A new method for characterizing fiber bending flexibility was developed by worm-like chain model proposed by Kratky-Porod,[1]which was first introduced to the pulp and paper field in this study.For the three types of ...A new method for characterizing fiber bending flexibility was developed by worm-like chain model proposed by Kratky-Porod,[1]which was first introduced to the pulp and paper field in this study.For the three types of pulps,the experimental results were compared with the KP chain model,and the resulting determination coefficients were all above 0.95,which proved that the model was feasible to be applied to these three fibers.The relation between fiber bending rigidity and that of cellulosic chains inside was discussed to deduce the fiber bending flexibility.The flexibility of an individual fiber can be approximated as the contribution of that of all the cellulose chains inside.By this method,the fiber flexibility values were determined to be in the range of 0.6×10^(11)-3.5×10^(11)N^(-1)·m^(-2),which was comparable to that of the conventional methods recorded in the literature.展开更多
Self-regulating heating and self-powered flexibility are pivotal for future wearable devices.However,the low energy-conversion rate of wearable devices at low temperatures limits their application in plateaus and othe...Self-regulating heating and self-powered flexibility are pivotal for future wearable devices.However,the low energy-conversion rate of wearable devices at low temperatures limits their application in plateaus and other environments.This study introduces an azopolymer with remarkable semicrystallinity and reversible photoinduced solid-liquid transition ability that is obtained through copolymerization of azoben-zene(Azo)monomers and styrene.A composite of one such copolymer with an Azo:styrene molar ratio of 9:1(copolymer is denoted as PAzo9:1-co-polystyrene(PS))and nylon fabrics(NFs)is prepared(composite is denoted as PAzo9:1-co-PS@NF).PAzo9:1-co-PS@NF exhibits hydrophobicity and high wear resistance.Moreover,it shows good responsiveness(0.624 s^(−1))during isomerization under solid ultraviolet(UV)light(365 nm)with an energy density of 70.6 kJ kg^(−1).In addition,the open-circuit voltage,short-circuit current and quantity values of PAzo9:1-co-PS@NF exhibit small variations in a temperature range of−20°C to 25°C and remain at 170 V,5 μA,and 62 nC,respectively.Notably,the involved NFs were cut and sewn into gloves to be worn on a human hand model.When the model was exposed to both UV radiation and friction,the temperature of the finger coated with PAzo9:1-co-PS was approximately 6.0°C higher than that of the other parts.Therefore,developing triboelectric nanogenerators based on the in situ photothermal cycles of Azo in wearable devices is important to develop low-temperature self-regulating heating and self-powered flexible devices for extreme environments.展开更多
Thorium dioxide(ThO_(2))fibers exhibit exceptional structural stability,low density and superior flexibility,coupled with a remarkably high melting point,positioning them as promising candidates for thermal protection...Thorium dioxide(ThO_(2))fibers exhibit exceptional structural stability,low density and superior flexibility,coupled with a remarkably high melting point,positioning them as promising candidates for thermal protection applications.Additionally,their commendable secondary processing characteristics enable the development of diverse composite materials when integrated with other materials,significantly broadening the potential utilization of ThO_(2)materials and thorium resources in industrial fields.In this work,the ThO_(2)fiber was fabricated by the sol-gel precursor method,and the precursor with good spinnability and excellent stability was synthesized for the first time.The ThO_(2)fiber with a mean diameter of 868 nm is both highly flexible and strong(max.tensile strength 2.21 MPa),capable of bending freely across a wide temperature range from-196℃(in liquid nitrogen)to 1200℃.Meanwhile,it exhibits excellent temperature stability and heat insulation properties.The ThO_(2)nanofiber membranes with layered structure have low density(32-37 mg·cm^(-3)),low thermal conductivity(27.3-30.1 mW·m^(-1)·K^(-1)@25℃).The ThO_(2)nanofiber membranes with 15 mm thickness can reduce the temperature from 1200 to 282℃and maintain a high aspect ratio and bendability after 1200℃@90 min.The results show that the ThO_(2)fiber can be used as a new kind of high-temperature resistant material.展开更多
