A method for the optimal fiber input power determination is presented by employing the variation characteristics of signal to noise ratio(SNR) in spontaneous Brillouin-scattering-based sensing system. And a heterodyne...A method for the optimal fiber input power determination is presented by employing the variation characteristics of signal to noise ratio(SNR) in spontaneous Brillouin-scattering-based sensing system. And a heterodyne detection system is constructed for measuring the Brillouin scattering spectra with different fiber input powers. The Brillouin spectrum width and system SNR can be simultaneously measured from these spectra, and the optimal fiber input power can be obtained from such information. In the experiment, for 48.8-km-long standard single-mode fiber(SSMF), the optimal fiber input power values are all approximately 0 dBm obtained by the maximum SNR position for different local oscillator power values and average times.展开更多
Actin cytoskeleton plays an important role in cell morphogenesis in plants as demonstrated by pharmacological,biochemical,and genetic studies.The actin cytoskeleton may be involved in
A compact linearly polarized, low-noise, narrow-linewidth, single-frequency fiber laser at 1950nm is demonstrated. This compact fiber laser is based on a 21-mm-long homemade Tm3+-doped germanate glass fiber. Over 100...A compact linearly polarized, low-noise, narrow-linewidth, single-frequency fiber laser at 1950nm is demonstrated. This compact fiber laser is based on a 21-mm-long homemade Tm3+-doped germanate glass fiber. Over 100-mW stable continuous-wave single transverse and longitudinal mode lasing at 195Ohm are achieved. The measured relative intensity noise is less than -135dB/Hz at frequencies over 5 MHz. The signal-to-noise ratio of the laser is larger than 72dB, and the laser linewidth is less than 6kHz, while the obtained linear polarization extinction ratio is higher than 22 dB.展开更多
By employing three reflecting volume Bragg gratings, a near-infrared 4-channel spectral-beam-combining system is demonstrated to present 720 W combined power with a combining efficiency of 94.7%. The combined laser be...By employing three reflecting volume Bragg gratings, a near-infrared 4-channel spectral-beam-combining system is demonstrated to present 720 W combined power with a combining efficiency of 94.7%. The combined laser beam is near-diffraction-limited with a beam factor M^2-1.54. During this 4-channel beam-combining process, no special active cooling measures are used to evaluate the volume Bragg gratings as combining elements are under the higher power laser operation. Thermal expansion and period distortion are verified in a 2 k W 2-channel beam-combining process, and the heat issue in the transmission case is found to be more remarkable than that in the diffraction e-se. Transmitted and diffracted beams experience wave-front aberrations with different degrees, thus leading to distinct beam deterioration.展开更多
A mode-locked erbium doped fiber laser(EDFL) is demonstrated using the vanadium oxide(V2O5) material as a saturable absorber(SA). The V2O5 based SA is hosted into poly ethylene oxide film and attached on fiber f...A mode-locked erbium doped fiber laser(EDFL) is demonstrated using the vanadium oxide(V2O5) material as a saturable absorber(SA). The V2O5 based SA is hosted into poly ethylene oxide film and attached on fiber ferule in the laser cavity. It shows 7% modulation depth with 71 MW/cm2 saturation intensity. By incorporating the SA inside the EDFL cavity with managed intra-cavity dispersion, ultrashort soliton pulses are successfully generated with a full width at half maximum of 3.14 ps. The laser operated at central wavelength of 1559.25 nm and repetition frequency of 1 MHz.展开更多
