Specially designed fibers are widely used in engineering practice because the specially-designed shape can help to improve the bonding strength of the fiber and the interface. Studied in this paper is the interfacial ...Specially designed fibers are widely used in engineering practice because the specially-designed shape can help to improve the bonding strength of the fiber and the interface. Studied in this paper is the interfacial shear stress transfer behavior on both sides of the specially designed fiber when it is being pulled out; in which automatic analysis of three-dimensional photoelasticity is employed and the finite element method is adopted. The results show that the stress transfer occurs mainly in the region near the fiber's embedded end where the stress reaches its critical point, leading to debonding of the interface. Before debonding, as the pullout loading increases, the peak value of shear stress transfers along the fiber from the embedded end to the interior of the matrix, and then stops at the hooked part of the fiber because of its impediment. When the interface begins to debond as the load increases, the shear stress can be transferred to the hooked part.展开更多
Basalt fibers/7075 aluminum matrix composites were studied to meet the demand of aluminum alloy drill pipes for material wear resistance.The composites with different basalt fiber additions were prepared by hot presse...Basalt fibers/7075 aluminum matrix composites were studied to meet the demand of aluminum alloy drill pipes for material wear resistance.The composites with different basalt fiber additions were prepared by hot pressed sintering and hot extrusion.The mechanical properties as well as friction and wear properties of the composites were studied by microstructure analysis,tensile experiments,friction and wear experiments.The results showed that basalt fibers were oriented and uniformly distributed and led to local grain refinement in the alloy matrix.The hardness and elongation of the composites were improved.The friction coefficient of the composites increased and then decreased,and the maximum wear depth and wear amount decreased,then increased,then decreased again with the growth of basalt fiber addition.Meanwhile,the inclusion of basalt fibers mitigated the uneven wear of the extruded 7075 aluminum alloy.The value of wear depth difference of 7075-0.2BF was the smallest,and that of 7075-2.0BF was close to it.The maximum wear depth and wear volume the 7075-0.2BF and 7075-2.0BF were also the smallest.The inhibition of uneven wear by basalt fibers enhanced of wear resistance for 7075 aluminum alloy,which has reference significance for improving the performance of aluminum alloy drill pipes.展开更多
Fiber reinforced ceramic matrix composites(FRCMCs)are the preferred materials for safety critical components in the fields of aerospace,nuclear engineering,and transportation,with broad market and application prospect...Fiber reinforced ceramic matrix composites(FRCMCs)are the preferred materials for safety critical components in the fields of aerospace,nuclear engineering,and transportation,with broad market and application prospects.However,due to the characteristics of multiphase,heterogeneity,and anisotropy,key issues such as poor adhesion,high porosity,and crack propagation urgently need to be addressed in the fabrication and machining of FRCMCs.With the increasing demand for FRCMCs parts,high-quality and reliable design and fabrication,performance evaluation,and precision manufacturing have become a series of hot issues.There is a lack of systematic review in capturing the current research status and development direction of FRCMCs fabrication and machining.This research aims to comprehensively review and critically evaluate the existing understanding of the fabrication and machining of FRCMCs.This study can provide scientists with a deeper understanding of the shape control mechanism of FRCMCs fabrication and machining,the theoretical basis of material synchronous removal,machining performance,and development direction.Firstly,the basic characteristics and application background of FRCMCs are introduced.Secondly,by comparing and analyzing the typical fabrication process of FRCMCs,the advantages,disadvantages,and performance evaluation of different processes are comprehensively evaluated.Thirdly,the material removal mechanisms and machining performance evaluation standards of traditional mechanical machining technologies(drilling,milling,grinding)and non-traditional mechanical machining technologies(ultrasonic,laser,water jet,discharge,wire saw,and multi-field hybrid machining)are discussed and analyzed.Finally,the challenges,development trends,and prospects faced by FRCMCs in the fields of fabrication,machining,and application are analyzed.This study not only elucidates the basic processes and key difficulties in the fabrication of FRCMCs,but also provides valuable insights for low-damage machining.展开更多
In this paper,we consider the maximal positive definite solution of the nonlinear matrix equation.By using the idea of Algorithm 2.1 in ZHANG(2013),a new inversion-free method with a stepsize parameter is proposed to ...In this paper,we consider the maximal positive definite solution of the nonlinear matrix equation.By using the idea of Algorithm 2.1 in ZHANG(2013),a new inversion-free method with a stepsize parameter is proposed to obtain the maximal positive definite solution of nonlinear matrix equation X+A^(*)X|^(-α)A=Q with the case 0<α≤1.Based on this method,a new iterative algorithm is developed,and its convergence proof is given.Finally,two numerical examples are provided to show the effectiveness of the proposed method.展开更多