Flexible carbon fiber cloth(CFC)is an important scaffold and/or current collector for active materials in the development of flexible self-supportive electrode materials(SSEMs),especially in lithium-ion batteries.Howe...Flexible carbon fiber cloth(CFC)is an important scaffold and/or current collector for active materials in the development of flexible self-supportive electrode materials(SSEMs),especially in lithium-ion batteries.However,during the intercalation of Li ions into the matrix of CFC(below 0.5 V vs.Li/Li+),the incompatibility in the capacity of the CFC,when used directly as an anode material or as a current collector for active materials,leads to difficulty in the estimation of its actual contribution.To address this issue,we prepared Ni_(5)P_(4)nanosheets on CFC(denoted CFC@Ni_(5)P_(4))and investigated the contribution of CFC in the CFC@Ni_(5)P_(4)by comparing to the powder Ni_(5)P_(4)nanosheets traditionally coated on a copper foil(CuF)(denoted P-Ni_(5)P_(4)).At a current density of 0.4 mA cm^(−2),the as-prepared CFC@Ni_(5)P_(4)showed an areal capacity of 7.38 mAh cm^(−2),which is significantly higher than that of the PNi_(5)P_(4)electrode.More importantly,theoretical studies revealed that the CFC has a high Li adsorption energy that contributes to the low Li-ion diffusion energy barrier of the Ni_(5)P_(4)due to the strong interaction between the CFC and Ni_(5)P_(4),leading to the superior Li-ion storage performance of the CFC@Ni_(5)P_(4)over the pristine Ni_(5)P_(4)sample.This present work unveils the underlying mechanism leading to the achievement of high performance in SSEMs.展开更多
The high-performance Basalt Fiber Reinforced Polymer(BFRP)composites have been prepared by guiding Micro/Nano Short Aramid Fiber(MNSAF)into the interlayer to improve the resin-rich region and the interfacial transitio...The high-performance Basalt Fiber Reinforced Polymer(BFRP)composites have been prepared by guiding Micro/Nano Short Aramid Fiber(MNSAF)into the interlayer to improve the resin-rich region and the interfacial transition region,and the flexible fiber bridging claws of MNSAF were constructed to grasp the adjacent layers for stronger interlaminar bond.The lowvelocity impact results show that the MNSAF could improve the impact resistance of BFRP composites.The compression test results demonstrate that the compressive strength and the residual compressive strength after impact of MNSAF-reinforced BFRP composites were greater than those of unreinforced one,exhibiting the greatest 56.2% and 73.3% increments respectively for BFRP composites improved by 4wt%MNSAF.X-ray micro-computed tomography scanning results indicate that the“fiber bridging claws”contributed to better mechanical interlocking to inhibit the crack generation and propagation under impact and compression load,and the original delamination-dominated failure of unreinforced BFRP composites was altered into sheardominated failure of MNSAF-reinforced BFRP composites.Overall,the MNSAF interleaving might be an effective method in manufacturing high-performance laminated fiber in industrial production.展开更多
CONSPECTUS:Wearable devices are increasingly being used to prevent diseases and to enhance physical health.However,this advancement comes with the challenge of high power consumption.Existing portable power storage or...CONSPECTUS:Wearable devices are increasingly being used to prevent diseases and to enhance physical health.However,this advancement comes with the challenge of high power consumption.Existing portable power storage or generation solutions often fail to meet the requirements for uninterrupted power supply,compact size,light weight,and low noise.Thermoelectric materials have emerged as a promising solution for portable energy supplies due to their ability to directly convert body heat into electricity.These materials not only provide clean energy for wearable devices but also support solid-state refrigeration,temperature sensing,and monitoring functions.展开更多
Flexible light-emitting fibers and fabrics serve to bridge human–machine interactions. The desire for practical applications and the commercialization of flexible light-emitting fibers has accelerated structural prog...Flexible light-emitting fibers and fabrics serve to bridge human–machine interactions. The desire for practical applications and the commercialization of flexible light-emitting fibers has accelerated structural progress and improvements. This review focuses on the structural design of light-emitting fibers and fabrics, starting with a summary of design principles, emission mechanisms, and structural evolution of coaxial structured light-emitting fibers. Subsequently, we explore recent advances in the helical structure design strategies that boost the mechanical sensitivity of light-emitting fibers. Following that, we analyze continuous preparation processes and the development of large-area intelligent light-emitting fabrics based on interwoven structures. Examples based on stiff and rigid inorganic-based lightemitting diodes integrated into flexible systems are also presented. Finally, we discuss the current challenges and future opportunities for light-emitting applications in the field of wearable and smart devices.展开更多