We demonstrate a Q-switched ytterbium-doped fiber laser (YDFL) using a newly developed multi-layer black phosphorous (BP) saturable absorber (SA). The BP SA is prepared by mechanically exfoliating a BP crystal a...We demonstrate a Q-switched ytterbium-doped fiber laser (YDFL) using a newly developed multi-layer black phosphorous (BP) saturable absorber (SA). The BP SA is prepared by mechanically exfoliating a BP crystal and sticking the acquired BP flakes onto a scotch tape. A small piece of the tape is then placed between two ferrules and incorporated in a YDFL cavity to achieve a stable Q-switched operation in a 1.0 μm region. The laser has a pump threshold of 55.1 mW, a pulse repetition rate that is tunable from 8.2 to 32.9 kHz, and the narrowest pulse width of 10.8 μs. The highest pulse energy of 328 nJ is achieved at the pump power of 97.6 mW. Our results show that multi-layer BP is a promising SA for Q-switching laser operation.展开更多
A stable Q-switched erbium doped fiber laser emitting at 1558 nm is demonstrated using a cadmium selenide(CdSe) material coated onto a side-polished D-shape fiber as the saturable absorber(SA). By elevating the in...A stable Q-switched erbium doped fiber laser emitting at 1558 nm is demonstrated using a cadmium selenide(CdSe) material coated onto a side-polished D-shape fiber as the saturable absorber(SA). By elevating the input pump power from the threshold of 91 mW to the maximum available power of 136 mW, a pulse train with a maximum repetition rate of 57.44 kHz, minimum pulse width of 3.76 us, maximum average output power of7.99 mW, maximum pulse energy of 0.1391 uJ, and maximum peak power of 36.99 mW are obtained. The signalto-noise ratio of the spectrum is measured to be around 75 dB. This CdSe based SA is simple, robust, and reliable,and thus suitable for making a portable pulse laser source.展开更多
We report on a wide-band and stable mode-locked all-polarization-maintaining fiber laser configuration using a nonlinear optical loop mirror. The central wavelength of the laser is 1080.14nm and the 3dB bandwidth is 2...We report on a wide-band and stable mode-locked all-polarization-maintaining fiber laser configuration using a nonlinear optical loop mirror. The central wavelength of the laser is 1080.14nm and the 3dB bandwidth is 20.29nm. The repetition rate of the pulse is 3.28 MHz and the pulse width is 848ps. By tuning the pump power, which is centered at 980nrn, from 300mW to 380mW, we obtain a linearly changed output power from 6row to 7.12roW. The all-polarization-mMntaining fiber configuration is fundamental to the stability of the output power.展开更多
Cotton occupies a pre-eminent place among cash crops as it guides the destiny of a large section of the farming community as well as that of a flourishing textile industry.As the yarn manufacturing industry has underg...Cotton occupies a pre-eminent place among cash crops as it guides the destiny of a large section of the farming community as well as that of a flourishing textile industry.As the yarn manufacturing industry has undergone a technological revolution,more emphasis is given to quality of the raw展开更多
During discharge, appropriately changing the development paths of electron avalanches and increasing the number of initial electrons can effectively inhibit the formation of filamentary discharge. Based on the aforeme...During discharge, appropriately changing the development paths of electron avalanches and increasing the number of initial electrons can effectively inhibit the formation of filamentary discharge. Based on the aforementioned phenomenon, we propose a method of using microdischarge electrodes to produce a macroscopic discharge phenomenon. In the form of an asymmetric structure composed of a carbon fiber electrode, an electrode structure of carbon fiber spiral-contact type is designed to achieve an atmospheric pressure glow discharge in air, which is characterized by low discharge voltage, low energy consumption, good diffusion and less ozone generation.展开更多
A wavelength-swept fiber laser is proposed and successfully demonstrated based on a bidirectional used linear chirped fiber Bragg grating(LC-FBG). The wavelength-swept operation principle is based on intracavity pulse...A wavelength-swept fiber laser is proposed and successfully demonstrated based on a bidirectional used linear chirped fiber Bragg grating(LC-FBG). The wavelength-swept operation principle is based on intracavity pulse stretching and compression. The LC-FBG can introduce equivalent positive and negative dispersion simultaneously, which enables a perfect dispersion matching to obtain wide-bandwidth mode-locking. Experimental results demonstrate a wavelength-swept fiber laser that exhibits a sweep rate of about 5.4 MHz over a 2.1 nm range at a center wavelength of 1550 nm. It has the advantages of simple configuration and perfect dispersion matching in the laser cavity.展开更多
