Leachate sludge,a byproduct of municipal solid waste leachate treated through biochemical processes,is characterized by high water content(761.1%)and significant organic matter content(71.2%).Cement that is commonly u...Leachate sludge,a byproduct of municipal solid waste leachate treated through biochemical processes,is characterized by high water content(761.1%)and significant organic matter content(71.2%).Cement that is commonly used for solidifying leachate sludge has shown limited effectiveness.To address this issue,an alkali-activated ground-granulated blast-furnace slag(GGBS)geopolymer blended with polypropylene fibers was developed to solidify leachate sludge.Moreover,unconfined compressive strength(UCS),immersion,as well as X-ray diffraction(XRD),Fourier transform infrared spectroscopy(FTIR),and scanning electron microscope(SEM)tests were conducted to investigate the solidification effect and mechanism of the GGBS-based geopolymer and fibers on leachate sludge.The results showed that:the 28-d UCS of the solidified sludge with 20%and 30%GGBS is 0.35 MPa and 1.85 MPa,and decreases to 0.18 MPa and 1.13 MPa,respectively,after soaked in water for 28 d.Notably,the UCS of the solidified sludge with 30%GGBS satisfied the strength requirement of roadbed materials.Polypropylene fibers significantly enhanced the strength,ductility and water stability of the solidified sludge,with an optimal fiber content of 0.3%.Alkali-activated GGBS geopolymer generated three-dimensional,cross-linked geopolymeric gels within the solidified sludge,cementing sludge particles and filling intergranular pores to form a stable cementitious structure,thereby achieving effective solidification.Furthermore,incorporating polypropylene fibers improved the bonding and anchoring effect between fiber and solidified sludge,constrained lateral deformation of the solidified sludge,restricted crack propagation,and enhanced engineering performance of the solidified leachate sludge.展开更多
In this study,a straightforward one-step hydrothermal method was successfully utilized to synthesize the solid solution Na_(0.9)Mg_(0.45)Ti_(3.55)O_(8)-Na_(2)Ni_(2)Ti_(6)O_(16)(NNMTO-x),where x denotes the molar perce...In this study,a straightforward one-step hydrothermal method was successfully utilized to synthesize the solid solution Na_(0.9)Mg_(0.45)Ti_(3.55)O_(8)-Na_(2)Ni_(2)Ti_(6)O_(16)(NNMTO-x),where x denotes the molar percentage of Na_(2)Ni_(2)Ti_(6)O_(16)(NNTO)within Na_(0.9)Mg_(0.45)Ti_(3.55)O_(8)(NMTO),with x values of 10,20,30,40,and 50.Both XPS(X-ray Photoelectron Spectroscopy)and EDX(Energy Dispersive X-ray Spectroscopy)analyses unequivocally validated the formation of the NNMTO-x solid solutions.It was observed that when x is below 40,the NNMTO-x solid solution retains the structural characteristics of the original NMTO.However,beyond this threshold,significant alterations in crystal morphology were noted,accompanied by a noticeable decline in photocatalytic activity.Notably,the absorption edge of NNMTO-x(x<40)exhibited a shift towards the visible-light spectrum,thereby substantially broadening the absorption range.The findings highlight that NNMTO-30 possesses the most pronounced photocatalytic activity for the reduction of CO_(2).Specifically,after a 6 h irradiation period,the production rates of CO and CH_(4)were recorded at 42.38 and 1.47μmol/g,respectively.This investigation provides pivotal insights that are instrumental in the advancement of highly efficient and stable photocatalysts tailored for CO_(2)reduction processes.展开更多
Reversible solid oxide cells(RSOCs)are capable of converting various energy resources,between electricity and chemical fuels,with high efficiency and flexibility,making them suitable for grid balancing and renewable e...Reversible solid oxide cells(RSOCs)are capable of converting various energy resources,between electricity and chemical fuels,with high efficiency and flexibility,making them suitable for grid balancing and renewable energy consumption.However,the practical application of RSOCs is still limited by the insufficient activity and stability of the electrodes in different operating modes.Herein,a highly efficient symmetrical electrode composed of La_(0.3)Sr_(0.6)Ti_(0.1)Co_(0.2)Fe_(0.7)O_(3-δ)(LSTCF)nanofibers and in situ exsolved Co_(3)Fe_(7) nanoparticles is developed for boosting the performance of RSOCs.The reversible phase transition,high activity and stability of the electrode have been confirmed by a combination of experimental(e.g.,transmission electron microscopy and X-ray absorption fine structure)and computational studies.Electrolyte-supported RSOCs with the symmetrical electrode demonstrate excellent catalytic activity and stability,achieving a high peak power density of 0.98 W cm^(-2)in the fuel cell mode using H_(2)as the fuel(or 0.53 W cm^(-2)using CH_(4)as the fuel)and a high current density of 1.09 A cm^(-2) at 1.4 V in the CO_(2)electrolysis mode(or 1.03 A cm^(-2)at 1.3 V for H_(2)O electrolysis)at 800℃while maintaining excellent durability for over 100 h.展开更多
The remodeling of axonal connections following injury is an important feature driving functional recovery.The reticulospinal tract is an interesting descending motor tract that contains both excitatory and inhibitory ...The remodeling of axonal connections following injury is an important feature driving functional recovery.The reticulospinal tract is an interesting descending motor tract that contains both excitatory and inhibitory fibers.While the reticulospinal tract has been shown to be particularly prone to axonal growth and plasticity following injuries of the spinal cord,the differential capacities of excitatory and inhibitory fibers for plasticity remain unclear.As adaptive axonal plasticity involves a sophisticated interplay between excitatory and inhibitory input,we investigated in this study the plastic potential of glutamatergic(vGlut2)and GABAergic(vGat)fibers originating from the gigantocellular nucleus and the lateral paragigantocellular nucleus,two nuclei important for locomotor function.Using a combination of viral tracing,chemogenetic silencing,and AI-based kinematic analysis,we investigated plasticity and its impact on functional recovery within the first 3 weeks following injury,a period prone to neuronal remodeling.We demonstrate that,in this time frame,while vGlut2-positive fibers within the gigantocellular and lateral paragigantocellular nuclei rewire significantly following cervical spinal cord injury,vGat-positive fibers are rather unresponsive to injury.We also show that the acute silencing of excitatory axonal fibers which rewire in response to lesions of the spinal cord triggers a worsening of the functional recovery.Using kinematic analysis,we also pinpoint the locomotion features associated with the gigantocellular nucleus or lateral paragigantocellular nucleus during functional recovery.Overall,our study increases the understanding of the role of the gigantocellular and lateral paragigantocellular nuclei during functional recovery following spinal cord injury.展开更多
