiplexers. The △ L and △ directly influence the properties of MZI. To lengthen the △ L can demultiplex much more wavelen...Fiber optic Mach Zehnder interferometer(MZI) can be used as wavelength multiplexers and demultiplexers. The △ L and △ directly influence the properties of MZI. To lengthen the △ L can demultiplex much more wavelengths, but when the △ L is longer, the temperature will influence MZI more seriously. A method to solve this problem is proposed, which enables MZI to work stably. The wavelength distance is 0.8 nm, and the extinction ratio is high.展开更多
According to the fact that the surface of liquid with low viscosity coefficient is a good reflection plane for a broadband light beam, liquid-level measurement in micrometer resolution is designed based on a fiber-opt...According to the fact that the surface of liquid with low viscosity coefficient is a good reflection plane for a broadband light beam, liquid-level measurement in micrometer resolution is designed based on a fiber-optic low coherence interferometer in Michelson configuration. The wave front of the reflected light beam is well enough to form an interferogram with a beam reflected from an optic mirror mounted on a stepping scanning-motor. The central peak of the interferogram is read as a measure of the liquid level. Experimental results show that this noncontact method can reach a resolution of ±1.25 μm in the measurement range of 86 mm.展开更多
A compact and high-resolution fiber-optic refractive index(RI)sensor based on a microwave photonic filter(MPF)is proposed and experimentally validated.The sensing head utilizes a cascaded in-line interferometer fabric...A compact and high-resolution fiber-optic refractive index(RI)sensor based on a microwave photonic filter(MPF)is proposed and experimentally validated.The sensing head utilizes a cascaded in-line interferometer fabricated by an input single-mode fiber(SMF)tapered fusion with no-core fiber-thin-core fiber(TCF)-SMF.The surrounding RI(SRI)can be demodulated by tracing the passband’s central frequency of the MPF,which is constructed by the cascaded in-line interferometer,electro-optic modulator,and a section of dispersion compensation fiber.The sensitivity of the sensor is tailorable through the use of different lengths of TCF.Experimental results reveal that with a 30 mm length of TCF,the sensor achieves a maximum theoretical sensitivity and resolution of-1.403 GHz∕refractive index unit eRIUT and 1.425×10^(-7) RIU,respectively,which is at least 6.3 times higher than what has been reported previously.Furthermore,the sensor exhibits temperature-insensitive characteristics within the range of 25℃-75℃,with a temperatureinduced frequency change of only±1.5 MHz.This value is significantly lower than the frequency change induced by changes in the SRI.The proposed MPF-based cascaded in-line interferometer RI sensor possesses benefits such as easy manufacture,low cost,high resolution,and temperature insensitivity.展开更多
A novel near-infrared all-fiber mode monitor based on a mini-two-path Mach-Zehnder interferometer(MTP-MZI)is proposed.The MTP-MZI mode monitor is created by fusing a section of(no-core fiber,NCF)and a(single-mode fibe...A novel near-infrared all-fiber mode monitor based on a mini-two-path Mach-Zehnder interferometer(MTP-MZI)is proposed.The MTP-MZI mode monitor is created by fusing a section of(no-core fiber,NCF)and a(single-mode fiber,SMF)together with an optical fiber fusion splicer,establishing two distinct centimeter-level optical transmission paths.Since the high-order modes in NCF transmit near-infrared light more sensitively to curvature-induced energy leakage than the fundamental mode in SMF,the near-infrared high-order mode light leaks out of NCF when the curvature changes,causing the MTP-MZI transmission spectrum to change.By ana⁃lyzing the relationship between the curvature,transmission spectrum,and spatial frequency spectrum,the modes involved in the interference can be studied,thereby revealing the mode transmission characteristics of near-infra⁃red light in optical fibers.In the verification experiments,higher-order modes were excited by inserting a novel hollow-core fiber(HCF)into the MTP-MZI.When the curvature of the MTP-MZI changes,the near-infrared light high-order mode introduced into the device leaks out,causing the transmission spectrum to return to its origi⁃nal state before bending and before the HCF was spliced.The experimental results demonstrate that the MTP-MZI mode monitor can monitor the fiber modes introduced from the external environment,providing both theoretical and experimental foundations for near-infrared all-fiber mode monitoring in optical information systems.展开更多
An optical fiber dual Fabry-Perot interferometric carbon monoxide gas sensor based on PANI/Co3 O4/GO(PCG)sensing membrane coated on the end face of the optical fiber is proposed and fabricated.One end face of photonic...An optical fiber dual Fabry-Perot interferometric carbon monoxide gas sensor based on PANI/Co3 O4/GO(PCG)sensing membrane coated on the end face of the optical fiber is proposed and fabricated.One end face of photonic crystal fiber(PCF)without cut-off wavelength is fused with a single-mode fiber(SMF),and the other end face of the PCF is coated with PCG sensing membrane.The collapsed layer formed during the air hole fusion of PCF is used as the first reflector,the interface between PCF and sensing membrane is used as the second reflector,and the interface between the sensing membrane and the air is used as the third reflector,thus the dual Fabry-Pe rot structure sensor is formed.The results show that the sensor has excellent sensitivity and selectivity to carbon monoxide.With the increasing concentration of carbon monoxide gas in the range of 0-60 ppm,the intensity of interference spectrum decreases.The sensitivity of the sensor is 0.3473 dB m/ppm,and its linearity is good.The response time and recovery time are 68 s and 106 s,respectively.The sensor has the advantages of the compact size,low cost,high sensitivity,strong selectivity and simple structure.It is suitable for the sensing detection of low concentration carbon monoxide gas.展开更多