The present paper follows our previous work in which a coupling approach of smoothed particle hydrodynamics (SPH) and element bending group (EBG) was developed for modeling the interaction of viscous incompressibl...The present paper follows our previous work in which a coupling approach of smoothed particle hydrodynamics (SPH) and element bending group (EBG) was developed for modeling the interaction of viscous incompressible flows with flexible fibers. It was also shown that a flexible object may experience drag reduction because of its reconfiguration due to fluid force on it. However, the reconfiguration of deformable bodies does not always result in drag reduction as different deformation patterns can result in different drag scales. In the present work, we studied the bending modes of a flexible fiber in viscous flows using the presented SPH and EBG coupling approach. The flexible fiber is immersed in a fluid and is tethered at its center point, while the two ends of the fiber are free to move. We showed that the fiber undergoes four different bending modes: stable U-shape, slight swing, violent flapping, and stable closure modes. We found there is a transition criterion for the flexible fiber from slight swing, suddenly to violent flapping. We defined a bending number to characterize the bending dynamics of the interaction of flexible fiber with viscous fluid and revealed that this bending number is relevant to the non-dimensional fiber length. We also identified the critical bending number from slight swing mode to violent flapping mode.展开更多
基金financially supported by the National Natural Science Foundation of China (No. 21534002)National Key R&D Program of China (No. 2019YFC1520402)
文摘A new method for characterizing fiber bending flexibility was developed by worm-like chain model proposed by Kratky-Porod,[1]which was first introduced to the pulp and paper field in this study.For the three types of pulps,the experimental results were compared with the KP chain model,and the resulting determination coefficients were all above 0.95,which proved that the model was feasible to be applied to these three fibers.The relation between fiber bending rigidity and that of cellulosic chains inside was discussed to deduce the fiber bending flexibility.The flexibility of an individual fiber can be approximated as the contribution of that of all the cellulose chains inside.By this method,the fiber flexibility values were determined to be in the range of 0.6×10^(11)-3.5×10^(11)N^(-1)·m^(-2),which was comparable to that of the conventional methods recorded in the literature.
基金supported by the China Postdoctoral Science Foundation(No.2023M732344)the National Natural Science Foundation of China(Nos.51973119,52327802,52173078)+4 种基金Shenzhen Key Laboratory of Photonics and Biophotonics(ZDSYS20210623092006020)Shenzhen Key Laboratory for Low-carbon Natural Science Foundation of Guangdong Province(No.2024A1515010639)Construction Material and Technology(No.ZDSYS20220606100406016)National Key Laboratory of Green and Long-Life Road Engineering in Extreme Environment(Shenzhen)(No.868-000003010103)Joint Funds of Ministry of Education(No.8091B022225).
文摘Self-regulating heating and self-powered flexibility are pivotal for future wearable devices.However,the low energy-conversion rate of wearable devices at low temperatures limits their application in plateaus and other environments.This study introduces an azopolymer with remarkable semicrystallinity and reversible photoinduced solid-liquid transition ability that is obtained through copolymerization of azoben-zene(Azo)monomers and styrene.A composite of one such copolymer with an Azo:styrene molar ratio of 9:1(copolymer is denoted as PAzo9:1-co-polystyrene(PS))and nylon fabrics(NFs)is prepared(composite is denoted as PAzo9:1-co-PS@NF).PAzo9:1-co-PS@NF exhibits hydrophobicity and high wear resistance.Moreover,it shows good responsiveness(0.624 s^(−1))during isomerization under solid ultraviolet(UV)light(365 nm)with an energy density of 70.6 kJ kg^(−1).In addition,the open-circuit voltage,short-circuit current and quantity values of PAzo9:1-co-PS@NF exhibit small variations in a temperature range of−20°C to 25°C and remain at 170 V,5 μA,and 62 nC,respectively.Notably,the involved NFs were cut and sewn into gloves to be worn on a human hand model.When the model was exposed to both UV radiation and friction,the temperature of the finger coated with PAzo9:1-co-PS was approximately 6.0°C higher than that of the other parts.Therefore,developing triboelectric nanogenerators based on the in situ photothermal cycles of Azo in wearable devices is important to develop low-temperature self-regulating heating and self-powered flexible devices for extreme environments.