To develop a suitable production process for fiber reinforced investment casting shell mold,three methods were studied:the traditional method(M_(1)),the method of adding fiber into silica sol with mechanical stirring ...To develop a suitable production process for fiber reinforced investment casting shell mold,three methods were studied:the traditional method(M_(1)),the method of adding fiber into silica sol with mechanical stirring and ultrasonic agitation(M_(2)),and the method of adding fiber into slurry with mechanical stirring and ultrasonic agitation for durations of 3,15,30,and 45 min(M_(3)).The bending strength,high-temperature self-load deformation,and thermal conductivity of the shell molds were investigated.The results reveal that the enhancement of fiber dispersion through ultrasonic agitation improves the comprehensive performance of the shell molds.The maximum green bending strength of the shell mold by M_(2) reaches 3.29 MPa,which is 29% higher than that of the shell mold prepared by M_(1).Moreover,the high-temperature self-load deformation of the shell mold is reduced from 0.62% to 0.44%.In addition,simultaneous ultrasonic agitation and mechanical stirring effectively shorten the slurry preparation time while maintaining comparable levels of fiber dispersion.With the process M_(3)-45 min,the fillers are uniformly dispersed in the slurry,and the fired bending strength and the high-temperature self-load deformation reach 6.25 MPa and 0.41%,respectively.Therefore,the proposed ultrasonic agitation route is promising for the fabrication of fiber-reinforced shell molds with excellent fibers dispersion.展开更多
This letter addresses challenges in the clinical translation of BIBR1532,a promising telomerase inhibitor,for the treatment of esophageal squamous cell carcinoma(ESCC).BIBR1532 exerts its anti-cancer effect by activat...This letter addresses challenges in the clinical translation of BIBR1532,a promising telomerase inhibitor,for the treatment of esophageal squamous cell carcinoma(ESCC).BIBR1532 exerts its anti-cancer effect by activating DNA damage response(ATR/CHK1 and ATM/CHK2)pathways and downregulating telomere-binding proteins.Although its therapeutic potential is limited by poor aqueous solubility,solid dispersion(SD)technology may overcome this obstacle.Systematic analysis using PubChem-derived simplified molecular input line entry system identifiers and artificial intelligence-driven FormulationDT platform evaluation(oral formulation feasibility index:0.38)revealed that the SD technology,with superior scalability(32 approved products by 2021)and lower production risks,outperforms lipid-based formulations as an optimal dissolution strategy.Material analysis revealed hydroxypropyl methylcellulose(HPMC)as the optimal carrier with lower hygroscopicity,higher temperature and no intestinal targeting,thus enabling ESCC therapy.HPMC-based SD enhances BIBR1532 solubility and bioavailability for effective ESCC treatment.Future studies should focus on pilot tests for SD fabrication.展开更多
Artificial intelligence(AI)is increasingly recognized as a transformative force in the field of solid organ transplantation.From enhancing donor-recipient matching to predicting clinical risks and tailoring immunosupp...Artificial intelligence(AI)is increasingly recognized as a transformative force in the field of solid organ transplantation.From enhancing donor-recipient matching to predicting clinical risks and tailoring immunosuppressive therapy,AI has the potential to improve both operational efficiency and patient outcomes.Despite these advancements,the perspectives of transplant professionals-those at the forefront of critical decision-making-remain insufficiently explored.To address this gap,this study utilizes a multi-round electronic Delphi approach to gather and analyses insights from global experts involved in organ transplantation.Participants are invited to complete structured surveys capturing demographic data,professional roles,institutional practices,and prior exposure to AI technologies.The survey also explores perceptions of AI’s potential benefits.Quantitative responses are analyzed using descriptive statistics,while open-ended qualitative responses undergo thematic analysis.Preliminary findings indicate a generally positive outlook on AI’s role in enhancing transplantation processes,particularly in areas such as donor matching and post-operative care.These mixed views reflect both optimism and caution among professionals tasked with integrating new technologies into high-stakes clinical workflows.By capturing a wide range of expert opinions,the findings will inform future policy development,regulatory considerations,and institutional readiness frameworks for the integration of AI into organ transplantation.展开更多
This study focused on improving the cathode performance of Ba_(0.6)Sr_(0.4)Co_(0.85)Nb_(0.15)O_(3-δ)(BSCN)-based perovskite materials through molybdenum(Mo)doping.Pure BSCN and Mo-modified-BSCN—Ea_(0.6)Sr_(0.4)Co_(0...This study focused on improving the cathode performance of Ba_(0.6)Sr_(0.4)Co_(0.85)Nb_(0.15)O_(3-δ)(BSCN)-based perovskite materials through molybdenum(Mo)doping.Pure BSCN and Mo-modified-BSCN—Ea_(0.6)Sr_(0.4)Co_(0.85)Nb_(0.1)Mo_(0.05)O_(3-δ)(B S CNM_(0.05)),Ba_(0.6)Sr_(0.4)Co_(0.85)Nb_(0.05)Mo_(0.1)O_(3-δ)(BSCNM_(0.1)),and Ba_(0.6)Sr_(0.4)Co_(0.85)Mo_(0.15)O_(3-δ)(BSCM)—with Mo doping contents of 5mol%,10mol%,and15mol%,respectively,were successfully prepared using the sol-gel method.The effects of Mo doping on the crystal structure,conductivity,thermal expansion coefficient,oxygen reduction reaction(ORR)activity,and electrochemical performance were systematically evaluated using X-ray diffraction analysis,thermally induced characterization,electrochemical impedance spectroscopy,and single-cell performance tests.The results revealed that Mo doping could improve the conductivity of the materials,suppress their thermal expansion effects,and significantly improve the electrochemical performance.Surface chemical state analysis using X-ray photoelectron spectroscopy revealed that 5mol%Mo doping could facilitate a high adsorbed oxygen concentration leading to enhanced ORR activity in the materials.Density functional theory calculations confirmed that Mo doping promoted the ORR activity in the materials.At an operating temperature of 600℃,the BSCNM_(0.05)cathode material exhibited significantly enhanced electrochemical impedance characteristics,with a reduced area specific resistance of 0.048Ω·cm~2,which was lower than that of the undoped BSCN matrix material by 32.39%.At the same operating temperature,an anode-supported single cell using a BSCNM_(0.05)cathode achieved a peak power density of 1477 mW·cm^(-2),which was 30.71%,56.30%,and 171.50%higher than those of BSCN,BSCNM_(0.1),and B SCM,respectively.The improved ORR activity and electrochemical performance of BSCNM_(0.05)indicate that it can be used as a cathode material in low-temperature solid oxide fuel cells.展开更多