According to the measurement principle of the traditional interferometer,a narrowband signal model is established and used,however,for wideband signals or multiple signals,this model is invalid.For the problems of dir...According to the measurement principle of the traditional interferometer,a narrowband signal model is established and used,however,for wideband signals or multiple signals,this model is invalid.For the problems of direction finding with interferometer for wideband signals and multiple signals scene,a frequency domain phase interferometer is proposed and the concrete implementation scheme is given.The proposed method computes the phase difference in frequency domain,and finds multi-target results with judging the spectrum amplitude changing,and uses the frequency phase difference to compute the arrival angle.Theoretical analysis and simulation results show that the proposed method effectively solves the problem of the angle estimation with phase interferometer for wideband signals,and has good performance in multiple signals scene with nonoverlapping spectrum or partially overlapping.In addition,the wider the signal bandwidth,the better direction finding performance of this algorithm.展开更多
Ultrasonic neuromodulation has gained recognition as a promising therapeutic approach.A miniature transducer capable of generating suitable-strength and broadband ultrasound is of great significance for achieving high...Ultrasonic neuromodulation has gained recognition as a promising therapeutic approach.A miniature transducer capable of generating suitable-strength and broadband ultrasound is of great significance for achieving high spatial precision ultrasonic neural stimulation.However,the ultrasound transducer with the above integrated is yet to be challenged.Here,we developed a fiber-optic photoacoustic emitter(FPE)with a diameter of 200μm,featuring controllable sound intensity and a broadband response(−6 dB bandwidth:162%).The device integrates MXene(Ti_(3)C_(2)Tx),known for its exceptional photothermal properties,and polydimethylsiloxane,which offers a high thermal expansion coefficient.This FPE,exhibiting high spatial precision(lateral:163.3μm,axial:207μm),is capable of selectively activating neurons in targeted regions.Using the TetTagging method to selectively express a cfos-promoter-inducible mCHERRY gene within the medial prefrontal cortex(mPFC),we found that photoacoustic stimulation significantly and temporarily activated the neurons.In vivo fiber photometry demonstrated that photoacoustic stimulation induced substantial calcium transients in mPFC neurons.Furthermore,we confirmed that photoacoustic stimulation of the mPFC using FPE markedly alleviates acute social defeat stress-induced emotional stress in mice.This work demonstrates the potential of FPEs for clinical applications,with a particular focus on modulating neural activity to regulate emotions.展开更多
Accurate and real-time detection of hydrogen(H_(2))is essential for ensuring energy security.Fiber-optic H_(2) sensors are gaining attention for their integration and remote sensing capabilities.However,they face chal...Accurate and real-time detection of hydrogen(H_(2))is essential for ensuring energy security.Fiber-optic H_(2) sensors are gaining attention for their integration and remote sensing capabilities.However,they face challenges,including complex fabrication processes and limited response times.Here,we propose a fiber-optic H_(2) sensing tip based on Tamm plasmon polariton(TPP)resonance,consisting of a multilayer metal/dielectric Bragg reflector deposited directly on the fiber end facet,simplifying the fabrication process.The fiber-optic TPP(FOTPP)tip exhibits both TPP and multiple Fabry-Perot(FP)resonances simultaneously,with the TPP employed for highly sensitive H_(2) detection.Compared to FP resonance,TPP exhibits more than twice the sensitivity under the same structural dimension without cavity geometry deformation.The excellent performance is attributed to alterations in phase-matching conditions,driven by changes in penetration depth of TPP.Furthermore,the FP mode is utilized to achieve an efficient photothermal effect to catalyze the reaction between H_(2) and the FOTPP structure.Consequently,the response and recovery speeds of the FOTPP tip under resonance-enhanced photothermal assistance are improved by 6.5 and 2.1 times,respectively.Our work offers a novel strategy for developing TPP-integrated fiber-optic tips,refines the theoretical framework of photothermal-assisted detection systems,and provides clear experimental evidence.展开更多
In x-ray dark-field imaging using dual phase grating interferometer,multi-contrast signals are extracted from a set of acquired phase-stepping data by using the least-squares fitting algorithm.The extracted mean inten...In x-ray dark-field imaging using dual phase grating interferometer,multi-contrast signals are extracted from a set of acquired phase-stepping data by using the least-squares fitting algorithm.The extracted mean intensity,amplitude and visibility signals may be intrinsically biased.However,it is still unclear how large these biases are and how the data acquisition parameters influence the biases in the extracted signals.This work set out to address these questions.Analytical expressions of the biases of the extracted signals were theoretically derived by using a second-order Taylor series expansion.Extensive numerical simulations were performed to validate the theoretical results.It is illustrated that while the estimated mean intensity signal is always unbiased,the estimated amplitude and visibility signals are both positively biased.While the biases of the estimated amplitude signals are proportional to the inverse of the total number of phase steps,the biases of the estimated visibility signals are inversely proportional to the product of the total number of phase steps and the mean number of photons counted per phase step.Meanwhile,it is demonstrated that the dependence of the biases on the mean visibility is quite different from that of Talbot-Lau interferometer due to the difference in the intensity model.We expect that these results can be useful for data acquisition optimizations and interpretation of x-ray dark-field images.展开更多