基金supported by the National Natural Science Foundation of China(No.52202090)the Fundamental Research Funds for the Central Universities(No.2082019014).
文摘Thorium dioxide(ThO_(2))fibers exhibit exceptional structural stability,low density and superior flexibility,coupled with a remarkably high melting point,positioning them as promising candidates for thermal protection applications.Additionally,their commendable secondary processing characteristics enable the development of diverse composite materials when integrated with other materials,significantly broadening the potential utilization of ThO_(2)materials and thorium resources in industrial fields.In this work,the ThO_(2)fiber was fabricated by the sol-gel precursor method,and the precursor with good spinnability and excellent stability was synthesized for the first time.The ThO_(2)fiber with a mean diameter of 868 nm is both highly flexible and strong(max.tensile strength 2.21 MPa),capable of bending freely across a wide temperature range from-196℃(in liquid nitrogen)to 1200℃.Meanwhile,it exhibits excellent temperature stability and heat insulation properties.The ThO_(2)nanofiber membranes with layered structure have low density(32-37 mg·cm^(-3)),low thermal conductivity(27.3-30.1 mW·m^(-1)·K^(-1)@25℃).The ThO_(2)nanofiber membranes with 15 mm thickness can reduce the temperature from 1200 to 282℃and maintain a high aspect ratio and bendability after 1200℃@90 min.The results show that the ThO_(2)fiber can be used as a new kind of high-temperature resistant material.
基金National Natural Science Foundation of China,Grant/Award Numbers:21875292,21902188National Key Research and Development Program of China,Grant/Award Number:2019YFA0705702+2 种基金Hunan Provincial Natural Science Foundation,Grant/Award Number:2021JJ30087Natural Science Foundation of Guangdong Province,Grant/Award Number:2020A1515010798Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy,Grant/Award Number:2020CB1007。
文摘Flexible carbon fiber cloth(CFC)is an important scaffold and/or current collector for active materials in the development of flexible self-supportive electrode materials(SSEMs),especially in lithium-ion batteries.However,during the intercalation of Li ions into the matrix of CFC(below 0.5 V vs.Li/Li+),the incompatibility in the capacity of the CFC,when used directly as an anode material or as a current collector for active materials,leads to difficulty in the estimation of its actual contribution.To address this issue,we prepared Ni_(5)P_(4)nanosheets on CFC(denoted CFC@Ni_(5)P_(4))and investigated the contribution of CFC in the CFC@Ni_(5)P_(4)by comparing to the powder Ni_(5)P_(4)nanosheets traditionally coated on a copper foil(CuF)(denoted P-Ni_(5)P_(4)).At a current density of 0.4 mA cm^(−2),the as-prepared CFC@Ni_(5)P_(4)showed an areal capacity of 7.38 mAh cm^(−2),which is significantly higher than that of the PNi_(5)P_(4)electrode.More importantly,theoretical studies revealed that the CFC has a high Li adsorption energy that contributes to the low Li-ion diffusion energy barrier of the Ni_(5)P_(4)due to the strong interaction between the CFC and Ni_(5)P_(4),leading to the superior Li-ion storage performance of the CFC@Ni_(5)P_(4)over the pristine Ni_(5)P_(4)sample.This present work unveils the underlying mechanism leading to the achievement of high performance in SSEMs.
基金supported financially by the National Natural Science Foundation of China(No.52102115)the High-end Foreign Expert Recruitment Plan of China(No.G2023036002L)+1 种基金the Basalt Fiber and Composite Key Laboratory of Sichuan Province,China(No.XXKFJJ202308)Shock and Vibration of Engineering Materials and Structures Key Lab of Sichuan Province,China(No.23kfgk06).