In this paper, aiming at practical dense wavelength division multiplexing (DWDM) system with ultralong fiber span, a simple co-fiber remotely pumped erbium-doped fiber amplifier (RP-EDFA) scheme is proposed to ext...In this paper, aiming at practical dense wavelength division multiplexing (DWDM) system with ultralong fiber span, a simple co-fiber remotely pumped erbium-doped fiber amplifier (RP-EDFA) scheme is proposed to extend span distance with simple configuration and low pump power. Equivalent noise figure of -6 dB is achieved under 300-mW pump power. Using the experiment results, numerical simulation of ultra-long span systems shows that for a 40 × 11.6-Gb/s transmission system, the RP-EDFA scheme can support transmission of 1760 km with a fiber span of 160 km. These results demonstrate the potential of the PR-EDFA scheme in ultra-long span transmission.展开更多
A simple laser-diode pumped acoustic-optic Q-switched fiber laser is reported by using China-made largemode-area ytterbium-doped fiber. Q-switched pulses with a beam quality factor of M^2 ≈ 2 and several hundred nano...A simple laser-diode pumped acoustic-optic Q-switched fiber laser is reported by using China-made largemode-area ytterbium-doped fiber. Q-switched pulses with a beam quality factor of M^2 ≈ 2 and several hundred nanoseconds pulse duration are achieved at the repetition rate of 1 - 50 kHz. When the repetition rate is 1 kHz, the pulse energy is 0.93 mJ with the pulse duration of 132 ns. Meanwhile, the profile of laser pulses shows some mode-locking phenomena, the mechanism of the phenomena is discussed.展开更多
The paper summarizes the recent achievements in the area of ultrafast fiber lasers mode-locked with so-called lowdimensional nanomaterials: graphene, topological insulators(Bi2Te3, Bi2Se3, Sb2Te3), and transition me...The paper summarizes the recent achievements in the area of ultrafast fiber lasers mode-locked with so-called lowdimensional nanomaterials: graphene, topological insulators(Bi2Te3, Bi2Se3, Sb2Te3), and transition metal sulfide semiconductors, like molybdenum disulfide(MoS2). The most important experimental achievements are described and compared. Additionally, new original results on ultrashort pulse generation at 1.94 μm wavelength using graphene are presented. The designed Tm-doped fiber laser utilizes multilayer graphene as a saturable absorber and generates 654 fs pulses at 1940 nm wavelength, which are currently the shortest pulses generated from a Tm-doped fiber laser with a graphene-based saturable absorber.展开更多
Black phosphorus(BP), with thickness-dependent direct energy bandgaps(0.3–2 eV), shows an enhanced nonlinear optical response at near-and mid-infrared wavelengths. In this paper, we present experimentally multilayer ...Black phosphorus(BP), with thickness-dependent direct energy bandgaps(0.3–2 eV), shows an enhanced nonlinear optical response at near-and mid-infrared wavelengths. In this paper, we present experimentally multilayer BP flakes coated on microfiber(BCM) as a saturable absorber with a modulation depth of 16% and a saturable intensity of 6.8 MW∕cm^2. After inserting BCM into an Er-doped fiber ring laser, a stable dual-wavelength Q-switched state with central wavelengths of 1542.4 nm and 1543.2 nm(with wavelength spacing as small as 0.8 nm) is obtained with the aid of two cascaded fiber Bragg gratings as a coarse wavelength selector.Moreover, single-wavelength Q-switched operation at 1542.4 nm or 1543.2 nm is also realized, which can be switched between the two wavelengths flexibly just by adjusting the intracavity birefringence. These results suggest that BP combined with the cascaded fiber gratings can provide a simple and feasible candidate for a multiwavelength fiber laser. Our fiber laser may have potential applications in terahertz generation, laser radar,and so on.展开更多