The remodeling of axonal connections following injury is an important feature driving functional recovery.The reticulospinal tract is an interesting descending motor tract that contains both excitatory and inhibitory ...The remodeling of axonal connections following injury is an important feature driving functional recovery.The reticulospinal tract is an interesting descending motor tract that contains both excitatory and inhibitory fibers.While the reticulospinal tract has been shown to be particularly prone to axonal growth and plasticity following injuries of the spinal cord,the differential capacities of excitatory and inhibitory fibers for plasticity remain unclear.As adaptive axonal plasticity involves a sophisticated interplay between excitatory and inhibitory input,we investigated in this study the plastic potential of glutamatergic(vGlut2)and GABAergic(vGat)fibers originating from the gigantocellular nucleus and the lateral paragigantocellular nucleus,two nuclei important for locomotor function.Using a combination of viral tracing,chemogenetic silencing,and AI-based kinematic analysis,we investigated plasticity and its impact on functional recovery within the first 3 weeks following injury,a period prone to neuronal remodeling.We demonstrate that,in this time frame,while vGlut2-positive fibers within the gigantocellular and lateral paragigantocellular nuclei rewire significantly following cervical spinal cord injury,vGat-positive fibers are rather unresponsive to injury.We also show that the acute silencing of excitatory axonal fibers which rewire in response to lesions of the spinal cord triggers a worsening of the functional recovery.Using kinematic analysis,we also pinpoint the locomotion features associated with the gigantocellular nucleus or lateral paragigantocellular nucleus during functional recovery.Overall,our study increases the understanding of the role of the gigantocellular and lateral paragigantocellular nuclei during functional recovery following spinal cord injury.展开更多
We read with the great interest the study by Ababneh et al in which inducedmesenchymal stem cell-derived exosomes were shown to exhibit a stronger andmore sustained anti-proliferative effect by inducing a senescence-l...We read with the great interest the study by Ababneh et al in which inducedmesenchymal stem cell-derived exosomes were shown to exhibit a stronger andmore sustained anti-proliferative effect by inducing a senescence-like state withoutapoptosis.The results obtained by the authors highlight the features of theeffects of senescent drift induction in surrounding tissues.In the light of thesefindings,the role of the properties of extracellular matrix and cellular glycocalyxin responses of human tumors to therapy remain uninvestigated.These extracellularbarriers appear to be significant obstacles to effective cancer therapy,especiallyin relation to the use of unique properties of tumor microenvironment forthe immunotherapy-resistant cancer treatment.展开更多
Flexible fiber sensors,However,traditional methods face challenges in fabricating low-cost,large-scale fiber sensors.In recent years,the thermal drawing process has rapidly advanced,offering a novel approach to flexib...Flexible fiber sensors,However,traditional methods face challenges in fabricating low-cost,large-scale fiber sensors.In recent years,the thermal drawing process has rapidly advanced,offering a novel approach to flexible fiber sensors.Through the preform-tofiber manufacturing technique,a variety of fiber sensors with complex functionalities spanning from the nanoscale to kilometer scale can be automated in a short time.Examples include temperature,acoustic,mechanical,chemical,biological,optoelectronic,and multifunctional sensors,which operate on diverse sensing principles such as resistance,capacitance,piezoelectricity,triboelectricity,photoelectricity,and thermoelectricity.This review outlines the principles of the thermal drawing process and provides a detailed overview of the latest advancements in various thermally drawn fiber sensors.Finally,the future developments of thermally drawn fiber sensors are discussed.展开更多
Peripheral nerve injury causes severe neuroinflammation and has become a global medical challenge.Previous research has demonstrated that porcine decellularized nerve matrix hydrogel exhibits excellent biological prop...Peripheral nerve injury causes severe neuroinflammation and has become a global medical challenge.Previous research has demonstrated that porcine decellularized nerve matrix hydrogel exhibits excellent biological properties and tissue specificity,highlighting its potential as a biomedical material for the repair of severe peripheral nerve injury;however,its role in modulating neuroinflammation post-peripheral nerve injury remains unknown.Here,we aimed to characterize the anti-inflammatory properties of porcine decellularized nerve matrix hydrogel and their underlying molecular mechanisms.Using peripheral nerve injury model rats treated with porcine decellularized nerve matrix hydrogel,we evaluated structural and functional recovery,macrophage phenotype alteration,specific cytokine expression,and changes in related signaling molecules in vivo.Similar parameters were evaluated in vitro using monocyte/macrophage cell lines stimulated with lipopolysaccharide and cultured on porcine decellularized nerve matrix hydrogel-coated plates in complete medium.These comprehensive analyses revealed that porcine decellularized nerve matrix hydrogel attenuated the activation of excessive inflammation at the early stage of peripheral nerve injury and increased the proportion of the M2 subtype in monocytes/macrophages.Additionally,porcine decellularized nerve matrix hydrogel negatively regulated the Toll-like receptor 4/myeloid differentiation factor 88/nuclear factor-κB axis both in vivo and in vitro.Our findings suggest that the efficacious anti-inflammatory properties of porcine decellularized nerve matrix hydrogel induce M2 macrophage polarization via suppression of the Toll-like receptor 4/myeloid differentiation factor 88/nuclear factor-κB pathway,providing new insights into the therapeutic mechanism of porcine decellularized nerve matrix hydrogel in peripheral nerve injury.展开更多
C/Mo duplex coating interfacially modified SiC fiber-reinforced γ-TiAl matrix composite (SiCf/C/Mo/γ-TiA1) was prepared by foil-fiber-foil method to investigate its interfacial modification effect. SiCf/C/TiAl com...C/Mo duplex coating interfacially modified SiC fiber-reinforced γ-TiAl matrix composite (SiCf/C/Mo/γ-TiA1) was prepared by foil-fiber-foil method to investigate its interfacial modification effect. SiCf/C/TiAl composites were also prepared under the same processing condition for comparision. Both kinds of the composites were thermally exposed in vacuum at 800 and 900℃ for different durations in order to study thermal stability of the interfacial zone. With the aids of scanning electron microscope (SEM) and energy dispersive spectrometer (EDS), the interracial microstructures of the composites were investigated. The results reveal that, although adding the Mo coating, the interfacial reaction product of the SiCf/C/Mo/TiAl composite is the same with that of the SiCf/C/TiA1 composite, which is TiC/Ti2AlC between the coating and the matrix. However, C/Mo duplex coating is more efficient in hindering interfacial reaction than C single coating at 900 ℃ and below. In addition, a new layer of interfacial reaction product was found between Ti2AlC and the matrix after 900 ℃, 200 h thermal exposure, which is rich in V and close to the chemical composition of B2 phase.展开更多