Temporal optics,which enables lossless manipulation of ultrafast pulses,offers a new dimension for the regulation of quantum optical fields.In this paper,we established a temporal Fourier transform(TF)system based on ...Temporal optics,which enables lossless manipulation of ultrafast pulses,offers a new dimension for the regulation of quantum optical fields.In this paper,we established a temporal Fourier transform(TF)system based on a four-wave mixing(FWM)time lens and constructed a full quantum theoretical model for the resulting temporal SU(1,1)interferometer.This interferometer has high temporal resolution,can impose interference in both time and frequency domains,and is sensitive to the phase derivative.By introducing linear time-varying phase modulation,we achieved sub-picosecond precision in temporal autocorrelation measurements and generatedan optical frequency comb with a fixed interval based on a feedback iteration mechanism.Theoretical analysis revealsthe crucial regulatory role of time-frequency coupling in quantum interference,providing novel solutions for ultrafast quantum imaging,temporal mode encoding,and the generation of optical frequency quantization.展开更多
The gravitational memory effect manifests gravitational nonlinearity,degenerate vacua,and asymptotic symmetries;its detection is considered challenging.We propose using a space-borne interferometer to detect memory si...The gravitational memory effect manifests gravitational nonlinearity,degenerate vacua,and asymptotic symmetries;its detection is considered challenging.We propose using a space-borne interferometer to detect memory signals from stellar-mass binary black holes(BBHs),typically targeted by ground-based detectors.We use DECIGO detector as an example.Over 5 years,DECIGO is estimated to detect approximately 2,036 memory signals(SNRs>3)from stellar-mass BBHs.Simulations used frequency-domain memory waveforms for direct SNR estimation.Predictions utilized a GWTC-3 constrained BBH population model(Power law+Peak mass,DEFAULT spin,Madau-Dickinson merger rate).The analysis used conservative lower merger rate limits and considered orbital eccentricity.The high detection rate stems from strong memory signals within DECIGO’s bandwidth and the abundance of stellar-mass BBHs.This substantial and conservative detection count enables statistical use of the memory effect for fundamental physics and astrophysics.DECIGO exemplifies that space interferometers may better detect memory signals from smaller mass binaries than their typical targets.Detectors in lower frequency bands are expected to find strong memory signals from∼10^(4)M⊙binaries.展开更多
A compact and highly sensitive gas pressure and temperature sensor based on Fabry-Pérot interferometer(FPI)and fiber Bragg grating(FBG)is proposed and demonstrated experimentally in this paper.The theoretical mod...A compact and highly sensitive gas pressure and temperature sensor based on Fabry-Pérot interferometer(FPI)and fiber Bragg grating(FBG)is proposed and demonstrated experimentally in this paper.The theoretical model for pressure and temperature sensing is established.Building on this foundation,a novel micro silicon cavity sensor structure sensitive to pressure is devised downstream of an FBG.The concept of separate measurement and the mechanisms enhancing pressure sensitivity are meticulously analyzed,and the corresponding samples are fabricated.The experimental results indicate that the pressure sensitivity of the sensor is-747.849 nm/MPa in 0—100 k Pa and its linearity is 99.7%and it maintains good stability in 150 min.The sensor offers the advantages of compact size,robust construction,easy fabrication,and high sensitivity,making it potentially valuable for micro-pressure application.展开更多
The mathematical model of 4He quantum interferometer gyroscope is presented. The model includes the driven equation, the current equation and the position equation. Therefore, it can sufficiently describe the gyro- sc...The mathematical model of 4He quantum interferometer gyroscope is presented. The model includes the driven equation, the current equation and the position equation. Therefore, it can sufficiently describe the gyro- scope system. The driven equation shows the thermally driven gyroscope can work for a long time but the pres- sure driven one cannot. From the current equation, the superfluid currents passing through the weak link contain the AC currents which show the rotation flux, and other currents caused by drive. As shown in the position equa- tion, the displacement of diaphragm is the only detectable parameter in the gyroscope system. The model is tested by the simulations based on experimental parameters, and can be used to research performance of the gyroscope and analyse the gyroscope error.展开更多
A wide-range and phase-locked Michelson interferometer technique is described. This technique combined with femtosecond laser is used to measure the spectrum of the rare-earth ion Nd:YVO4, which presents very high si...A wide-range and phase-locked Michelson interferometer technique is described. This technique combined with femtosecond laser is used to measure the spectrum of the rare-earth ion Nd:YVO4, which presents very high signal to noise ratio of interferometric intensity output and higher spectral resolution than traditional grating spectrophotometer.展开更多