A mode-locked thulium-doped fiber laser(TDFL) based on nonlinear polarization rotation(NPR) with different net anomalous dispersion is demonstrated. When the cavity dispersion is-1.425 ps^2, the noise-like(NL) pulse w...A mode-locked thulium-doped fiber laser(TDFL) based on nonlinear polarization rotation(NPR) with different net anomalous dispersion is demonstrated. When the cavity dispersion is-1.425 ps^2, the noise-like(NL) pulse with coherence spike width of 406 fs and pulse energy of 12.342 nJ is generated at a center wavelength of 2003.2 nm with 3 dB spectral bandwidth of 23.20 nm. In the experimental period of 400 min, the 3 dB spectral bandwidth variation, the output power fluctuation, and the central wavelength shift are less than 0.06 nm, 0.04 d B, and0.4 nm, respectively, indicating that the NPR-based TDFL operating in the NL regime holds good long-term stability.展开更多
We demonstrate a multi-wavelength erbium-doped fiber laser (EDFL) using erbium gain and four-wave mixing (FWM) effect in a piece of erbium-doped fiber (EDF) with high erbium ion concentration. The EDF has a pump...We demonstrate a multi-wavelength erbium-doped fiber laser (EDFL) using erbium gain and four-wave mixing (FWM) effect in a piece of erbium-doped fiber (EDF) with high erbium ion concentration. The EDF has a pump absorption rate of 24.6 dB/m at 979 nm and is bi-directionally pumped by 980-nm laser diodes. FWM effect redistributes the energy of different oscillating lines and causes multi-wavelength operation. The laser generates more than 22 lines of optical comb with a line spacing of approximately 0.10 nm at the 1569-nm region using only 1.5-m-long EDF.展开更多
The potential of bulk-like WTe2 particles for the realization of a passive Q-switch operating at the 1 μm wavelength was investigated. The WTe2 particles were prepared using a simple mechanical exfoliation method tog...The potential of bulk-like WTe2 particles for the realization of a passive Q-switch operating at the 1 μm wavelength was investigated. The WTe2 particles were prepared using a simple mechanical exfoliation method together with Scotch tape. By attaching bulk-like WTe2 particles, which remained on the top of the sticky surface of a small segment of the Scotch tape, to the flat side of a side-polished fiber, a saturable absorber(SA) was readily implemented. A strong saturable absorption was then readily obtained through an evanescent field interaction with the WTe2 particles. The modulation depth of the prepared SA was measured as ~2.18% at 1.03 μm. By incorporating the proposed SA into an all-fiberized ytterbium-doped fiber ring cavity, stable Qswitched pulses were readily achieved.展开更多
We experimentally obtain cylindrical vector beams(CVBs) in a passively mode-locked fiber laser based on nonlinear polarization rotation. A mode-selective coupler composed of both a single-mode fiber(SMF) and a two...We experimentally obtain cylindrical vector beams(CVBs) in a passively mode-locked fiber laser based on nonlinear polarization rotation. A mode-selective coupler composed of both a single-mode fiber(SMF) and a twomode fiber(TMF) is incorporated into the cavity to act as a mode converter from LP01 mode to LP11 mode with broad spectral bandwidth. CVBs in different mode-locked states including single-pulse, multi-pulse, and bound pulse are obtained, for the first time to our best knowledge. The ultrafast CVBs with different operation states have potential applications in many fields such as laser beam machining, nanoparticle manipulation, and so on.展开更多
A Q-switched ytterbium-doped fiber laser (YDFL) is proposed and demonstrated using a newly developed multi-walled carbon nanotubes polyethylene oxide (MWCNTs-PEO) film as a passive saturable absorber (SA). The s...A Q-switched ytterbium-doped fiber laser (YDFL) is proposed and demonstrated using a newly developed multi-walled carbon nanotubes polyethylene oxide (MWCNTs-PEO) film as a passive saturable absorber (SA). The saturable absorber is prepared by mixing the MWCNTs homogeneous solution into a dilute PEO polymer solution before it is left to dry at room temperature to produce thin film. Then the film is sandwiched between two FC/PC fiber connectors and integrated into the laser cavity for Q-switching pulse generation. The laser generates a stable pulse operating at wavelength of 1060.2 nm with a threshold pump power of 53.43 mW. The YDFL generates a stable pulse train with repetition rates ranging from 7.92 to 24.27 kHz by varying 980-nm pump power from 53.42 to 65.72 mW. At 59.55-mW pump power, the lowest pulse width and the highest pulse energy are obtained at 12.18 μs and 143.5 n J, respectively.展开更多