文摘The high-performance Basalt Fiber Reinforced Polymer(BFRP)composites have been prepared by guiding Micro/Nano Short Aramid Fiber(MNSAF)into the interlayer to improve the resin-rich region and the interfacial transition region,and the flexible fiber bridging claws of MNSAF were constructed to grasp the adjacent layers for stronger interlaminar bond.The lowvelocity impact results show that the MNSAF could improve the impact resistance of BFRP composites.The compression test results demonstrate that the compressive strength and the residual compressive strength after impact of MNSAF-reinforced BFRP composites were greater than those of unreinforced one,exhibiting the greatest 56.2% and 73.3% increments respectively for BFRP composites improved by 4wt%MNSAF.X-ray micro-computed tomography scanning results indicate that the“fiber bridging claws”contributed to better mechanical interlocking to inhibit the crack generation and propagation under impact and compression load,and the original delamination-dominated failure of unreinforced BFRP composites was altered into sheardominated failure of MNSAF-reinforced BFRP composites.Overall,the MNSAF interleaving might be an effective method in manufacturing high-performance laminated fiber in industrial production.
基金supported by the National Key Research and Development Program of China(2023YFB3809800)the National Natural Science Foundation of China(52172249)+2 种基金the Chinese Academy of Sciences Talents Program(E2290701)the Jiangsu Province Talents Program(JSSCRC2023545)the Special Fund Project of Carbon Peaking Carbon Neutrality Science and Technology Innovation of Jiangsu Province(BE2022011).
文摘CONSPECTUS:Wearable devices are increasingly being used to prevent diseases and to enhance physical health.However,this advancement comes with the challenge of high power consumption.Existing portable power storage or generation solutions often fail to meet the requirements for uninterrupted power supply,compact size,light weight,and low noise.Thermoelectric materials have emerged as a promising solution for portable energy supplies due to their ability to directly convert body heat into electricity.These materials not only provide clean energy for wearable devices but also support solid-state refrigeration,temperature sensing,and monitoring functions.
基金supported by the National Key Research and Development Program of China (2021YFA1201301, 2021YFA1201300)the National Natural Science Foundation of China (52273031, 52202167, 52103075)+5 种基金the China Postdoctoral Science Foundation (2022M710664 and 2022T150111)the Fundamental Research Funds for the Central Universities (2232024Y-01)the Fundamental Research Funds for the Central Universitiesthe Fundamental Research Funds for the Central Universities (CUSFDH-T-2023037)the “DHU” Distinguished Young Professor Program (LZB2021001)State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University。
文摘Flexible light-emitting fibers and fabrics serve to bridge human–machine interactions. The desire for practical applications and the commercialization of flexible light-emitting fibers has accelerated structural progress and improvements. This review focuses on the structural design of light-emitting fibers and fabrics, starting with a summary of design principles, emission mechanisms, and structural evolution of coaxial structured light-emitting fibers. Subsequently, we explore recent advances in the helical structure design strategies that boost the mechanical sensitivity of light-emitting fibers. Following that, we analyze continuous preparation processes and the development of large-area intelligent light-emitting fabrics based on interwoven structures. Examples based on stiff and rigid inorganic-based lightemitting diodes integrated into flexible systems are also presented. Finally, we discuss the current challenges and future opportunities for light-emitting applications in the field of wearable and smart devices.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11302237,11172306 and U1530110)
文摘The present paper follows our previous work in which a coupling approach of smoothed particle hydrodynamics (SPH) and element bending group (EBG) was developed for modeling the interaction of viscous incompressible flows with flexible fibers. It was also shown that a flexible object may experience drag reduction because of its reconfiguration due to fluid force on it. However, the reconfiguration of deformable bodies does not always result in drag reduction as different deformation patterns can result in different drag scales. In the present work, we studied the bending modes of a flexible fiber in viscous flows using the presented SPH and EBG coupling approach. The flexible fiber is immersed in a fluid and is tethered at its center point, while the two ends of the fiber are free to move. We showed that the fiber undergoes four different bending modes: stable U-shape, slight swing, violent flapping, and stable closure modes. We found there is a transition criterion for the flexible fiber from slight swing, suddenly to violent flapping. We defined a bending number to characterize the bending dynamics of the interaction of flexible fiber with viscous fluid and revealed that this bending number is relevant to the non-dimensional fiber length. We also identified the critical bending number from slight swing mode to violent flapping mode.
基金supported by the National Key Research and Development Program of China(2021YFE0105700)the National Natural Science Foundation of China(52302177 and 51972118)the Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program(2017BT01X137)。