A multiscale method for simulating the dynamic response of ceramic matrix composite (CMC) with matrix cracks is developed. At the global level, the finite element method is employed to simulate the dynamic response ...A multiscale method for simulating the dynamic response of ceramic matrix composite (CMC) with matrix cracks is developed. At the global level, the finite element method is employed to simulate the dynamic response of a CMC beam. While at the local level, the multiscale mechanical method is used to estimate the stress/strain response of the material. A distributed computing system is developed to speed up the simulation. The simulation of dynamic response of a Nicalon/CAS-II beam being subjected to harmonic loading is performed as a numerical example. The results show that both the stress/strain responses under tension and compressive loading are nonlinear. These conditions result in a different response compared with that of elastic beam, such as: 1) the displacement response is not symmetric about the axis of time; 2) in the condition of small external load, the response at first order natural frequency is limited within a finite range; 3) decreasing the matrix crack space will increase the displace- ment response of the beam.展开更多
The two-parameter Weibull model is used to describe the fiber strength distribution.The stress carried by the intact and fracture fibers on the matrix crack plane during unloading/reloading is determined based on the ...The two-parameter Weibull model is used to describe the fiber strength distribution.The stress carried by the intact and fracture fibers on the matrix crack plane during unloading/reloading is determined based on the global load sharing criterion.The axial stress distribution of intact fibers upon unloading and reloading is determined based on the mechanisms of fiber sliding relative to matrix in the interface debonded region.The interface debonded length,unloading interface counter slip length,and reloading interface new slip length are obtained by the fracture mechanics approach.The hysteresis loops corresponding to different stresses considering fiber failure are compared with the cases without considering fiber failure.The effects of fiber characteristic strength and fiber Weibull modulus on the fiber failure,the shape,and the area of the hysteresis loops are analyzed.The predicted quasi-static unloading/reloading hysteresis loops agree well with experimental data.展开更多
By the constant stress tensile creep test method, creep tests were performed on aluminum silicate short fiber-reinforced AZ91D magnesium matrix composite with volume fraction of 30% and its matrix alloy AZ91D under di...By the constant stress tensile creep test method, creep tests were performed on aluminum silicate short fiber-reinforced AZ91D magnesium matrix composite with volume fraction of 30% and its matrix alloy AZ91D under different temperatures and stresses. The results indicate that the composite and the matrix have the same true stress exponent and true activation energy for creep, which are 3 and 144.63 kJ/mol, respectively. The creep of the composite is controlled by the creep of its matrix, which is mainly the controlling of viscous slip of dislocation, and the controlling of grain boundary slippage as a supplement. The creep constitutive model obtained from the experiment data can well describe the creep deformation pattern of the composite.展开更多
A cohesive zone model is employed to simulate the fiber/matrix interface damage of composites with ductile matrix. The study is carried out to investigate the dependence of the interface damage and the composite tensi...A cohesive zone model is employed to simulate the fiber/matrix interface damage of composites with ductile matrix. The study is carried out to investigate the dependence of the interface damage and the composite tensile strength on the micro parameters of the composite. These parameters contain fiber packing pattern, fiber volume fraction, and the modulus ratio of the fiber to the matrix. The investigation reveals that though the high fiber vo lume fraction, the high fiber′s modulus and the square fiber packing can supply strong reinforcement to the composite, the interface damage is susceptible in these cases. The tensile strength of the composite is dominated by the interface strength when the interface debonding occurs.展开更多
In order to improve the strength of short carbon fibers reinforced aluminum matrix(Csf/Al)composite,the dispersion of short carbon fibers with multi-orientation was controlled with a square crucible by mechanical stir...In order to improve the strength of short carbon fibers reinforced aluminum matrix(Csf/Al)composite,the dispersion of short carbon fibers with multi-orientation was controlled with a square crucible by mechanical stirring.The three-dimensional flow field models of liquid aluminum melt in the square/round crucibles were established and calculated,and the results were compared.The calculated results show that turbulent flow could be induced both in the square and round crucible,while the non-axisymmetric structure of the square crucible results in higher turbulent kinetic energy in the melt.Therefore,the uniformity and multi-orientation dispersion of the short fibers can be improved by the intensive turbulent flow in the square crucible,which will be increased by increasing the rotational velocity.The distribution of the short carbon fibers in the aluminum matrix prepared under different rotation velocities in square crucible was experimentally investigated.With the increase of stirring velocity,the multi-orientation dispersion of the short fibers in the composites increased gradually.The experimental results are consistent with the calculation results.The tensile testing results show that the strength of the Csf/Al composite can reach 172 MPa when the rotational velocity is 1000 rpm,and it is 48.3%higher than that prepared by the round crucible under the same conditions,which results from the improved multi-orientation dispersion of short carbon fibers in aluminum matrix.展开更多