基金supported by the National Natural Science Foundation of China(No.61377088)the Natural Science Foundation of Hebei Province of China(Nos.E2015502053 and F2014502098)
文摘A method for the optimal fiber input power determination is presented by employing the variation characteristics of signal to noise ratio(SNR) in spontaneous Brillouin-scattering-based sensing system. And a heterodyne detection system is constructed for measuring the Brillouin scattering spectra with different fiber input powers. The Brillouin spectrum width and system SNR can be simultaneously measured from these spectra, and the optimal fiber input power can be obtained from such information. In the experiment, for 48.8-km-long standard single-mode fiber(SSMF), the optimal fiber input power values are all approximately 0 dBm obtained by the maximum SNR position for different local oscillator power values and average times.
文摘Actin cytoskeleton plays an important role in cell morphogenesis in plants as demonstrated by pharmacological,biochemical,and genetic studies.The actin cytoskeleton may be involved in
基金Supported by the National High-Technology Research and Development Program of China under Grant Nos 2013AA031502 and 2014AA041902the National Natural Science Foundation of China under Grant Nos 11174085,51132004,and 51302086+3 种基金the Natural Science Foundation of Guangdong Province under Grant Nos S2011030001349 and S20120011380the China National Funds for Distinguished Young Scientists under Grant No 61325024the Science and Technology Project of Guangdong Province under Grant No 2013B090500028the ’Cross and Cooperative’ Science and Technology Innovation Team Project of Chinese Academy of Sciences under Grant No 2012-119
文摘A compact linearly polarized, low-noise, narrow-linewidth, single-frequency fiber laser at 1950nm is demonstrated. This compact fiber laser is based on a 21-mm-long homemade Tm3+-doped germanate glass fiber. Over 100-mW stable continuous-wave single transverse and longitudinal mode lasing at 195Ohm are achieved. The measured relative intensity noise is less than -135dB/Hz at frequencies over 5 MHz. The signal-to-noise ratio of the laser is larger than 72dB, and the laser linewidth is less than 6kHz, while the obtained linear polarization extinction ratio is higher than 22 dB.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11474257 and 61605183
文摘By employing three reflecting volume Bragg gratings, a near-infrared 4-channel spectral-beam-combining system is demonstrated to present 720 W combined power with a combining efficiency of 94.7%. The combined laser beam is near-diffraction-limited with a beam factor M^2-1.54. During this 4-channel beam-combining process, no special active cooling measures are used to evaluate the volume Bragg gratings as combining elements are under the higher power laser operation. Thermal expansion and period distortion are verified in a 2 k W 2-channel beam-combining process, and the heat issue in the transmission case is found to be more remarkable than that in the diffraction e-se. Transmitted and diffracted beams experience wave-front aberrations with different degrees, thus leading to distinct beam deterioration.
文摘A mode-locked erbium doped fiber laser(EDFL) is demonstrated using the vanadium oxide(V2O5) material as a saturable absorber(SA). The V2O5 based SA is hosted into poly ethylene oxide film and attached on fiber ferule in the laser cavity. It shows 7% modulation depth with 71 MW/cm2 saturation intensity. By incorporating the SA inside the EDFL cavity with managed intra-cavity dispersion, ultrashort soliton pulses are successfully generated with a full width at half maximum of 3.14 ps. The laser operated at central wavelength of 1559.25 nm and repetition frequency of 1 MHz.