Flexible fiber sensors,However,traditional methods face challenges in fabricating low-cost,large-scale fiber sensors.In recent years,the thermal drawing process has rapidly advanced,offering a novel approach to flexib...Flexible fiber sensors,However,traditional methods face challenges in fabricating low-cost,large-scale fiber sensors.In recent years,the thermal drawing process has rapidly advanced,offering a novel approach to flexible fiber sensors.Through the preform-tofiber manufacturing technique,a variety of fiber sensors with complex functionalities spanning from the nanoscale to kilometer scale can be automated in a short time.Examples include temperature,acoustic,mechanical,chemical,biological,optoelectronic,and multifunctional sensors,which operate on diverse sensing principles such as resistance,capacitance,piezoelectricity,triboelectricity,photoelectricity,and thermoelectricity.This review outlines the principles of the thermal drawing process and provides a detailed overview of the latest advancements in various thermally drawn fiber sensors.Finally,the future developments of thermally drawn fiber sensors are discussed.展开更多
High-nickel cathode,LiNi0.8Co0.1Mn0.1O_(2)(NCM811),and sulfide-solid electrolyte are a promising combination for all-solid-state lithium batteries(ASSLBs).However,this combination faces the issue of interfacial instab...High-nickel cathode,LiNi0.8Co0.1Mn0.1O_(2)(NCM811),and sulfide-solid electrolyte are a promising combination for all-solid-state lithium batteries(ASSLBs).However,this combination faces the issue of interfacial instability between the cathode and electrolyte.Given the surface alkalinity of NCM811,we propose a strategy to construct a solid-polymer-electrolyte(SPE)interphase on NCM811 surface by leveraging the surface alkaline residues to nucleophilically initiate the in-situ ring-opening polymerization of cyclic organic molecules.As a proof-of-concept,this study demonstrates that the ring-opening copolymerization of 1,3-dioxolane and maleic anhydride produces a homogeneous,compact,and conformal SPE layer on NCM811 surface to prevent the cathode from contact and reaction with Li6PS5Cl solid-state electrolyte.Consequently,the SPE-modified-NCM811 in ASSLBs exhibits high capacities of 193.5 mA h g^(-1) at 0.2 C,160.9 mA h g^(-1) at 2.0 C and 112.3 mA h g^(-1) at 10 C,and particularly,excellent long-term cycling stabilities over 11000 cycles with a 71.95%capacity retention at 10 C at 25℃,as well as a remained capacity of 117.9 mA h g^(-1) after 8000 cycles at 30 C at 60℃,showing a great application prospect.This study provides a new route for creating electrochemically and structurally stable solid-solid interfaces for ASSLBs.展开更多
Composite solid-state electrolytes(CSEs)have garnered significant attention for nextgeneration energy storage owing to their inherent safety features compared with those of their liquid counterparts.However,their prac...Composite solid-state electrolytes(CSEs)have garnered significant attention for nextgeneration energy storage owing to their inherent safety features compared with those of their liquid counterparts.However,their practical deployment remains hindered by sluggish lithium-ion transport kinetics and interfacial instability.Herein,we introduced a bimetal oxide enhanced strategy for oxygen-vacancy-engineered double perovskite nanofillers(PrBaCoFeO_(5+δ)(PBCF))to address these challenges in polyethylene oxide(PEO)-based CSEs.The strong Lewis acid-base coordination between Co^(3+)/Fe^(3+)sites on PBCF and ether oxygen groups in PEO effectively suppresses the polymer-chain crystallization while creating continuous Li^(+)conduction pathways.Importantly,the abundant oxygen vacancies serve as catalytic centers to decompose lithium bis(trifluoromethanesulfonyl)imide(LiTFSI),thereby forming a robust organic-inorganic hybrid solid electrolyte interphase(SEI).Consequently,the prepared PEO-LiTFSI-PBCF CSE achieves an improved Li^(+)ionic conductivity of 2.76×10^(-4) S·cm^(-1)(30℃)and an elevated Li^(+)transference number(0.54).The Li||Li symmetric cell exhibits impressive lithium plating/stripping ability(>6000 h at 0.1 mA·cm^(-2))and practical viability in Li||LiFePO_(4)full cells with 90.1% capacity retention after 500 cycles at 30℃(0.3 C).This defect engineering strategy provides new insights into the construction of fast and stable Li^(+)transport channels in polymer solid-state electrolytes,paving the way for high-energy-density all-solid-state lithium metal batteries.展开更多
Composite polymer electrolytes(CPEs)offer a promising solution for all-solid-state lithium-metal batteries(ASSLMBs).However,conventional nanofillers with Lewis-acid-base surfaces make limited contribution to improving...Composite polymer electrolytes(CPEs)offer a promising solution for all-solid-state lithium-metal batteries(ASSLMBs).However,conventional nanofillers with Lewis-acid-base surfaces make limited contribution to improving the overall performance of CPEs due to their difficulty in achieving robust electrochemical and mechanical interfaces simultaneously.Here,by regulating the surface charge characteristics of halloysite nanotube(HNT),we propose a concept of lithium-ion dynamic interface(Li^(+)-DI)engineering in nano-charged CPE(NCCPE).Results show that the surface charge characteristics of HNTs fundamentally change the Li^(+)-DI,and thereof the mechanical and ion-conduction behaviors of the NCCPEs.Particularly,the HNTs with positively charged surface(HNTs+)lead to a higher Li^(+)transference number(0.86)than that of HNTs-(0.73),but a lower toughness(102.13 MJ m^(-3)for HNTs+and 159.69 MJ m^(-3)for HNTs-).Meanwhile,a strong interface compatibilization effect by Li^(+)is observed for especially the HNTs+-involved Li^(+)-DI,which improves the toughness by 2000%compared with the control.Moreover,HNTs+are more effective to weaken the Li^(+)-solvation strength and facilitate the formation of Li F-rich solid-electrolyte interphase of Li metal compared to HNTs-.The resultant Li|NCCPE|LiFePO4cell delivers a capacity of 144.9 m Ah g^(-1)after 400 cycles at 0.5 C and a capacity retention of 78.6%.This study provides deep insights into understanding the roles of surface charges of nanofillers in regulating the mechanical and electrochemical interfaces in ASSLMBs.展开更多
Variable stiffness composites present a promising solution for mitigating impact loads via varying the fiber volume fraction layer-wise,thereby adjusting the panel's stiffness.Since each layer of the composite may...Variable stiffness composites present a promising solution for mitigating impact loads via varying the fiber volume fraction layer-wise,thereby adjusting the panel's stiffness.Since each layer of the composite may be affected by a different failure mode,the optimal fiber volume fraction to suppress damage initiation and evolution is different across the layers.This research examines how re-allocating the fibers layer-wise enhances the composites'impact resistance.In this study,constant stiffness panels with the same fiber volume fraction throughout the layers are compared to variable stiffness ones by varying volume fraction layer-wise.A method is established that utilizes numerical analysis coupled with optimization techniques to determine the optimal fiber volume fraction in both scenarios.Three different reinforcement fibers(Kevlar,carbon,and glass)embedded in epoxy resin were studied.Panels were manufactured and tested under various loading conditions to validate results.Kevlar reinforcement revealed the highest tensile toughness,followed by carbon and then glass fibers.Varying reinforcement volume fraction significantly influences failure modes.Higher fractions lead to matrix cracking and debonding,while lower fractions result in more fiber breakage.The optimal volume fraction for maximizing fiber breakage energy is around 45%,whereas it is about 90%for matrix cracking and debonding.A drop tower test was used to examine the composite structure's behavior under lowvelocity impact,confirming the superiority of Kevlar-reinforced composites with variable stiffness.Conversely,glass-reinforced composites with constant stiffness revealed the lowest performance with the highest deflection.Across all reinforcement materials,the variable stiffness structure consistently outperformed its constant stiffness counterpart.展开更多