The main problems with the liquid-phase technology of carbon fiber/aluminum matrix composites include poor wetting of the fiber with liquid aluminum and formation of aluminum carbide on the fibers’surface.This paper ...The main problems with the liquid-phase technology of carbon fiber/aluminum matrix composites include poor wetting of the fiber with liquid aluminum and formation of aluminum carbide on the fibers’surface.This paper aims to solve these problems.The theoretical and experimental dependence of porosity on the applied pressure were determined.The possibility of obtaining a carbon fiber/aluminum matrix composite wire with a strength value of about 1500 MPa was shown.The correlation among the strength of the carbon fiber reinforced aluminum matrix composite,the fracture surface,and the degradation of the carbon fiber surface was discussed.展开更多
The consolidation process of SiC<sub>f</sub>/Ti-6Al-4V composites by matrix-coated fiber (MCF) method via hot pressing was investigated using finite element modeling (FEM). By analyzing the elastic–plasti...The consolidation process of SiC<sub>f</sub>/Ti-6Al-4V composites by matrix-coated fiber (MCF) method via hot pressing was investigated using finite element modeling (FEM). By analyzing the elastic–plastic contact deformation of the representative aligned coated fibers, the consolidation maps delineating the time–temperature–pressure relationship for full densification were constructed. Both the flow coefficient and the contact area coefficient used to describe the contact deformation were calculated according to the model. In addition, the effect of fiber content on matrix stress distribution was analyzed. The results show that fiber content is a significant factor that influences the densification process. Higher fiber content will lower the consolidation rate.展开更多
In order to improve the wettability and bonding performance of the interface between carbon fiber and aluminum matrix,nickel-and copper-coated carbon fiber-reinforced aluminum matrix composites were fabricated by the ...In order to improve the wettability and bonding performance of the interface between carbon fiber and aluminum matrix,nickel-and copper-coated carbon fiber-reinforced aluminum matrix composites were fabricated by the squeeze melt infiltration technique.The interface wettability,microstructure and mechanical properties of the composites were compared and investigated.Compared with the uncoated fiber-reinforced aluminum matrix composite,the microstructure analysis indicated that the coatings significantly improved the wettability and effectively inhibited the interface reaction between carbon fiber and aluminum matrix during the process.Under the same processing condition,aluminum melt was easy to infiltrate into the copper-coated fiber bundles.Furthermore,the inhibited interface reaction was more conducive to maintain the original strength of fiber and improve the fiber−matrix interface bonding performance.The mechanical properties were evaluated by uniaxial tensile test.The yield strength,ultimate tensile strength and elastic modulus of the copper-coated carbon fiber-reinforced aluminum matrix composite were about 124 MPa,140 MPa and 82 GPa,respectively.In the case of nickel-coated carbon fiber-reinforced aluminum matrix composite,the yield strength,ultimate tensile strength and elastic modulus were about 60 MPa,70 MPa and 79 GPa,respectively.The excellent mechanical properties for copper-coated fiber-reinforced composites are attributed to better compactness of the matrix and better fiber−matrix interface bonding,which favor the load transfer ability from aluminam matrix to carbon fiber under the loading state,giving full play to the bearing role of carbon fiber.展开更多
A novel metal matrix composite freeform fabrication approach,fiber traction printing(FTP),is demonstrated through controlling the wetting behavior between fibers and the matrix.This process utilizes the fiber bundle t...A novel metal matrix composite freeform fabrication approach,fiber traction printing(FTP),is demonstrated through controlling the wetting behavior between fibers and the matrix.This process utilizes the fiber bundle to control the cross-sectional shape of the liquid metal,shaping it from circular to rectangular which is more precise.The FTP process could resolve manufacturing difficulties in the complex structure of continuous fiber reinforced metal matrix composites.The printing of the first layer monofilament is discussed in detail,and the effects of the fibrous coating thickness on the mechanical properties and microstructures of the composite are also investigated in this paper.The composite material prepared by the FTP process has a tensile strength of 235.2 MPa,which is close to that of composites fabricated by conventional processes.The complex structures are printed to demonstrate the advantages and innovations of this approach.Moreover,the FTP method is suited to other material systems with good wettability,such as modified carbon fiber,surfactants,and aluminum alloys.展开更多
基金supported by the National Natural Science Foundation of China(10662005)
文摘Specially designed fibers are widely used in engineering practice because the specially-designed shape can help to improve the bonding strength of the fiber and the interface. Studied in this paper is the interfacial shear stress transfer behavior on both sides of the specially designed fiber when it is being pulled out; in which automatic analysis of three-dimensional photoelasticity is employed and the finite element method is adopted. The results show that the stress transfer occurs mainly in the region near the fiber's embedded end where the stress reaches its critical point, leading to debonding of the interface. Before debonding, as the pullout loading increases, the peak value of shear stress transfers along the fiber from the embedded end to the interior of the matrix, and then stops at the hooked part of the fiber because of its impediment. When the interface begins to debond as the load increases, the shear stress can be transferred to the hooked part.