A polarization-maintaining (PM) fiber Mach-Zehnder (MZ) interferometer has been established to measure the EO effect of very thin film materials with optical anisotropy. Unlike a common MZ interferometer, all the ...A polarization-maintaining (PM) fiber Mach-Zehnder (MZ) interferometer has been established to measure the EO effect of very thin film materials with optical anisotropy. Unlike a common MZ interferometer, all the components are connected via polarization-maintaining fibers. At the same time, a polarized DFB laser with a maximum power output of 10mW is adopted as the light source to induce a large extinction ratio. Here,we take it to determine the electro-optical coefficients of a very thin superlattice structure with GaAs, KTP, and GaN as comparative samples. The measured EO coefficients show good comparability with the others.展开更多
A distinct method to show a quantum object behaving both as wave and as particle is proposed and described in some detail. We make a systematic analysis using the elementary methodology of quantum mechanics upon Young...A distinct method to show a quantum object behaving both as wave and as particle is proposed and described in some detail. We make a systematic analysis using the elementary methodology of quantum mechanics upon Young's two-slit interferometer and the Mach-Zehnder two-arm interferometer with the focus placed on how to measure the interference pattern (wave nature) and the which-way information (particle nature) of quantum objects. We design several schemes to simultaneously acquire the which-way information for an individual quantum object and the high-contrast interference pattern for an ensemble of these quantum objects by placing two sets of measurement instruments that are well separated in space and whose perturbation of each other is negligibly small within the interferometer at the same time. Yet, improper arrangement and cooperation of these two sets of measurement instruments in the interferometer would lead to failure of simultaneous observation of wave and particle behaviors. The internal freedoms of quantum objects could be harnessed to probe both the which-way information and the interference pattern for the center-of-mass motion. That quantum objects can behave beyond the wave-particle duality and the complementarity principle would stimulate new conceptual examination and exploration of quantum theory at a deeper level.展开更多
A distributed optical fiber disturbance detection system consisted of a Sagnac interferometer and a Mach-Zehnder interferometer is demonstrated. Two interferometers outputs are connected to an electric band-pass filte...A distributed optical fiber disturbance detection system consisted of a Sagnac interferometer and a Mach-Zehnder interferometer is demonstrated. Two interferometers outputs are connected to an electric band-pass filter via a detector respectively. The central frequencies of the two filters are selected adaptively according to the disturbance frequency. The disturbance frequency is obtained by either frequency spectrum of the two interferometers outputs. An alarm is given out only when the Sagnac interferometer output is changed. A disturbance position is determined by calculating a time difference with a cross-correlation method between the filter output connected to the Sagnac interferometer and derivative of the filter output connected to the Mach-Zehnder interferometer. The frequency spectrum, derivative and cross-correlation are obtained by a signal processing system. Theory analysis and simulation results are presented. They show that the system structure and location method are effective, accurate, and immune to environmental variations.展开更多
基金supported by the National Natural Science Foundation of China(No.51278156)the Basic Project of Shenzhen Science & Technology Program(No.JCYJ2017030155815876)
文摘The interfacial debonding in fiber-reinforced plastic(FRP)strengthened repair material will affect the bonding strength and lead to failure of the repair without warning.Unfortunately the interfacial damage is normally invisible and often in the form of a patch rather than a through-width crack.Therefore,a debonding patch detection technique based on fiber optic interferometry is proposed.A quasi-impulse loading is applied with a rubberhead hammer and the total elongation of a surface-mounted optical fiber along the length of the repair material is measured as a function of load position.When a debonding patch is present,the induced sudden slope or sign change on the plot of fiber integral strain v.s.load position will reveal the extent and the location of the debonded area.The results of the study indicate that the proposed technique is applicable for debonding patch detection in repaired members under various support conditions.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61735014,61327012,and 61275088)the Scientific Research Program Funded by Shaanxi Provincial Education Department,China(Grant No.08JZ58)the Northwest University Graduate Innovation and Creativity Funds,China(Grant No.YZZ17088)
文摘An ultrasonic sensitivity-improved fiber-optic Fabry-Perot interferometer (FPI) is proposed and employed for ultra- sonic imaging of seismic physical models (SPMs). The FPI comprises a flexible ultra-thin gold film and the end face of a graded-index multimode fiber (MMF), both of which are enclosed in a ceramic tube. The MMF in a specified length can collimate the diverged light beam and compensate for the light loss inside the air cavity, leading to an increased spectral fringe visibility and thus a steeper spectral slope. By using the spectral sideband filtering technique, the collimated FP1 shows an improved ultrasonic response. Moreover, two-dimensional images of two SPMs are achieved in air by recon- structing the pulse-echo signals through using the time-of-flight approach. The proposed sensor with easy fabrication and compact size can be a good candidate for high-sensitivity and high-precision nondestructive testing of SPMs.