Titanium plates with a Ti−O solid solution surface-hardened layer were cold roll-bonded with 304 stainless steel plates with high work hardening rates.The evolution and mechanisms affecting the interfacial bonding str...Titanium plates with a Ti−O solid solution surface-hardened layer were cold roll-bonded with 304 stainless steel plates with high work hardening rates.The evolution and mechanisms affecting the interfacial bonding strength in titanium/stainless steel laminated composites were investigated.Results indicate that the hardened layer reduces the interfacial bonding strength from over 261 MPa to less than 204 MPa.During the cold roll-bonding process,the hardened layer fractures,leading to the formation of multi-scale cracks that are difficult for the stainless steel to fill.This not only hinders the development of an interlocking interface but also leads to the presence of numerous microcracks and hardened blocks along the nearly straight interface,consequently weakening the interfacial bonding strength.In metals with high work hardening rates,the conventional approach of enhancing interface interlocking and improving interfacial bonding strength by using a surface-hardened layer becomes less effective.展开更多
As a potential adsorption material,it is still a challenge for activated carbon fiber(ACF)in efficient adsorption of ethanol due to its nonpolar surface,which is mainly emitted from the grain drying industry.This stud...As a potential adsorption material,it is still a challenge for activated carbon fiber(ACF)in efficient adsorption of ethanol due to its nonpolar surface,which is mainly emitted from the grain drying industry.This study prepared surface polarity-modified ACF using the heteroatom doping method.The modified ACF possessed a richer array of strongly polar oxygen/nitrogen-containing functional groups(primarily phenolic hydroxyl and lactone groups),a larger specific surface are1,and a more developed micropore structure.The adsorption capacities of ethanol for O-ACF and N-ACF were 4.110 mmol/g and 1.698 mmol/g,respectively,which were 11.3 times and 4.7 times those of unmodified ACF.This was a significant improvement over our previous work(0.363 mmol/g).The improvement of adsorption capacity for the N-ACF was mainly due to the higher specific surface are1,greater number of micropores(more adsorption sites)and abundant existence of defects,whereas,for O-ACF,the improvement mainly relied on the abundant presence of oxygen-containing functional groups on the surface.However,water had a negative effect on the adsorption of ethanol for the modified ACF due to competitive adsorption and the disappearance of capillary condensation.It was further revealed that the adsorption process of ethanol and water was quite different.It obeyed the linear driving force(LDF)model for ethanol adsorption,however,the intraparticle diffusion(IPD)model for water adsorption.展开更多
Although intermediate temperature solid oxide fuel cells(IT-SOFCs)show great potential to address energy conversion challenges,the sluggish oxygen reduction reaction(ORR)kinetics of cathode materials has severely hind...Although intermediate temperature solid oxide fuel cells(IT-SOFCs)show great potential to address energy conversion challenges,the sluggish oxygen reduction reaction(ORR)kinetics of cathode materials has severely hindered extended applications.Herein,we have demonstrated that Bi^(3+)doping on the A-site synergistically regulates the phase transition and electron spin state in La_(0.3)Bi_(0.3)Ca_(0.4)FeO_(3-δ)(LBCF3)for improved performance.An orthorhombic to cubic phase transition occurred with Bi^(3+)doping increases oxygen vacancy concentration and thus increases oxygen ion migration capacity.Simultaneously,the change of Fe from low to medium electron spin state strengths O_(2)adsorption and improves catalytic performances.Consequently,a peak power density improvement up to 48%(from 1.21 to 1.79 W·cm^(-2))at 800℃ is realized in the anodesupported single cell using LBCF3 as cathode,which remains stable for over 270 h at 750℃.展开更多
We demonstrate an all polarization-maintaining(PM) fiber mode-locked laser seeded, hybrid fiber/solid-slab picosecond pulse laser system which outputs 40 μJ, 10 ps pulses at the central wavelength of 1064 nm. The bea...We demonstrate an all polarization-maintaining(PM) fiber mode-locked laser seeded, hybrid fiber/solid-slab picosecond pulse laser system which outputs 40 μJ, 10 ps pulses at the central wavelength of 1064 nm. The beam quality factors M2 in the unstable and stable directions are 1.35 and 1.31, respectively. 15 μJ picosecond pulses at the central wavelength of 355 nm are generated through third harmonic generation(THG) by using two Li B3 O5(LBO) crystals, in order to get better processing efficiency on polycrystalline diamonds. The high pulse energy and beam quality of these ultraviolet(UV) picosecond pulses are confirmed by latter experiments of material processing on polycrystalline diamonds. This scheme which combines the advantages of the all PM fiber mode-locked laser and the solid-slab amplifier enables compact, robust and chirped pulse amplification-free amplification with high power picosecond pulses.展开更多
A rapid and simple preconcentration step applying packed-fiber solid-phase extraction columns has been investigated to vitamin B12. The extraction performance of the new method was investigated preliminarily on vitami...A rapid and simple preconcentration step applying packed-fiber solid-phase extraction columns has been investigated to vitamin B12. The extraction performance of the new method was investigated preliminarily on vitamin functional drink. The analysis used a reversed-phase C18 column, with a photo-diode array detector at 220 nm. The samples were preconcentrated with packed-fiber solid-phase extraction columns. Good linearity was observed in vitamin functional drink. The repeatability of extraction performance, expressed as relative standard deviations, was from 3.5% to 4.3%. The limit of detection (LOD) is 5 ng mL^-1 (S/N = 3). Finally, the method had been applied for the determination of vitamin B12 in vitamin functional drink.展开更多
基金financially supported by the National Natural Science Foundation of China(Grant No.52078142).