基金Project(2021YFC2900200)supported by the National Key Research and Development Project of ChinaProject(20230203114SF)supported by the Key Research and Development Project of Jilin Province,China。
文摘Basalt fibers/7075 aluminum matrix composites were studied to meet the demand of aluminum alloy drill pipes for material wear resistance.The composites with different basalt fiber additions were prepared by hot pressed sintering and hot extrusion.The mechanical properties as well as friction and wear properties of the composites were studied by microstructure analysis,tensile experiments,friction and wear experiments.The results showed that basalt fibers were oriented and uniformly distributed and led to local grain refinement in the alloy matrix.The hardness and elongation of the composites were improved.The friction coefficient of the composites increased and then decreased,and the maximum wear depth and wear amount decreased,then increased,then decreased again with the growth of basalt fiber addition.Meanwhile,the inclusion of basalt fibers mitigated the uneven wear of the extruded 7075 aluminum alloy.The value of wear depth difference of 7075-0.2BF was the smallest,and that of 7075-2.0BF was close to it.The maximum wear depth and wear volume the 7075-0.2BF and 7075-2.0BF were also the smallest.The inhibition of uneven wear by basalt fibers enhanced of wear resistance for 7075 aluminum alloy,which has reference significance for improving the performance of aluminum alloy drill pipes.
基金supported by Key Laboratory of Higheffciency and Clean Mechanical Manufacture at Shandong University,Ministry of Education,the National Natural Science Foundation of China(Nos.52305484,52305475,and U23A20632)the China Postdoctoral Science Foundation(No.2024M761876)+7 种基金the Youth Innovation Team Program of Universities in Shandong Province(No.2024KJH166)the National Key Research and Development Program of China(No.2023YFC2413301)the Taishan Scholars Program(No.tsqn202408242)the Shandong Provincial Natural Science Foundation(Nos.ZR2022QE053 and ZR2022QE159)the Guangdong Basic and Applied Basic Research Foundation(No.2022A1515111124)the Major Scientific and Technological Innovation Project of Shandong Province(No.2023CXGC010207)the Major Basic Research of Shandong Provincial Natural Science Foundation(No.ZR2023ZD34)the talent research project for the pilot project of integrating science,education,and industries of Qilu University of Technology(Shandong Academy of Sciences)(No.2024RCKY009)。
文摘Fiber reinforced ceramic matrix composites(FRCMCs)are the preferred materials for safety critical components in the fields of aerospace,nuclear engineering,and transportation,with broad market and application prospects.However,due to the characteristics of multiphase,heterogeneity,and anisotropy,key issues such as poor adhesion,high porosity,and crack propagation urgently need to be addressed in the fabrication and machining of FRCMCs.With the increasing demand for FRCMCs parts,high-quality and reliable design and fabrication,performance evaluation,and precision manufacturing have become a series of hot issues.There is a lack of systematic review in capturing the current research status and development direction of FRCMCs fabrication and machining.This research aims to comprehensively review and critically evaluate the existing understanding of the fabrication and machining of FRCMCs.This study can provide scientists with a deeper understanding of the shape control mechanism of FRCMCs fabrication and machining,the theoretical basis of material synchronous removal,machining performance,and development direction.Firstly,the basic characteristics and application background of FRCMCs are introduced.Secondly,by comparing and analyzing the typical fabrication process of FRCMCs,the advantages,disadvantages,and performance evaluation of different processes are comprehensively evaluated.Thirdly,the material removal mechanisms and machining performance evaluation standards of traditional mechanical machining technologies(drilling,milling,grinding)and non-traditional mechanical machining technologies(ultrasonic,laser,water jet,discharge,wire saw,and multi-field hybrid machining)are discussed and analyzed.Finally,the challenges,development trends,and prospects faced by FRCMCs in the fields of fabrication,machining,and application are analyzed.This study not only elucidates the basic processes and key difficulties in the fabrication of FRCMCs,but also provides valuable insights for low-damage machining.
基金Supported in part by Natural Science Foundation of Guangxi(2023GXNSFAA026246)in part by the Central Government's Guide to Local Science and Technology Development Fund(GuikeZY23055044)in part by the National Natural Science Foundation of China(62363003)。
文摘In this paper,we consider the maximal positive definite solution of the nonlinear matrix equation.By using the idea of Algorithm 2.1 in ZHANG(2013),a new inversion-free method with a stepsize parameter is proposed to obtain the maximal positive definite solution of nonlinear matrix equation X+A^(*)X|^(-α)A=Q with the case 0<α≤1.Based on this method,a new iterative algorithm is developed,and its convergence proof is given.Finally,two numerical examples are provided to show the effectiveness of the proposed method.