基金Supported by the University of Malaya under Grant No PG100-2014B
文摘We demonstrate a Q-switched ytterbium-doped fiber laser (YDFL) using a newly developed multi-layer black phosphorous (BP) saturable absorber (SA). The BP SA is prepared by mechanically exfoliating a BP crystal and sticking the acquired BP flakes onto a scotch tape. A small piece of the tape is then placed between two ferrules and incorporated in a YDFL cavity to achieve a stable Q-switched operation in a 1.0 μm region. The laser has a pump threshold of 55.1 mW, a pulse repetition rate that is tunable from 8.2 to 32.9 kHz, and the narrowest pulse width of 10.8 μs. The highest pulse energy of 328 nJ is achieved at the pump power of 97.6 mW. Our results show that multi-layer BP is a promising SA for Q-switching laser operation.
文摘A stable Q-switched erbium doped fiber laser emitting at 1558 nm is demonstrated using a cadmium selenide(CdSe) material coated onto a side-polished D-shape fiber as the saturable absorber(SA). By elevating the input pump power from the threshold of 91 mW to the maximum available power of 136 mW, a pulse train with a maximum repetition rate of 57.44 kHz, minimum pulse width of 3.76 us, maximum average output power of7.99 mW, maximum pulse energy of 0.1391 uJ, and maximum peak power of 36.99 mW are obtained. The signalto-noise ratio of the spectrum is measured to be around 75 dB. This CdSe based SA is simple, robust, and reliable,and thus suitable for making a portable pulse laser source.
文摘We report on a wide-band and stable mode-locked all-polarization-maintaining fiber laser configuration using a nonlinear optical loop mirror. The central wavelength of the laser is 1080.14nm and the 3dB bandwidth is 20.29nm. The repetition rate of the pulse is 3.28 MHz and the pulse width is 848ps. By tuning the pump power, which is centered at 980nrn, from 300mW to 380mW, we obtain a linearly changed output power from 6row to 7.12roW. The all-polarization-mMntaining fiber configuration is fundamental to the stability of the output power.
文摘Cotton occupies a pre-eminent place among cash crops as it guides the destiny of a large section of the farming community as well as that of a flourishing textile industry.As the yarn manufacturing industry has undergone a technological revolution,more emphasis is given to quality of the raw
基金Supported by the National Natural Science Foundation of China under Grant No 51577011
文摘During discharge, appropriately changing the development paths of electron avalanches and increasing the number of initial electrons can effectively inhibit the formation of filamentary discharge. Based on the aforementioned phenomenon, we propose a method of using microdischarge electrodes to produce a macroscopic discharge phenomenon. In the form of an asymmetric structure composed of a carbon fiber electrode, an electrode structure of carbon fiber spiral-contact type is designed to achieve an atmospheric pressure glow discharge in air, which is characterized by low discharge voltage, low energy consumption, good diffusion and less ozone generation.
基金National Natural Science Foundation of China(NSFC)(61475065)Natural Science Foundation of Guangdong Province(2015A030313322)
文摘A wavelength-swept fiber laser is proposed and successfully demonstrated based on a bidirectional used linear chirped fiber Bragg grating(LC-FBG). The wavelength-swept operation principle is based on intracavity pulse stretching and compression. The LC-FBG can introduce equivalent positive and negative dispersion simultaneously, which enables a perfect dispersion matching to obtain wide-bandwidth mode-locking. Experimental results demonstrate a wavelength-swept fiber laser that exhibits a sweep rate of about 5.4 MHz over a 2.1 nm range at a center wavelength of 1550 nm. It has the advantages of simple configuration and perfect dispersion matching in the laser cavity.