文摘Leachate sludge,a byproduct of municipal solid waste leachate treated through biochemical processes,is characterized by high water content(761.1%)and significant organic matter content(71.2%).Cement that is commonly used for solidifying leachate sludge has shown limited effectiveness.To address this issue,an alkali-activated ground-granulated blast-furnace slag(GGBS)geopolymer blended with polypropylene fibers was developed to solidify leachate sludge.Moreover,unconfined compressive strength(UCS),immersion,as well as X-ray diffraction(XRD),Fourier transform infrared spectroscopy(FTIR),and scanning electron microscope(SEM)tests were conducted to investigate the solidification effect and mechanism of the GGBS-based geopolymer and fibers on leachate sludge.The results showed that:the 28-d UCS of the solidified sludge with 20%and 30%GGBS is 0.35 MPa and 1.85 MPa,and decreases to 0.18 MPa and 1.13 MPa,respectively,after soaked in water for 28 d.Notably,the UCS of the solidified sludge with 30%GGBS satisfied the strength requirement of roadbed materials.Polypropylene fibers significantly enhanced the strength,ductility and water stability of the solidified sludge,with an optimal fiber content of 0.3%.Alkali-activated GGBS geopolymer generated three-dimensional,cross-linked geopolymeric gels within the solidified sludge,cementing sludge particles and filling intergranular pores to form a stable cementitious structure,thereby achieving effective solidification.Furthermore,incorporating polypropylene fibers improved the bonding and anchoring effect between fiber and solidified sludge,constrained lateral deformation of the solidified sludge,restricted crack propagation,and enhanced engineering performance of the solidified leachate sludge.
基金Supported by the Doctoral Research Start-up Project of Yuncheng University(YQ-2023067)Project of Shanxi Natural Science Foundation(202303021211189)+1 种基金Fund Program for the Scientific Activities of Selected Returned Overseas Professionals in Shanxi Provinces(20220036)Shanxi ProvinceIntelligent Optoelectronic Sensing Application Technology Innovation Center and Shanxi Province Optoelectronic Information Science and TechnologyLaboratory,Yuncheng University.
文摘In this study,a straightforward one-step hydrothermal method was successfully utilized to synthesize the solid solution Na_(0.9)Mg_(0.45)Ti_(3.55)O_(8)-Na_(2)Ni_(2)Ti_(6)O_(16)(NNMTO-x),where x denotes the molar percentage of Na_(2)Ni_(2)Ti_(6)O_(16)(NNTO)within Na_(0.9)Mg_(0.45)Ti_(3.55)O_(8)(NMTO),with x values of 10,20,30,40,and 50.Both XPS(X-ray Photoelectron Spectroscopy)and EDX(Energy Dispersive X-ray Spectroscopy)analyses unequivocally validated the formation of the NNMTO-x solid solutions.It was observed that when x is below 40,the NNMTO-x solid solution retains the structural characteristics of the original NMTO.However,beyond this threshold,significant alterations in crystal morphology were noted,accompanied by a noticeable decline in photocatalytic activity.Notably,the absorption edge of NNMTO-x(x<40)exhibited a shift towards the visible-light spectrum,thereby substantially broadening the absorption range.The findings highlight that NNMTO-30 possesses the most pronounced photocatalytic activity for the reduction of CO_(2).Specifically,after a 6 h irradiation period,the production rates of CO and CH_(4)were recorded at 42.38 and 1.47μmol/g,respectively.This investigation provides pivotal insights that are instrumental in the advancement of highly efficient and stable photocatalysts tailored for CO_(2)reduction processes.
基金supported by the National Natural Science Foundation of China(No.52377212 and 51877173)program of Beijing Huairou Laboratory(ZD2022006A)+2 种基金the Key R&D Project of Shaanxi Province(2023-YBGY-057)the State Key Laboratory of Electrical Insulation and Power Equipment(EIPE22314,EIPE22306)the Natural Science Basic Research Program of Shaanxi(No.2023-JC-QN-0483).
文摘Reversible solid oxide cells(RSOCs)are capable of converting various energy resources,between electricity and chemical fuels,with high efficiency and flexibility,making them suitable for grid balancing and renewable energy consumption.However,the practical application of RSOCs is still limited by the insufficient activity and stability of the electrodes in different operating modes.Herein,a highly efficient symmetrical electrode composed of La_(0.3)Sr_(0.6)Ti_(0.1)Co_(0.2)Fe_(0.7)O_(3-δ)(LSTCF)nanofibers and in situ exsolved Co_(3)Fe_(7) nanoparticles is developed for boosting the performance of RSOCs.The reversible phase transition,high activity and stability of the electrode have been confirmed by a combination of experimental(e.g.,transmission electron microscopy and X-ray absorption fine structure)and computational studies.Electrolyte-supported RSOCs with the symmetrical electrode demonstrate excellent catalytic activity and stability,achieving a high peak power density of 0.98 W cm^(-2)in the fuel cell mode using H_(2)as the fuel(or 0.53 W cm^(-2)using CH_(4)as the fuel)and a high current density of 1.09 A cm^(-2) at 1.4 V in the CO_(2)electrolysis mode(or 1.03 A cm^(-2)at 1.3 V for H_(2)O electrolysis)at 800℃while maintaining excellent durability for over 100 h.
基金supported by the Deutsche Forschungsgemeinschaft(DFG),TRR274(Project ID 408885537,Sy Nergy,EXC 2145/ID 390857198,to FMB)。
文摘The remodeling of axonal connections following injury is an important feature driving functional recovery.The reticulospinal tract is an interesting descending motor tract that contains both excitatory and inhibitory fibers.While the reticulospinal tract has been shown to be particularly prone to axonal growth and plasticity following injuries of the spinal cord,the differential capacities of excitatory and inhibitory fibers for plasticity remain unclear.As adaptive axonal plasticity involves a sophisticated interplay between excitatory and inhibitory input,we investigated in this study the plastic potential of glutamatergic(vGlut2)and GABAergic(vGat)fibers originating from the gigantocellular nucleus and the lateral paragigantocellular nucleus,two nuclei important for locomotor function.Using a combination of viral tracing,chemogenetic silencing,and AI-based kinematic analysis,we investigated plasticity and its impact on functional recovery within the first 3 weeks following injury,a period prone to neuronal remodeling.We demonstrate that,in this time frame,while vGlut2-positive fibers within the gigantocellular and lateral paragigantocellular nuclei rewire significantly following cervical spinal cord injury,vGat-positive fibers are rather unresponsive to injury.We also show that the acute silencing of excitatory axonal fibers which rewire in response to lesions of the spinal cord triggers a worsening of the functional recovery.Using kinematic analysis,we also pinpoint the locomotion features associated with the gigantocellular nucleus or lateral paragigantocellular nucleus during functional recovery.Overall,our study increases the understanding of the role of the gigantocellular and lateral paragigantocellular nuclei during functional recovery following spinal cord injury.
