Alumina (MMAD: 32.45μm) was used to study dust cake formation in fiber filter at steady-state operation. Cake vertical profile along filter medium versus filtration velocity (ranging from 3 to 7cm/s), particle c...Alumina (MMAD: 32.45μm) was used to study dust cake formation in fiber filter at steady-state operation. Cake vertical profile along filter medium versus filtration velocity (ranging from 3 to 7cm/s), particle concentration (ranging from 40 to 120g/m^3) and particle areal mass to filter (ranging from 0.57 to 2.86 kg/m^2), was researched by experiments and modeling. The filtration was carried through by a plane filter media (Material: Terylene felt, Thickness: 1.8mm) covered on a framework which was fixed in a filter. During filtration, the cake thickness was measured up and down by a mobile microscope and a camera controlled by a PC. The results showed that the cake vertical profile accord with a peak function. The peak amplitude A, center displacement xc, the shape parameters W of the peak function was greatly depended on filtration velocity and particle areal mass to filter, whereas slightly on particle concentration. The relationships between the three coefficients (peak amplitude A, center displacement xc, the shape parameters W) and filtration velocity, areal mass to filter, particle concentration were associated as equations, based on which pressure drop model was deduced. The peak function and pressure drop model were verified with experimental data.展开更多
A tunable self-seeded multi-wavelength Brillouin-erbium fiber laser(BEFL) is proposed and demonstrated based on a few-mode fiber filter(FMFF) with varying temperature. The FMFF configuration is a section of uncoated f...A tunable self-seeded multi-wavelength Brillouin-erbium fiber laser(BEFL) is proposed and demonstrated based on a few-mode fiber filter(FMFF) with varying temperature. The FMFF configuration is a section of uncoated few-mode fiber(FMF) sandwiched between two up-tapers. As the temperature varies from 25 °C to 125 °C, the transmission spectrum of FMFF moves towards the longer wavelength. The self-excited Brillouin pump is internally achieved by cascaded stimulated Brillouin scattering(SBS) in the single mode fiber(SMF). Then employing the FMFF temperature variation characteristics in the ring cavity fiber laser, the multi-wavelength of the output laser can be tuned, and the tunable range is about 8.0 nm. The generation of up to 15 Brillouin Stokes wavelengths with 16 d B optical signal-to-noise ratio(OSNR) is realized.展开更多
Several high-performance and tunable erbium-doped fiber lasers are reviewed. They are constructed by using fiber Bragg gratings (FBGs) or short-wavelength-pass filters (SWPFs) as wavelength tunable components inside t...Several high-performance and tunable erbium-doped fiber lasers are reviewed. They are constructed by using fiber Bragg gratings (FBGs) or short-wavelength-pass filters (SWPFs) as wavelength tunable components inside the laser cavity. Broadband wavelength tuning range including C- and/or S-band was achieved, and tunable laser output with high slope efficiency, high side-mode suppression ratio was obtained. These fiber lasers can find vast applications in lightwave transmission, optical test instrument, fiber-optic gyros, spectroscopy, material processing, biophotonic imaging, and fiber sensor technologies.展开更多
Fiber-reinforced composites are an ideal material for the lightweight design of aerospace structures. Especially in recent years, with the rapid development of composite additive manufacturing technology, the design o...Fiber-reinforced composites are an ideal material for the lightweight design of aerospace structures. Especially in recent years, with the rapid development of composite additive manufacturing technology, the design optimization of variable stiffness of fiber-reinforced composite laminates has attracted widespread attention from scholars and industry. In these aerospace composite structures, numerous cutout panels and shells serve as access points for maintaining electrical, fuel, and hydraulic systems. The traditional fiber-reinforced composite laminate subtractive drilling manufacturing inevitably faces the problems of interlayer delamination, fiber fracture, and burr of the laminate. Continuous fiber additive manufacturing technology offers the potential for integrated design optimization and manufacturing with high structural performance. Considering the integration of design and manufacturability in continuous fiber additive manufacturing, the paper proposes linear and nonlinear filtering strategies based on the Normal Distribution Fiber Optimization (NDFO) material interpolation scheme to overcome the challenge of discrete fiber optimization results, which are difficult to apply directly to continuous fiber additive manufacturing. With minimizing structural compliance as the objective function, the proposed approach provides a strategy to achieve continuity of discrete fiber paths in the variable stiffness design optimization of composite laminates with regular and irregular holes. In the variable stiffness design optimization model, the number of candidate fiber laying angles in the NDFO material interpolation scheme is considered as design variable. The sensitivity information of structural compliance with respect to the number of candidate fiber laying angles is obtained using the analytical sensitivity analysis method. Based on the proposed variable stiffness design optimization method for complex perforated composite laminates, the numerical examples consider the variable stiffness design optimization of typical non-perforated and perforated composite laminates with circular, square, and irregular holes, and systematically discuss the number of candidate discrete fiber laying angles, discrete fiber continuous filtering strategies, and filter radius on structural compliance, continuity, and manufacturability. The optimized discrete fiber angles of variable stiffness laminates are converted into continuous fiber laying paths using a streamlined process for continuous fiber additive manufacturing. Meanwhile, the optimized non-perforated and perforated MBB beams after discrete fiber continuous treatment, are manufactured using continuous fiber co-extrusion additive manufacturing technology to verify the effectiveness of the variable stiffness fiber optimization framework proposed in this paper.展开更多