基金Sponsored by the Natural Science Foundation of Heilongjiang Province (Grant No. QC2012C081)the Creative Qualified Scientists and Technicians Foundation of Harbin City (Grant No. RC2012QN001025)the National Natural Science Foundation of China (Grant No. 61107069 and 41174161)
文摘In order to improve the multiplexing capability of the optical sensors based on the lower interferential optic fiber sensing technology and the white light fiber-optic Mach-Zehnder interferometer,reflective ladder topology network ( RLT) with tailored formula was proposed. The topology network consists of 6 rungs sensing elements linked by 5 couplers. Two cases with different choices of couplers were contrasted: one is equal coupling ratio,and the other is tailored coupling ratio. Through the simulation of these two cases,the detailed multiplexing capability was analyzed,and accordingly the experiments were also carried out. The simulation results showed that,the tailored formula enhances the multiplexing capability of the structure. In the first case, the maximum number of sensors which can be multiplexed is 8,and in the other case is 12 fiber optic sensors. The experimental results have a good agreement with numerical simulation results. Thus,it is considered expedient to incorporate RLT into large-scale building,grounds,bridges,dams,tunnels,highways and perimeter security.
文摘Fiber optic Mach Zehnder interferometer(MZI) can be used as wavelength multiplexers and demultiplexers. The △ L and △ directly influence the properties of MZI. To lengthen the △ L can demultiplex much more wavelengths, but when the △ L is longer, the temperature will influence MZI more seriously. A method to solve this problem is proposed, which enables MZI to work stably. The wavelength distance is 0.8 nm, and the extinction ratio is high.
基金Dalian Science and Technology Foundation and National Science Foundation(30470416)
文摘According to the fact that the surface of liquid with low viscosity coefficient is a good reflection plane for a broadband light beam, liquid-level measurement in micrometer resolution is designed based on a fiber-optic low coherence interferometer in Michelson configuration. The wave front of the reflected light beam is well enough to form an interferogram with a beam reflected from an optic mirror mounted on a stepping scanning-motor. The central peak of the interferogram is read as a measure of the liquid level. Experimental results show that this noncontact method can reach a resolution of ±1.25 μm in the measurement range of 86 mm.
基金supported by the National Natural Science Foundation of China(Grant No.61975167).
文摘A compact and high-resolution fiber-optic refractive index(RI)sensor based on a microwave photonic filter(MPF)is proposed and experimentally validated.The sensing head utilizes a cascaded in-line interferometer fabricated by an input single-mode fiber(SMF)tapered fusion with no-core fiber-thin-core fiber(TCF)-SMF.The surrounding RI(SRI)can be demodulated by tracing the passband’s central frequency of the MPF,which is constructed by the cascaded in-line interferometer,electro-optic modulator,and a section of dispersion compensation fiber.The sensitivity of the sensor is tailorable through the use of different lengths of TCF.Experimental results reveal that with a 30 mm length of TCF,the sensor achieves a maximum theoretical sensitivity and resolution of-1.403 GHz∕refractive index unit eRIUT and 1.425×10^(-7) RIU,respectively,which is at least 6.3 times higher than what has been reported previously.Furthermore,the sensor exhibits temperature-insensitive characteristics within the range of 25℃-75℃,with a temperatureinduced frequency change of only±1.5 MHz.This value is significantly lower than the frequency change induced by changes in the SRI.The proposed MPF-based cascaded in-line interferometer RI sensor possesses benefits such as easy manufacture,low cost,high resolution,and temperature insensitivity.
基金Supported by the Central Government Guidance on Local Science and Technology Development Funds(2023ZY1023)the Six Talent Peaks Project in Jiangsu Province(KTHY-052).
文摘A novel near-infrared all-fiber mode monitor based on a mini-two-path Mach-Zehnder interferometer(MTP-MZI)is proposed.The MTP-MZI mode monitor is created by fusing a section of(no-core fiber,NCF)and a(single-mode fiber,SMF)together with an optical fiber fusion splicer,establishing two distinct centimeter-level optical transmission paths.Since the high-order modes in NCF transmit near-infrared light more sensitively to curvature-induced energy leakage than the fundamental mode in SMF,the near-infrared high-order mode light leaks out of NCF when the curvature changes,causing the MTP-MZI transmission spectrum to change.By ana⁃lyzing the relationship between the curvature,transmission spectrum,and spatial frequency spectrum,the modes involved in the interference can be studied,thereby revealing the mode transmission characteristics of near-infra⁃red light in optical fibers.In the verification experiments,higher-order modes were excited by inserting a novel hollow-core fiber(HCF)into the MTP-MZI.When the curvature of the MTP-MZI changes,the near-infrared light high-order mode introduced into the device leaks out,causing the transmission spectrum to return to its origi⁃nal state before bending and before the HCF was spliced.The experimental results demonstrate that the MTP-MZI mode monitor can monitor the fiber modes introduced from the external environment,providing both theoretical and experimental foundations for near-infrared all-fiber mode monitoring in optical information systems.