文摘In this paper, aiming at practical dense wavelength division multiplexing (DWDM) system with ultralong fiber span, a simple co-fiber remotely pumped erbium-doped fiber amplifier (RP-EDFA) scheme is proposed to extend span distance with simple configuration and low pump power. Equivalent noise figure of -6 dB is achieved under 300-mW pump power. Using the experiment results, numerical simulation of ultra-long span systems shows that for a 40 × 11.6-Gb/s transmission system, the RP-EDFA scheme can support transmission of 1760 km with a fiber span of 160 km. These results demonstrate the potential of the PR-EDFA scheme in ultra-long span transmission.
基金the National Key Basic Research Project of China.
文摘A simple laser-diode pumped acoustic-optic Q-switched fiber laser is reported by using China-made largemode-area ytterbium-doped fiber. Q-switched pulses with a beam quality factor of M^2 ≈ 2 and several hundred nanoseconds pulse duration are achieved at the repetition rate of 1 - 50 kHz. When the repetition rate is 1 kHz, the pulse energy is 0.93 mJ with the pulse duration of 132 ns. Meanwhile, the profile of laser pulses shows some mode-locking phenomena, the mechanism of the phenomena is discussed.
基金supported by the National Science Centre (NCN, Poland) under the research project entitled “Passive mode-locking in dispersion-managed ultrafast thulium-doped fiber lasers” (decision no. DEC-2013/11/D/ST7/03138)
文摘The paper summarizes the recent achievements in the area of ultrafast fiber lasers mode-locked with so-called lowdimensional nanomaterials: graphene, topological insulators(Bi2Te3, Bi2Se3, Sb2Te3), and transition metal sulfide semiconductors, like molybdenum disulfide(MoS2). The most important experimental achievements are described and compared. Additionally, new original results on ultrashort pulse generation at 1.94 μm wavelength using graphene are presented. The designed Tm-doped fiber laser utilizes multilayer graphene as a saturable absorber and generates 654 fs pulses at 1940 nm wavelength, which are currently the shortest pulses generated from a Tm-doped fiber laser with a graphene-based saturable absorber.
基金National Natural Science Foundation of China(NSFC)(61490710,61505122,61775142)Science and Technology Planning Project of Guangdong Province(2016B050501005)+1 种基金Specialized Research Fund for the Shenzhen Strategic Emerging Industries Development(JCYJ20170412105812811)Natural Science Foundation of SZU(2017018)
文摘Black phosphorus(BP), with thickness-dependent direct energy bandgaps(0.3–2 eV), shows an enhanced nonlinear optical response at near-and mid-infrared wavelengths. In this paper, we present experimentally multilayer BP flakes coated on microfiber(BCM) as a saturable absorber with a modulation depth of 16% and a saturable intensity of 6.8 MW∕cm^2. After inserting BCM into an Er-doped fiber ring laser, a stable dual-wavelength Q-switched state with central wavelengths of 1542.4 nm and 1543.2 nm(with wavelength spacing as small as 0.8 nm) is obtained with the aid of two cascaded fiber Bragg gratings as a coarse wavelength selector.Moreover, single-wavelength Q-switched operation at 1542.4 nm or 1543.2 nm is also realized, which can be switched between the two wavelengths flexibly just by adjusting the intracavity birefringence. These results suggest that BP combined with the cascaded fiber gratings can provide a simple and feasible candidate for a multiwavelength fiber laser. Our fiber laser may have potential applications in terahertz generation, laser radar,and so on.
基金Fundamental Research Funds for the Central Universities(2016YJS034)
文摘A mode-locked thulium-doped fiber laser(TDFL) based on nonlinear polarization rotation(NPR) with different net anomalous dispersion is demonstrated. When the cavity dispersion is-1.425 ps^2, the noise-like(NL) pulse with coherence spike width of 406 fs and pulse energy of 12.342 nJ is generated at a center wavelength of 2003.2 nm with 3 dB spectral bandwidth of 23.20 nm. In the experimental period of 400 min, the 3 dB spectral bandwidth variation, the output power fluctuation, and the central wavelength shift are less than 0.06 nm, 0.04 d B, and0.4 nm, respectively, indicating that the NPR-based TDFL operating in the NL regime holds good long-term stability.