基金supported by the Deutsche Forschungsgemeinschaft(DFG),TRR274(Project ID 408885537,Sy Nergy,EXC 2145/ID 390857198,to FMB)。
文摘The remodeling of axonal connections following injury is an important feature driving functional recovery.The reticulospinal tract is an interesting descending motor tract that contains both excitatory and inhibitory fibers.While the reticulospinal tract has been shown to be particularly prone to axonal growth and plasticity following injuries of the spinal cord,the differential capacities of excitatory and inhibitory fibers for plasticity remain unclear.As adaptive axonal plasticity involves a sophisticated interplay between excitatory and inhibitory input,we investigated in this study the plastic potential of glutamatergic(vGlut2)and GABAergic(vGat)fibers originating from the gigantocellular nucleus and the lateral paragigantocellular nucleus,two nuclei important for locomotor function.Using a combination of viral tracing,chemogenetic silencing,and AI-based kinematic analysis,we investigated plasticity and its impact on functional recovery within the first 3 weeks following injury,a period prone to neuronal remodeling.We demonstrate that,in this time frame,while vGlut2-positive fibers within the gigantocellular and lateral paragigantocellular nuclei rewire significantly following cervical spinal cord injury,vGat-positive fibers are rather unresponsive to injury.We also show that the acute silencing of excitatory axonal fibers which rewire in response to lesions of the spinal cord triggers a worsening of the functional recovery.Using kinematic analysis,we also pinpoint the locomotion features associated with the gigantocellular nucleus or lateral paragigantocellular nucleus during functional recovery.Overall,our study increases the understanding of the role of the gigantocellular and lateral paragigantocellular nuclei during functional recovery following spinal cord injury.
文摘We read with the great interest the study by Ababneh et al in which inducedmesenchymal stem cell-derived exosomes were shown to exhibit a stronger andmore sustained anti-proliferative effect by inducing a senescence-like state withoutapoptosis.The results obtained by the authors highlight the features of theeffects of senescent drift induction in surrounding tissues.In the light of thesefindings,the role of the properties of extracellular matrix and cellular glycocalyxin responses of human tumors to therapy remain uninvestigated.These extracellularbarriers appear to be significant obstacles to effective cancer therapy,especiallyin relation to the use of unique properties of tumor microenvironment forthe immunotherapy-resistant cancer treatment.
基金supported by the National Key Research and Development Program of China(2023YFB3809800)the National Natural Science Foundation of China(52172249,52525601)+2 种基金the Chinese Academy of Sciences Talents Program(E2290701)the Jiangsu Province Talents Program(JSSCRC2023545)the Special Fund Project of Carbon Peaking Carbon Neutrality Science and Technology Innovation of Jiangsu Province(BE2022011).
文摘Flexible fiber sensors,However,traditional methods face challenges in fabricating low-cost,large-scale fiber sensors.In recent years,the thermal drawing process has rapidly advanced,offering a novel approach to flexible fiber sensors.Through the preform-tofiber manufacturing technique,a variety of fiber sensors with complex functionalities spanning from the nanoscale to kilometer scale can be automated in a short time.Examples include temperature,acoustic,mechanical,chemical,biological,optoelectronic,and multifunctional sensors,which operate on diverse sensing principles such as resistance,capacitance,piezoelectricity,triboelectricity,photoelectricity,and thermoelectricity.This review outlines the principles of the thermal drawing process and provides a detailed overview of the latest advancements in various thermally drawn fiber sensors.Finally,the future developments of thermally drawn fiber sensors are discussed.
基金supported by the Shenzhen Hong Kong Joint Funding Project,No.SGDX20230116093645007(to LY)the Shenzhen Science and Technology Innovation Committee International Cooperation Project,No.GJHZ20200731095608025(to LY)+7 种基金Shenzhen Development and Reform Commission’s Intelligent Diagnosis,Treatment and Prevention of Adolescent Spinal Health Public Service Platform,No.S2002Q84500835(to LY)Shenzhen Medical Research Fund,No.B2303005(to LY)Team-based Medical Science Research Program,No.2024YZZ02(to LY)Zhejiang Provincial Natural Science Foundation of China,No.LWQ20H170001(to RL)Basic Research Project of Shenzhen Science and Technology from Shenzhen Science and Technology Innovation Commission,No.JCYJ20210324103010029(to BY)Shenzhen Second People’s Hospital Clinical Research Fund of Guangdong Province High-level Hospital Construction Project,Nos.2023yjlcyj029(to BY),2023yjlcyj021(to LL)Guangdong Basic and Applied Basic Research Foundation,No.2022A1515110679(to LL)China Postdoctoral Science Foundation,No.2022M722203(to GL).
文摘Peripheral nerve injury causes severe neuroinflammation and has become a global medical challenge.Previous research has demonstrated that porcine decellularized nerve matrix hydrogel exhibits excellent biological properties and tissue specificity,highlighting its potential as a biomedical material for the repair of severe peripheral nerve injury;however,its role in modulating neuroinflammation post-peripheral nerve injury remains unknown.Here,we aimed to characterize the anti-inflammatory properties of porcine decellularized nerve matrix hydrogel and their underlying molecular mechanisms.Using peripheral nerve injury model rats treated with porcine decellularized nerve matrix hydrogel,we evaluated structural and functional recovery,macrophage phenotype alteration,specific cytokine expression,and changes in related signaling molecules in vivo.Similar parameters were evaluated in vitro using monocyte/macrophage cell lines stimulated with lipopolysaccharide and cultured on porcine decellularized nerve matrix hydrogel-coated plates in complete medium.These comprehensive analyses revealed that porcine decellularized nerve matrix hydrogel attenuated the activation of excessive inflammation at the early stage of peripheral nerve injury and increased the proportion of the M2 subtype in monocytes/macrophages.Additionally,porcine decellularized nerve matrix hydrogel negatively regulated the Toll-like receptor 4/myeloid differentiation factor 88/nuclear factor-κB axis both in vivo and in vitro.Our findings suggest that the efficacious anti-inflammatory properties of porcine decellularized nerve matrix hydrogel induce M2 macrophage polarization via suppression of the Toll-like receptor 4/myeloid differentiation factor 88/nuclear factor-κB pathway,providing new insights into the therapeutic mechanism of porcine decellularized nerve matrix hydrogel in peripheral nerve injury.