基金supported by the National Natural Science Foundation of China (Grant No. 5186504)the University Science Foundation for Young Science and Technology Talents in Inner Mongolia Autonomous Region of China (Grant No. NJYT22078)+2 种基金the Basic Scientific Research Expenses Program of Universities directly under Inner Mongolia Autonomous Region (Grant No. JY20220059)the Inner Mongolia Autonomous Region ‘Grassland Talent’ project Young Innovative Talent Training Program Level ⅠBasic Research Expenses of Universities directly under the Inner Mongolia Autonomous Region (Grant No. ZTY2023040)。
文摘To develop a suitable production process for fiber reinforced investment casting shell mold,three methods were studied:the traditional method(M_(1)),the method of adding fiber into silica sol with mechanical stirring and ultrasonic agitation(M_(2)),and the method of adding fiber into slurry with mechanical stirring and ultrasonic agitation for durations of 3,15,30,and 45 min(M_(3)).The bending strength,high-temperature self-load deformation,and thermal conductivity of the shell molds were investigated.The results reveal that the enhancement of fiber dispersion through ultrasonic agitation improves the comprehensive performance of the shell molds.The maximum green bending strength of the shell mold by M_(2) reaches 3.29 MPa,which is 29% higher than that of the shell mold prepared by M_(1).Moreover,the high-temperature self-load deformation of the shell mold is reduced from 0.62% to 0.44%.In addition,simultaneous ultrasonic agitation and mechanical stirring effectively shorten the slurry preparation time while maintaining comparable levels of fiber dispersion.With the process M_(3)-45 min,the fillers are uniformly dispersed in the slurry,and the fired bending strength and the high-temperature self-load deformation reach 6.25 MPa and 0.41%,respectively.Therefore,the proposed ultrasonic agitation route is promising for the fabrication of fiber-reinforced shell molds with excellent fibers dispersion.
基金Supported by“Continuation”Project of Excellent Doctors,Guangdong Basic and Applied Basic Research Foundation,No.2025A04J5082Guangdong Basic and Applied Basic Research Foundation,No.2024A1515011236.
文摘This letter addresses challenges in the clinical translation of BIBR1532,a promising telomerase inhibitor,for the treatment of esophageal squamous cell carcinoma(ESCC).BIBR1532 exerts its anti-cancer effect by activating DNA damage response(ATR/CHK1 and ATM/CHK2)pathways and downregulating telomere-binding proteins.Although its therapeutic potential is limited by poor aqueous solubility,solid dispersion(SD)technology may overcome this obstacle.Systematic analysis using PubChem-derived simplified molecular input line entry system identifiers and artificial intelligence-driven FormulationDT platform evaluation(oral formulation feasibility index:0.38)revealed that the SD technology,with superior scalability(32 approved products by 2021)and lower production risks,outperforms lipid-based formulations as an optimal dissolution strategy.Material analysis revealed hydroxypropyl methylcellulose(HPMC)as the optimal carrier with lower hygroscopicity,higher temperature and no intestinal targeting,thus enabling ESCC therapy.HPMC-based SD enhances BIBR1532 solubility and bioavailability for effective ESCC treatment.Future studies should focus on pilot tests for SD fabrication.
文摘Artificial intelligence(AI)is increasingly recognized as a transformative force in the field of solid organ transplantation.From enhancing donor-recipient matching to predicting clinical risks and tailoring immunosuppressive therapy,AI has the potential to improve both operational efficiency and patient outcomes.Despite these advancements,the perspectives of transplant professionals-those at the forefront of critical decision-making-remain insufficiently explored.To address this gap,this study utilizes a multi-round electronic Delphi approach to gather and analyses insights from global experts involved in organ transplantation.Participants are invited to complete structured surveys capturing demographic data,professional roles,institutional practices,and prior exposure to AI technologies.The survey also explores perceptions of AI’s potential benefits.Quantitative responses are analyzed using descriptive statistics,while open-ended qualitative responses undergo thematic analysis.Preliminary findings indicate a generally positive outlook on AI’s role in enhancing transplantation processes,particularly in areas such as donor matching and post-operative care.These mixed views reflect both optimism and caution among professionals tasked with integrating new technologies into high-stakes clinical workflows.By capturing a wide range of expert opinions,the findings will inform future policy development,regulatory considerations,and institutional readiness frameworks for the integration of AI into organ transplantation.
基金financially supported by the National Natural Science Foundation of China(No.22309067)the Open Project Program of the State Key Laboratory of Materials-Oriented Chemical Engineering,China(No.KL21-05)the Marine Equipment and Technology Institute,Jiangsu University of Science and Technology,China(No.XTCX202404)。
文摘This study focused on improving the cathode performance of Ba_(0.6)Sr_(0.4)Co_(0.85)Nb_(0.15)O_(3-δ)(BSCN)-based perovskite materials through molybdenum(Mo)doping.Pure BSCN and Mo-modified-BSCN—Ea_(0.6)Sr_(0.4)Co_(0.85)Nb_(0.1)Mo_(0.05)O_(3-δ)(B S CNM_(0.05)),Ba_(0.6)Sr_(0.4)Co_(0.85)Nb_(0.05)Mo_(0.1)O_(3-δ)(BSCNM_(0.1)),and Ba_(0.6)Sr_(0.4)Co_(0.85)Mo_(0.15)O_(3-δ)(BSCM)—with Mo doping contents of 5mol%,10mol%,and15mol%,respectively,were successfully prepared using the sol-gel method.The effects of Mo doping on the crystal structure,conductivity,thermal expansion coefficient,oxygen reduction reaction(ORR)activity,and electrochemical performance were systematically evaluated using X-ray diffraction analysis,thermally induced characterization,electrochemical impedance spectroscopy,and single-cell performance tests.The results revealed that Mo doping could improve the conductivity of the materials,suppress their thermal expansion effects,and significantly improve the electrochemical performance.Surface chemical state analysis using X-ray photoelectron spectroscopy revealed that 5mol%Mo doping could facilitate a high adsorbed oxygen concentration leading to enhanced ORR activity in the materials.Density functional theory calculations confirmed that Mo doping promoted the ORR activity in the materials.At an operating temperature of 600℃,the BSCNM_(0.05)cathode material exhibited significantly enhanced electrochemical impedance characteristics,with a reduced area specific resistance of 0.048Ω·cm~2,which was lower than that of the undoped BSCN matrix material by 32.39%.At the same operating temperature,an anode-supported single cell using a BSCNM_(0.05)cathode achieved a peak power density of 1477 mW·cm^(-2),which was 30.71%,56.30%,and 171.50%higher than those of BSCN,BSCNM_(0.1),and B SCM,respectively.The improved ORR activity and electrochemical performance of BSCNM_(0.05)indicate that it can be used as a cathode material in low-temperature solid oxide fuel cells.