基金supported by the National Natural Science Foundation of China(No.51574054)the University Innovation Team Building Program of Chongqing(No.CXTDX201601030)+2 种基金Scientific and Technological Research Program of Chongqing Municipal Education Commission(No.KJZD-M201901102)Chongqing Science and Technology Bureau(Nos.cstc2017shmsA20017,cstc2018jcyjAX0294,CSTCCXLJRC 201905)the Innovation Leader Project of Chongqing Science and Technology Bureau(No.CSTCCXLJRC201905)。
文摘An optical fiber dual Fabry-Perot interferometric carbon monoxide gas sensor based on PANI/Co3 O4/GO(PCG)sensing membrane coated on the end face of the optical fiber is proposed and fabricated.One end face of photonic crystal fiber(PCF)without cut-off wavelength is fused with a single-mode fiber(SMF),and the other end face of the PCF is coated with PCG sensing membrane.The collapsed layer formed during the air hole fusion of PCF is used as the first reflector,the interface between PCF and sensing membrane is used as the second reflector,and the interface between the sensing membrane and the air is used as the third reflector,thus the dual Fabry-Pe rot structure sensor is formed.The results show that the sensor has excellent sensitivity and selectivity to carbon monoxide.With the increasing concentration of carbon monoxide gas in the range of 0-60 ppm,the intensity of interference spectrum decreases.The sensitivity of the sensor is 0.3473 dB m/ppm,and its linearity is good.The response time and recovery time are 68 s and 106 s,respectively.The sensor has the advantages of the compact size,low cost,high sensitivity,strong selectivity and simple structure.It is suitable for the sensing detection of low concentration carbon monoxide gas.
文摘According to the measurement principle of the traditional interferometer,a narrowband signal model is established and used,however,for wideband signals or multiple signals,this model is invalid.For the problems of direction finding with interferometer for wideband signals and multiple signals scene,a frequency domain phase interferometer is proposed and the concrete implementation scheme is given.The proposed method computes the phase difference in frequency domain,and finds multi-target results with judging the spectrum amplitude changing,and uses the frequency phase difference to compute the arrival angle.Theoretical analysis and simulation results show that the proposed method effectively solves the problem of the angle estimation with phase interferometer for wideband signals,and has good performance in multiple signals scene with nonoverlapping spectrum or partially overlapping.In addition,the wider the signal bandwidth,the better direction finding performance of this algorithm.
基金supported by the National Nature Science Foundation of China(Grant Number:U24A20306,12102140,6227031087,62035006,and 6207030117).
文摘Ultrasonic neuromodulation has gained recognition as a promising therapeutic approach.A miniature transducer capable of generating suitable-strength and broadband ultrasound is of great significance for achieving high spatial precision ultrasonic neural stimulation.However,the ultrasound transducer with the above integrated is yet to be challenged.Here,we developed a fiber-optic photoacoustic emitter(FPE)with a diameter of 200μm,featuring controllable sound intensity and a broadband response(−6 dB bandwidth:162%).The device integrates MXene(Ti_(3)C_(2)Tx),known for its exceptional photothermal properties,and polydimethylsiloxane,which offers a high thermal expansion coefficient.This FPE,exhibiting high spatial precision(lateral:163.3μm,axial:207μm),is capable of selectively activating neurons in targeted regions.Using the TetTagging method to selectively express a cfos-promoter-inducible mCHERRY gene within the medial prefrontal cortex(mPFC),we found that photoacoustic stimulation significantly and temporarily activated the neurons.In vivo fiber photometry demonstrated that photoacoustic stimulation induced substantial calcium transients in mPFC neurons.Furthermore,we confirmed that photoacoustic stimulation of the mPFC using FPE markedly alleviates acute social defeat stress-induced emotional stress in mice.This work demonstrates the potential of FPEs for clinical applications,with a particular focus on modulating neural activity to regulate emotions.
基金financial supports from National Key Research and Development Program of China(2023YFB3209500)National Natural Science Foundation of China(NSFC)(12274052 and 62171076)+1 种基金Fundamental Research Funds for the Central Universities(DUT24ZD203)Bolian Research Funds of Dalian Maritime University and Fundamental Research Funds for the Central Universities(3132024605).