基金Projects(51201134,51271147)supported by the National Natural Science Foundation of ChinaProject(2015JM5181)supported by the Natural Science Foundation of Shaanxi Province,China+1 种基金Project(115-QP-2014)supported by the Research Fund of the State Key Laboratory of Solidification Processing(NWPU),ChinaProject(3102014JCQ01023)supported by the Fundamental Research Funds for the Central Universities,China
文摘C/Mo duplex coating interfacially modified SiC fiber-reinforced γ-TiAl matrix composite (SiCf/C/Mo/γ-TiA1) was prepared by foil-fiber-foil method to investigate its interfacial modification effect. SiCf/C/TiAl composites were also prepared under the same processing condition for comparision. Both kinds of the composites were thermally exposed in vacuum at 800 and 900℃ for different durations in order to study thermal stability of the interfacial zone. With the aids of scanning electron microscope (SEM) and energy dispersive spectrometer (EDS), the interracial microstructures of the composites were investigated. The results reveal that, although adding the Mo coating, the interfacial reaction product of the SiCf/C/Mo/TiAl composite is the same with that of the SiCf/C/TiA1 composite, which is TiC/Ti2AlC between the coating and the matrix. However, C/Mo duplex coating is more efficient in hindering interfacial reaction than C single coating at 900 ℃ and below. In addition, a new layer of interfacial reaction product was found between Ti2AlC and the matrix after 900 ℃, 200 h thermal exposure, which is rich in V and close to the chemical composition of B2 phase.
基金Jiangsu Postdoctoral Science Foundation (0902013C)Innovation Foundation for Young Teachers in University of Aeronautics and Astronautics (Y1024-054)
文摘A multiscale method for simulating the dynamic response of ceramic matrix composite (CMC) with matrix cracks is developed. At the global level, the finite element method is employed to simulate the dynamic response of a CMC beam. While at the local level, the multiscale mechanical method is used to estimate the stress/strain response of the material. A distributed computing system is developed to speed up the simulation. The simulation of dynamic response of a Nicalon/CAS-II beam being subjected to harmonic loading is performed as a numerical example. The results show that both the stress/strain responses under tension and compressive loading are nonlinear. These conditions result in a different response compared with that of elastic beam, such as: 1) the displacement response is not symmetric about the axis of time; 2) in the condition of small external load, the response at first order natural frequency is limited within a finite range; 3) decreasing the matrix crack space will increase the displace- ment response of the beam.
基金Supported by the National Natural Science Foundation of China(51075204)the Graduate Innovation Foundation of Jiangsu Province(CX08B-133Z)the Doctoral Innovation Foundation of Nanjing University of Aeronautics and Astronautics(BCXJ08-05)~~
文摘The two-parameter Weibull model is used to describe the fiber strength distribution.The stress carried by the intact and fracture fibers on the matrix crack plane during unloading/reloading is determined based on the global load sharing criterion.The axial stress distribution of intact fibers upon unloading and reloading is determined based on the mechanisms of fiber sliding relative to matrix in the interface debonded region.The interface debonded length,unloading interface counter slip length,and reloading interface new slip length are obtained by the fracture mechanics approach.The hysteresis loops corresponding to different stresses considering fiber failure are compared with the cases without considering fiber failure.The effects of fiber characteristic strength and fiber Weibull modulus on the fiber failure,the shape,and the area of the hysteresis loops are analyzed.The predicted quasi-static unloading/reloading hysteresis loops agree well with experimental data.
基金Project(10151170003000002)supported by the National Science Foundation of Guangdong Province,China
文摘By the constant stress tensile creep test method, creep tests were performed on aluminum silicate short fiber-reinforced AZ91D magnesium matrix composite with volume fraction of 30% and its matrix alloy AZ91D under different temperatures and stresses. The results indicate that the composite and the matrix have the same true stress exponent and true activation energy for creep, which are 3 and 144.63 kJ/mol, respectively. The creep of the composite is controlled by the creep of its matrix, which is mainly the controlling of viscous slip of dislocation, and the controlling of grain boundary slippage as a supplement. The creep constitutive model obtained from the experiment data can well describe the creep deformation pattern of the composite.
文摘A cohesive zone model is employed to simulate the fiber/matrix interface damage of composites with ductile matrix. The study is carried out to investigate the dependence of the interface damage and the composite tensile strength on the micro parameters of the composite. These parameters contain fiber packing pattern, fiber volume fraction, and the modulus ratio of the fiber to the matrix. The investigation reveals that though the high fiber vo lume fraction, the high fiber′s modulus and the square fiber packing can supply strong reinforcement to the composite, the interface damage is susceptible in these cases. The tensile strength of the composite is dominated by the interface strength when the interface debonding occurs.