文摘We demonstrate a multi-wavelength erbium-doped fiber laser (EDFL) using erbium gain and four-wave mixing (FWM) effect in a piece of erbium-doped fiber (EDF) with high erbium ion concentration. The EDF has a pump absorption rate of 24.6 dB/m at 979 nm and is bi-directionally pumped by 980-nm laser diodes. FWM effect redistributes the energy of different oscillating lines and causes multi-wavelength operation. The laser generates more than 22 lines of optical comb with a line spacing of approximately 0.10 nm at the 1569-nm region using only 1.5-m-long EDF.
基金supported by the National Research Foundation of Korea funded by the Korean Government(MSIT),South Korea(Grant Nos.NRF-2015R1A2A2A11000907 and NRF-2015R1A2A2A04006979)Ministry of Science and ICT(MSIT),Korea,under the Information Technology Research Center(ITRC)support program(IITP-2017-2015-0-00385),supervised by the Institute for Information and Communications Technology Promotion(IITP)
文摘The potential of bulk-like WTe2 particles for the realization of a passive Q-switch operating at the 1 μm wavelength was investigated. The WTe2 particles were prepared using a simple mechanical exfoliation method together with Scotch tape. By attaching bulk-like WTe2 particles, which remained on the top of the sticky surface of a small segment of the Scotch tape, to the flat side of a side-polished fiber, a saturable absorber(SA) was readily implemented. A strong saturable absorption was then readily obtained through an evanescent field interaction with the WTe2 particles. The modulation depth of the prepared SA was measured as ~2.18% at 1.03 μm. By incorporating the proposed SA into an all-fiberized ytterbium-doped fiber ring cavity, stable Qswitched pulses were readily achieved.
基金supported by the National Science Foundation of Jiangsu Province(Nos.BK20161521 and BK20150858)the Nanjing University of Posts and Telecommunications(NUPTSF)(Nos.NY214059,NY214002,and NY215002)+2 种基金the Distinguished Professor Project of Jiangsu(No.RK002STP14001)the Six Talent Peaks Project in Jiangsu Province(No.2015-XCL-023)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(Nos.SJCX17_0234 and KYCX17_0744)
文摘We experimentally obtain cylindrical vector beams(CVBs) in a passively mode-locked fiber laser based on nonlinear polarization rotation. A mode-selective coupler composed of both a single-mode fiber(SMF) and a twomode fiber(TMF) is incorporated into the cavity to act as a mode converter from LP01 mode to LP11 mode with broad spectral bandwidth. CVBs in different mode-locked states including single-pulse, multi-pulse, and bound pulse are obtained, for the first time to our best knowledge. The ultrafast CVBs with different operation states have potential applications in many fields such as laser beam machining, nanoparticle manipulation, and so on.
基金supported by Ministry of Higher Education under ERGS Grant scheme No.ER012-2012A
文摘A Q-switched ytterbium-doped fiber laser (YDFL) is proposed and demonstrated using a newly developed multi-walled carbon nanotubes polyethylene oxide (MWCNTs-PEO) film as a passive saturable absorber (SA). The saturable absorber is prepared by mixing the MWCNTs homogeneous solution into a dilute PEO polymer solution before it is left to dry at room temperature to produce thin film. Then the film is sandwiched between two FC/PC fiber connectors and integrated into the laser cavity for Q-switching pulse generation. The laser generates a stable pulse operating at wavelength of 1060.2 nm with a threshold pump power of 53.43 mW. The YDFL generates a stable pulse train with repetition rates ranging from 7.92 to 24.27 kHz by varying 980-nm pump power from 53.42 to 65.72 mW. At 59.55-mW pump power, the lowest pulse width and the highest pulse energy are obtained at 12.18 μs and 143.5 n J, respectively.