基金supported by the National Key Research and Development Program of China(2023YFB3809800)the National Natural Science Foundation of China(52172249,52525601)+2 种基金the Chinese Academy of Sciences Talents Program(E2290701)the Jiangsu Province Talents Program(JSSCRC2023545)the Special Fund Project of Carbon Peaking Carbon Neutrality Science and Technology Innovation of Jiangsu Province(BE2022011).
文摘Flexible fiber sensors,However,traditional methods face challenges in fabricating low-cost,large-scale fiber sensors.In recent years,the thermal drawing process has rapidly advanced,offering a novel approach to flexible fiber sensors.Through the preform-tofiber manufacturing technique,a variety of fiber sensors with complex functionalities spanning from the nanoscale to kilometer scale can be automated in a short time.Examples include temperature,acoustic,mechanical,chemical,biological,optoelectronic,and multifunctional sensors,which operate on diverse sensing principles such as resistance,capacitance,piezoelectricity,triboelectricity,photoelectricity,and thermoelectricity.This review outlines the principles of the thermal drawing process and provides a detailed overview of the latest advancements in various thermally drawn fiber sensors.Finally,the future developments of thermally drawn fiber sensors are discussed.
基金supported by the National Key R&D Program of China(2021YFB3800300).
文摘High-nickel cathode,LiNi0.8Co0.1Mn0.1O_(2)(NCM811),and sulfide-solid electrolyte are a promising combination for all-solid-state lithium batteries(ASSLBs).However,this combination faces the issue of interfacial instability between the cathode and electrolyte.Given the surface alkalinity of NCM811,we propose a strategy to construct a solid-polymer-electrolyte(SPE)interphase on NCM811 surface by leveraging the surface alkaline residues to nucleophilically initiate the in-situ ring-opening polymerization of cyclic organic molecules.As a proof-of-concept,this study demonstrates that the ring-opening copolymerization of 1,3-dioxolane and maleic anhydride produces a homogeneous,compact,and conformal SPE layer on NCM811 surface to prevent the cathode from contact and reaction with Li6PS5Cl solid-state electrolyte.Consequently,the SPE-modified-NCM811 in ASSLBs exhibits high capacities of 193.5 mA h g^(-1) at 0.2 C,160.9 mA h g^(-1) at 2.0 C and 112.3 mA h g^(-1) at 10 C,and particularly,excellent long-term cycling stabilities over 11000 cycles with a 71.95%capacity retention at 10 C at 25℃,as well as a remained capacity of 117.9 mA h g^(-1) after 8000 cycles at 30 C at 60℃,showing a great application prospect.This study provides a new route for creating electrochemically and structurally stable solid-solid interfaces for ASSLBs.
基金supported by the National Natural Science Foundation of China(Nos.52574471,52404423,and 52334009)the Open Research Fund of Songshan Lake Materials Laboratory(No.2023SLABFK12)the Science and Technology Commission of Shanghai Municipality(Nos.23ZR1421600,21DZ1208900,and 19DZ2270200).
文摘Composite solid-state electrolytes(CSEs)have garnered significant attention for nextgeneration energy storage owing to their inherent safety features compared with those of their liquid counterparts.However,their practical deployment remains hindered by sluggish lithium-ion transport kinetics and interfacial instability.Herein,we introduced a bimetal oxide enhanced strategy for oxygen-vacancy-engineered double perovskite nanofillers(PrBaCoFeO_(5+δ)(PBCF))to address these challenges in polyethylene oxide(PEO)-based CSEs.The strong Lewis acid-base coordination between Co^(3+)/Fe^(3+)sites on PBCF and ether oxygen groups in PEO effectively suppresses the polymer-chain crystallization while creating continuous Li^(+)conduction pathways.Importantly,the abundant oxygen vacancies serve as catalytic centers to decompose lithium bis(trifluoromethanesulfonyl)imide(LiTFSI),thereby forming a robust organic-inorganic hybrid solid electrolyte interphase(SEI).Consequently,the prepared PEO-LiTFSI-PBCF CSE achieves an improved Li^(+)ionic conductivity of 2.76×10^(-4) S·cm^(-1)(30℃)and an elevated Li^(+)transference number(0.54).The Li||Li symmetric cell exhibits impressive lithium plating/stripping ability(>6000 h at 0.1 mA·cm^(-2))and practical viability in Li||LiFePO_(4)full cells with 90.1% capacity retention after 500 cycles at 30℃(0.3 C).This defect engineering strategy provides new insights into the construction of fast and stable Li^(+)transport channels in polymer solid-state electrolytes,paving the way for high-energy-density all-solid-state lithium metal batteries.
基金the financial support from the National Natural Science Foundation of China(52203123 and 52473248)State Key Laboratory of Polymer Materials Engineering(sklpme2024-2-04)+1 种基金the Fundamental Research Funds for the Central Universitiessponsored by the Double First-Class Construction Funds of Sichuan University。
文摘Composite polymer electrolytes(CPEs)offer a promising solution for all-solid-state lithium-metal batteries(ASSLMBs).However,conventional nanofillers with Lewis-acid-base surfaces make limited contribution to improving the overall performance of CPEs due to their difficulty in achieving robust electrochemical and mechanical interfaces simultaneously.Here,by regulating the surface charge characteristics of halloysite nanotube(HNT),we propose a concept of lithium-ion dynamic interface(Li^(+)-DI)engineering in nano-charged CPE(NCCPE).Results show that the surface charge characteristics of HNTs fundamentally change the Li^(+)-DI,and thereof the mechanical and ion-conduction behaviors of the NCCPEs.Particularly,the HNTs with positively charged surface(HNTs+)lead to a higher Li^(+)transference number(0.86)than that of HNTs-(0.73),but a lower toughness(102.13 MJ m^(-3)for HNTs+and 159.69 MJ m^(-3)for HNTs-).Meanwhile,a strong interface compatibilization effect by Li^(+)is observed for especially the HNTs+-involved Li^(+)-DI,which improves the toughness by 2000%compared with the control.Moreover,HNTs+are more effective to weaken the Li^(+)-solvation strength and facilitate the formation of Li F-rich solid-electrolyte interphase of Li metal compared to HNTs-.The resultant Li|NCCPE|LiFePO4cell delivers a capacity of 144.9 m Ah g^(-1)after 400 cycles at 0.5 C and a capacity retention of 78.6%.This study provides deep insights into understanding the roles of surface charges of nanofillers in regulating the mechanical and electrochemical interfaces in ASSLMBs.