文摘Accurate and real-time detection of hydrogen(H_(2))is essential for ensuring energy security.Fiber-optic H_(2) sensors are gaining attention for their integration and remote sensing capabilities.However,they face challenges,including complex fabrication processes and limited response times.Here,we propose a fiber-optic H_(2) sensing tip based on Tamm plasmon polariton(TPP)resonance,consisting of a multilayer metal/dielectric Bragg reflector deposited directly on the fiber end facet,simplifying the fabrication process.The fiber-optic TPP(FOTPP)tip exhibits both TPP and multiple Fabry-Perot(FP)resonances simultaneously,with the TPP employed for highly sensitive H_(2) detection.Compared to FP resonance,TPP exhibits more than twice the sensitivity under the same structural dimension without cavity geometry deformation.The excellent performance is attributed to alterations in phase-matching conditions,driven by changes in penetration depth of TPP.Furthermore,the FP mode is utilized to achieve an efficient photothermal effect to catalyze the reaction between H_(2) and the FOTPP structure.Consequently,the response and recovery speeds of the FOTPP tip under resonance-enhanced photothermal assistance are improved by 6.5 and 2.1 times,respectively.Our work offers a novel strategy for developing TPP-integrated fiber-optic tips,refines the theoretical framework of photothermal-assisted detection systems,and provides clear experimental evidence.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.U1532113,11475170,11905041)Anhui Provincial Natural Science Foundation(Grant No.2208085MA18)Fundamental Research Funds for the Central Universities(Grant No.JZ2022HGTB0244)。
文摘In x-ray dark-field imaging using dual phase grating interferometer,multi-contrast signals are extracted from a set of acquired phase-stepping data by using the least-squares fitting algorithm.The extracted mean intensity,amplitude and visibility signals may be intrinsically biased.However,it is still unclear how large these biases are and how the data acquisition parameters influence the biases in the extracted signals.This work set out to address these questions.Analytical expressions of the biases of the extracted signals were theoretically derived by using a second-order Taylor series expansion.Extensive numerical simulations were performed to validate the theoretical results.It is illustrated that while the estimated mean intensity signal is always unbiased,the estimated amplitude and visibility signals are both positively biased.While the biases of the estimated amplitude signals are proportional to the inverse of the total number of phase steps,the biases of the estimated visibility signals are inversely proportional to the product of the total number of phase steps and the mean number of photons counted per phase step.Meanwhile,it is demonstrated that the dependence of the biases on the mean visibility is quite different from that of Talbot-Lau interferometer due to the difference in the intensity model.We expect that these results can be useful for data acquisition optimizations and interpretation of x-ray dark-field images.
文摘Temporal optics,which enables lossless manipulation of ultrafast pulses,offers a new dimension for the regulation of quantum optical fields.In this paper,we established a temporal Fourier transform(TF)system based on a four-wave mixing(FWM)time lens and constructed a full quantum theoretical model for the resulting temporal SU(1,1)interferometer.This interferometer has high temporal resolution,can impose interference in both time and frequency domains,and is sensitive to the phase derivative.By introducing linear time-varying phase modulation,we achieved sub-picosecond precision in temporal autocorrelation measurements and generatedan optical frequency comb with a fixed interval based on a feedback iteration mechanism.Theoretical analysis revealsthe crucial regulatory role of time-frequency coupling in quantum interference,providing novel solutions for ultrafast quantum imaging,temporal mode encoding,and the generation of optical frequency quantization.
基金supported by the National Natural Science Foundation of China(Grant Nos.11633001,11920101003,and 12205222 for S.H.)the Key Program of the National Natural Science Foundation of China(Grant No.12433001)+1 种基金the Strate-gic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB23000000)the National Key Research and Development Program of China(Grant No.2021YFC2203001 for Z.C.Z.).
文摘The gravitational memory effect manifests gravitational nonlinearity,degenerate vacua,and asymptotic symmetries;its detection is considered challenging.We propose using a space-borne interferometer to detect memory signals from stellar-mass binary black holes(BBHs),typically targeted by ground-based detectors.We use DECIGO detector as an example.Over 5 years,DECIGO is estimated to detect approximately 2,036 memory signals(SNRs>3)from stellar-mass BBHs.Simulations used frequency-domain memory waveforms for direct SNR estimation.Predictions utilized a GWTC-3 constrained BBH population model(Power law+Peak mass,DEFAULT spin,Madau-Dickinson merger rate).The analysis used conservative lower merger rate limits and considered orbital eccentricity.The high detection rate stems from strong memory signals within DECIGO’s bandwidth and the abundance of stellar-mass BBHs.This substantial and conservative detection count enables statistical use of the memory effect for fundamental physics and astrophysics.DECIGO exemplifies that space interferometers may better detect memory signals from smaller mass binaries than their typical targets.Detectors in lower frequency bands are expected to find strong memory signals from∼10^(4)M⊙binaries.