基金supported financially by the Innovation Team Project of Liaoning Province(No.LT2015020)the Special Professor Project in Liaoning Province.
文摘In order to improve the strength of short carbon fibers reinforced aluminum matrix(Csf/Al)composite,the dispersion of short carbon fibers with multi-orientation was controlled with a square crucible by mechanical stirring.The three-dimensional flow field models of liquid aluminum melt in the square/round crucibles were established and calculated,and the results were compared.The calculated results show that turbulent flow could be induced both in the square and round crucible,while the non-axisymmetric structure of the square crucible results in higher turbulent kinetic energy in the melt.Therefore,the uniformity and multi-orientation dispersion of the short fibers can be improved by the intensive turbulent flow in the square crucible,which will be increased by increasing the rotational velocity.The distribution of the short carbon fibers in the aluminum matrix prepared under different rotation velocities in square crucible was experimentally investigated.With the increase of stirring velocity,the multi-orientation dispersion of the short fibers in the composites increased gradually.The experimental results are consistent with the calculation results.The tensile testing results show that the strength of the Csf/Al composite can reach 172 MPa when the rotational velocity is 1000 rpm,and it is 48.3%higher than that prepared by the round crucible under the same conditions,which results from the improved multi-orientation dispersion of short carbon fibers in aluminum matrix.
基金financially supported by ISSP RAS-Russian Government contracts
文摘The main problems with the liquid-phase technology of carbon fiber/aluminum matrix composites include poor wetting of the fiber with liquid aluminum and formation of aluminum carbide on the fibers’surface.This paper aims to solve these problems.The theoretical and experimental dependence of porosity on the applied pressure were determined.The possibility of obtaining a carbon fiber/aluminum matrix composite wire with a strength value of about 1500 MPa was shown.The correlation among the strength of the carbon fiber reinforced aluminum matrix composite,the fracture surface,and the degradation of the carbon fiber surface was discussed.
基金financially supported by the National Natural Science Foundation of China(Nos.51071122 and51271147)
文摘The consolidation process of SiC<sub>f</sub>/Ti-6Al-4V composites by matrix-coated fiber (MCF) method via hot pressing was investigated using finite element modeling (FEM). By analyzing the elastic–plastic contact deformation of the representative aligned coated fibers, the consolidation maps delineating the time–temperature–pressure relationship for full densification were constructed. Both the flow coefficient and the contact area coefficient used to describe the contact deformation were calculated according to the model. In addition, the effect of fiber content on matrix stress distribution was analyzed. The results show that fiber content is a significant factor that influences the densification process. Higher fiber content will lower the consolidation rate.
基金The authors are grateful for the financial supports from Joint Fund of the National Natural Science Foundation of China and the China Academy of Engineering Physics(U1630129).
文摘In order to improve the wettability and bonding performance of the interface between carbon fiber and aluminum matrix,nickel-and copper-coated carbon fiber-reinforced aluminum matrix composites were fabricated by the squeeze melt infiltration technique.The interface wettability,microstructure and mechanical properties of the composites were compared and investigated.Compared with the uncoated fiber-reinforced aluminum matrix composite,the microstructure analysis indicated that the coatings significantly improved the wettability and effectively inhibited the interface reaction between carbon fiber and aluminum matrix during the process.Under the same processing condition,aluminum melt was easy to infiltrate into the copper-coated fiber bundles.Furthermore,the inhibited interface reaction was more conducive to maintain the original strength of fiber and improve the fiber−matrix interface bonding performance.The mechanical properties were evaluated by uniaxial tensile test.The yield strength,ultimate tensile strength and elastic modulus of the copper-coated carbon fiber-reinforced aluminum matrix composite were about 124 MPa,140 MPa and 82 GPa,respectively.In the case of nickel-coated carbon fiber-reinforced aluminum matrix composite,the yield strength,ultimate tensile strength and elastic modulus were about 60 MPa,70 MPa and 79 GPa,respectively.The excellent mechanical properties for copper-coated fiber-reinforced composites are attributed to better compactness of the matrix and better fiber−matrix interface bonding,which favor the load transfer ability from aluminam matrix to carbon fiber under the loading state,giving full play to the bearing role of carbon fiber.
基金Supported by National Key R&D Program of China(Grant Nos.2017YFB1103400,2016YFB1100902)National Natural Science Foundation of China(Grant No.51575430,51811530107)The Youth Innovation Team of Shaanxi Universities.
文摘A novel metal matrix composite freeform fabrication approach,fiber traction printing(FTP),is demonstrated through controlling the wetting behavior between fibers and the matrix.This process utilizes the fiber bundle to control the cross-sectional shape of the liquid metal,shaping it from circular to rectangular which is more precise.The FTP process could resolve manufacturing difficulties in the complex structure of continuous fiber reinforced metal matrix composites.The printing of the first layer monofilament is discussed in detail,and the effects of the fibrous coating thickness on the mechanical properties and microstructures of the composite are also investigated in this paper.The composite material prepared by the FTP process has a tensile strength of 235.2 MPa,which is close to that of composites fabricated by conventional processes.The complex structures are printed to demonstrate the advantages and innovations of this approach.Moreover,the FTP method is suited to other material systems with good wettability,such as modified carbon fiber,surfactants,and aluminum alloys.