基金funded by the American University of Sharjah.United Arab Emirates award number EN 9502-FRG19-M-E75。
文摘Variable stiffness composites present a promising solution for mitigating impact loads via varying the fiber volume fraction layer-wise,thereby adjusting the panel's stiffness.Since each layer of the composite may be affected by a different failure mode,the optimal fiber volume fraction to suppress damage initiation and evolution is different across the layers.This research examines how re-allocating the fibers layer-wise enhances the composites'impact resistance.In this study,constant stiffness panels with the same fiber volume fraction throughout the layers are compared to variable stiffness ones by varying volume fraction layer-wise.A method is established that utilizes numerical analysis coupled with optimization techniques to determine the optimal fiber volume fraction in both scenarios.Three different reinforcement fibers(Kevlar,carbon,and glass)embedded in epoxy resin were studied.Panels were manufactured and tested under various loading conditions to validate results.Kevlar reinforcement revealed the highest tensile toughness,followed by carbon and then glass fibers.Varying reinforcement volume fraction significantly influences failure modes.Higher fractions lead to matrix cracking and debonding,while lower fractions result in more fiber breakage.The optimal volume fraction for maximizing fiber breakage energy is around 45%,whereas it is about 90%for matrix cracking and debonding.A drop tower test was used to examine the composite structure's behavior under lowvelocity impact,confirming the superiority of Kevlar-reinforced composites with variable stiffness.Conversely,glass-reinforced composites with constant stiffness revealed the lowest performance with the highest deflection.Across all reinforcement materials,the variable stiffness structure consistently outperformed its constant stiffness counterpart.
基金supported by the National Key R&D Program of China (No. 2018YFA0707300)the National Natural Science Foundation of China (No. 52374376)the Introduction Plan for High end Foreign Experts, China (No. G2023105001L)。
文摘Titanium plates with a Ti−O solid solution surface-hardened layer were cold roll-bonded with 304 stainless steel plates with high work hardening rates.The evolution and mechanisms affecting the interfacial bonding strength in titanium/stainless steel laminated composites were investigated.Results indicate that the hardened layer reduces the interfacial bonding strength from over 261 MPa to less than 204 MPa.During the cold roll-bonding process,the hardened layer fractures,leading to the formation of multi-scale cracks that are difficult for the stainless steel to fill.This not only hinders the development of an interlocking interface but also leads to the presence of numerous microcracks and hardened blocks along the nearly straight interface,consequently weakening the interfacial bonding strength.In metals with high work hardening rates,the conventional approach of enhancing interface interlocking and improving interfacial bonding strength by using a surface-hardened layer becomes less effective.
基金supported by the National Key R&D Program of China(Nos.2022YFB4101500 and 2022YFE0209500)the National Natural Science Foundation of China(Nos.22276191 and 21976177)the Qinghai Province Air Pollution Assessment and Fine Management Support Project,and the University of Chinese Academy of Science.
文摘As a potential adsorption material,it is still a challenge for activated carbon fiber(ACF)in efficient adsorption of ethanol due to its nonpolar surface,which is mainly emitted from the grain drying industry.This study prepared surface polarity-modified ACF using the heteroatom doping method.The modified ACF possessed a richer array of strongly polar oxygen/nitrogen-containing functional groups(primarily phenolic hydroxyl and lactone groups),a larger specific surface are1,and a more developed micropore structure.The adsorption capacities of ethanol for O-ACF and N-ACF were 4.110 mmol/g and 1.698 mmol/g,respectively,which were 11.3 times and 4.7 times those of unmodified ACF.This was a significant improvement over our previous work(0.363 mmol/g).The improvement of adsorption capacity for the N-ACF was mainly due to the higher specific surface are1,greater number of micropores(more adsorption sites)and abundant existence of defects,whereas,for O-ACF,the improvement mainly relied on the abundant presence of oxygen-containing functional groups on the surface.However,water had a negative effect on the adsorption of ethanol for the modified ACF due to competitive adsorption and the disappearance of capillary condensation.It was further revealed that the adsorption process of ethanol and water was quite different.It obeyed the linear driving force(LDF)model for ethanol adsorption,however,the intraparticle diffusion(IPD)model for water adsorption.
基金supported by the Xinjiang Autonomous Region Key Research Project(No.2022D01D31)the Start-up Grant of Xinjiang University,the Basic Research Fund for Autonomous Region Universities(No.XJEDU2024P015)the Natural Science Foundation of Xinjiang Uygur Autonomous Region(No.2022D01C668).
文摘Although intermediate temperature solid oxide fuel cells(IT-SOFCs)show great potential to address energy conversion challenges,the sluggish oxygen reduction reaction(ORR)kinetics of cathode materials has severely hindered extended applications.Herein,we have demonstrated that Bi^(3+)doping on the A-site synergistically regulates the phase transition and electron spin state in La_(0.3)Bi_(0.3)Ca_(0.4)FeO_(3-δ)(LBCF3)for improved performance.An orthorhombic to cubic phase transition occurred with Bi^(3+)doping increases oxygen vacancy concentration and thus increases oxygen ion migration capacity.Simultaneously,the change of Fe from low to medium electron spin state strengths O_(2)adsorption and improves catalytic performances.Consequently,a peak power density improvement up to 48%(from 1.21 to 1.79 W·cm^(-2))at 800℃ is realized in the anodesupported single cell using LBCF3 as cathode,which remains stable for over 270 h at 750℃.
基金supported by the National Natural Science Foundation of China(Nos.61535009,11527808,61605142,and 61735007)the Tianjin Research Program of Application Foundation and Advanced Technology(No.17JCJQJC43500)
文摘We demonstrate an all polarization-maintaining(PM) fiber mode-locked laser seeded, hybrid fiber/solid-slab picosecond pulse laser system which outputs 40 μJ, 10 ps pulses at the central wavelength of 1064 nm. The beam quality factors M2 in the unstable and stable directions are 1.35 and 1.31, respectively. 15 μJ picosecond pulses at the central wavelength of 355 nm are generated through third harmonic generation(THG) by using two Li B3 O5(LBO) crystals, in order to get better processing efficiency on polycrystalline diamonds. The high pulse energy and beam quality of these ultraviolet(UV) picosecond pulses are confirmed by latter experiments of material processing on polycrystalline diamonds. This scheme which combines the advantages of the all PM fiber mode-locked laser and the solid-slab amplifier enables compact, robust and chirped pulse amplification-free amplification with high power picosecond pulses.
基金supported by Jiangsu Science and Technology Department(No.BG2007044)Jiangsu Preventive Medicine Foundation(No.Y2006025).
文摘A rapid and simple preconcentration step applying packed-fiber solid-phase extraction columns has been investigated to vitamin B12. The extraction performance of the new method was investigated preliminarily on vitamin functional drink. The analysis used a reversed-phase C18 column, with a photo-diode array detector at 220 nm. The samples were preconcentrated with packed-fiber solid-phase extraction columns. Good linearity was observed in vitamin functional drink. The repeatability of extraction performance, expressed as relative standard deviations, was from 3.5% to 4.3%. The limit of detection (LOD) is 5 ng mL^-1 (S/N = 3). Finally, the method had been applied for the determination of vitamin B12 in vitamin functional drink.