基金supported in part by the National Natural Science Foundation of China(Nos.61735014 and 61927812)the Shaanxi Provincial Education Department(No.18JS093)+2 种基金the Natural Science Basic Research Program of Shaanxi Province(No.2024JC-YBMS-530)the Operation Fund of Logging Key Laboratory of Group Company(No.2021DQ0107-11)the Graduate Student Innovation Fund of Xi’an Shiyou University(No.YCS23213193)。
文摘A compact and highly sensitive gas pressure and temperature sensor based on Fabry-Pérot interferometer(FPI)and fiber Bragg grating(FBG)is proposed and demonstrated experimentally in this paper.The theoretical model for pressure and temperature sensing is established.Building on this foundation,a novel micro silicon cavity sensor structure sensitive to pressure is devised downstream of an FBG.The concept of separate measurement and the mechanisms enhancing pressure sensitivity are meticulously analyzed,and the corresponding samples are fabricated.The experimental results indicate that the pressure sensitivity of the sensor is-747.849 nm/MPa in 0—100 k Pa and its linearity is 99.7%and it maintains good stability in 150 min.The sensor offers the advantages of compact size,robust construction,easy fabrication,and high sensitivity,making it potentially valuable for micro-pressure application.
基金Supported by the National Natural Science Foundation of China(61074162)the Ph.D.Program Foundation of Ministry of Education of China(200802870011)~~
文摘The mathematical model of 4He quantum interferometer gyroscope is presented. The model includes the driven equation, the current equation and the position equation. Therefore, it can sufficiently describe the gyro- scope system. The driven equation shows the thermally driven gyroscope can work for a long time but the pres- sure driven one cannot. From the current equation, the superfluid currents passing through the weak link contain the AC currents which show the rotation flux, and other currents caused by drive. As shown in the position equa- tion, the displacement of diaphragm is the only detectable parameter in the gyroscope system. The model is tested by the simulations based on experimental parameters, and can be used to research performance of the gyroscope and analyse the gyroscope error.
基金ACKNOWLEDGMENTS This work was supported by the National Natural Science Foundation of China (No.60677051 and No.10774193) and the National Key Basic Research Special Foundation (No.G2010CB923204).
文摘A wide-range and phase-locked Michelson interferometer technique is described. This technique combined with femtosecond laser is used to measure the spectrum of the rare-earth ion Nd:YVO4, which presents very high signal to noise ratio of interferometric intensity output and higher spectral resolution than traditional grating spectrophotometer.
文摘A polarization-maintaining (PM) fiber Mach-Zehnder (MZ) interferometer has been established to measure the EO effect of very thin film materials with optical anisotropy. Unlike a common MZ interferometer, all the components are connected via polarization-maintaining fibers. At the same time, a polarized DFB laser with a maximum power output of 10mW is adopted as the light source to induce a large extinction ratio. Here,we take it to determine the electro-optical coefficients of a very thin superlattice structure with GaAs, KTP, and GaN as comparative samples. The measured EO coefficients show good comparability with the others.
基金supported by the National Natural Science Foundation of Chinathe Ministry of Science and Technology of ChinaChinese Academy of Sciences
文摘A distinct method to show a quantum object behaving both as wave and as particle is proposed and described in some detail. We make a systematic analysis using the elementary methodology of quantum mechanics upon Young's two-slit interferometer and the Mach-Zehnder two-arm interferometer with the focus placed on how to measure the interference pattern (wave nature) and the which-way information (particle nature) of quantum objects. We design several schemes to simultaneously acquire the which-way information for an individual quantum object and the high-contrast interference pattern for an ensemble of these quantum objects by placing two sets of measurement instruments that are well separated in space and whose perturbation of each other is negligibly small within the interferometer at the same time. Yet, improper arrangement and cooperation of these two sets of measurement instruments in the interferometer would lead to failure of simultaneous observation of wave and particle behaviors. The internal freedoms of quantum objects could be harnessed to probe both the which-way information and the interference pattern for the center-of-mass motion. That quantum objects can behave beyond the wave-particle duality and the complementarity principle would stimulate new conceptual examination and exploration of quantum theory at a deeper level.
基金Project supported by the Innovation Program of Education Commission of Shanghai Municipality (Grant No.10YZ19)the Shanghai Leading Academic Discipline Project (Grant No.S30108)the Shanghai Key Laboratory of Specialty Fiber Optics and Optical Access Networks (Grant No.SKLSFO200903)
文摘A distributed optical fiber disturbance detection system consisted of a Sagnac interferometer and a Mach-Zehnder interferometer is demonstrated. Two interferometers outputs are connected to an electric band-pass filter via a detector respectively. The central frequencies of the two filters are selected adaptively according to the disturbance frequency. The disturbance frequency is obtained by either frequency spectrum of the two interferometers outputs. An alarm is given out only when the Sagnac interferometer output is changed. A disturbance position is determined by calculating a time difference with a cross-correlation method between the filter output connected to the Sagnac interferometer and derivative of the filter output connected to the Mach-Zehnder interferometer. The frequency spectrum, derivative and cross-correlation are obtained by a signal processing system. Theory analysis and simulation results are presented. They show that the system structure and location method are effective, accurate, and immune to environmental variations.