By using a loop mirror filter, a novel wavelength-tunable single-frequency ytterbium-doped fiber laser is developed to select single longitudinal modes in a linear cavity. The output wavelength could be tuned 2.4 nm i...By using a loop mirror filter, a novel wavelength-tunable single-frequency ytterbium-doped fiber laser is developed to select single longitudinal modes in a linear cavity. The output wavelength could be tuned 2.4 nm intervals range from 1063.3 to 1065.Tnrn with the temperature change of the fiber Bragg grating. The maximum output power could reach 32 m W while the pump power increases to 120 m W. The corresponding optical-to-optical conversion efficiency is 26.7% and the slope efficiency is 33.9%, respectively. The output power fluctuation is below 2%, and its highest signal-to-noise ratio is 60 dB.展开更多
A novel plasmonic polarization filter based on the diamond-shape photonic crystal fiber(PCF) is proposed. The resonant coupling characteristics of the PCF polarization filter are investigated by the full-vector finite...A novel plasmonic polarization filter based on the diamond-shape photonic crystal fiber(PCF) is proposed. The resonant coupling characteristics of the PCF polarization filter are investigated by the full-vector finite-element method. By optimizing the geometric parameters of the PCF, when the fiber length is 5 mm, the polarization filter has a bandwidth of 990 nm and an extinction ratio(ER) of lower than -20 dB. Moreover, a single wavelength polarization filter can also be achieved, along with an ER of -279.78 dB at wavelength 1.55 μm. It is believed that the proposed PCF polarization filter will be very useful in laser and optical communication systems.展开更多
The optical wavelet filter is designed. It can filter and choose frequency swiftly. It can realize demodulation of distributed fiber Bragg grating(FBG) measurement system. Its scanning resolution and scanning period...The optical wavelet filter is designed. It can filter and choose frequency swiftly. It can realize demodulation of distributed fiber Bragg grating(FBG) measurement system. Its scanning resolution and scanning period depend on wavelet function. Wavelet function is controlled by computer. Compared to conventional scan filter, optical wavelet filtering has some advantages such as simple structure, high scan frequency, high resolution and good linearity. At last, the error of optical wavelet filter scanning procedure is analyzed. Scanning step length refers to the shifting of optical wavelet window's central frequency. It affects system precision directly. If scanning step length is different, the measured signal is different. The methods of reducing step length guarantee scanning periodic time are presented.展开更多
A novel tunable comb filter composed of a single-mode/multimode/polarization-maintaining-fiber-based Sagnac fiber loop is proposed and experimentally demonstrated. The filter tunability is achieved by rotating the pol...A novel tunable comb filter composed of a single-mode/multimode/polarization-maintaining-fiber-based Sagnac fiber loop is proposed and experimentally demonstrated. The filter tunability is achieved by rotating the polarization controller. The spectral shift is dependent on rotation direction and the position of the polarization controller. In addition, the adjustable range achieved by rotating the half-wave-plate polarization controller is twice higher than that of the quarter-wave-plate one.展开更多
In this paper,the manufacturing of high-efficiency air filter paper is reported.The air filter paper was produced using ultra-fine fibers and wateroat fibers mercerized by alkali,using an electrospinning apparatus wit...In this paper,the manufacturing of high-efficiency air filter paper is reported.The air filter paper was produced using ultra-fine fibers and wateroat fibers mercerized by alkali,using an electrospinning apparatus with multiple rings.The high efficiency air filter paper has an antibacterial effect after adding a chitosan-copper complex which is harmless to humans.As a result of the measurement,the filtering efficiency of the air filter paper is approximately 99.998%and its antibacterial efficiency is approximately 99.5%.展开更多
The wavelength shift in fiber Bragg grating does not depend directly on the total light levels, losses in the connecting fibers and couplers, or source power. However, if the tunable Fabry-Perot filter is place on the...The wavelength shift in fiber Bragg grating does not depend directly on the total light levels, losses in the connecting fibers and couplers, or source power. However, if the tunable Fabry-Perot filter is place on the end of incident fiber, the detected time delay of modulation light is occurred due to the unmatch between the scanning time and light transmission time in the transmission fiber. Consequently, the detected peak wavelength shifts with the length of transmission fiber. Thus, the peak wavelength shift effect of Bragg reflective light transmitted in fiber with different fiber length can be obvious in the demodulator with a prepositive tunable Fabry-Perot filter. The experiment indicates the shift rates of 0.109 - 0.126 nm/km increase approximately linearly with the original peak wavelength of 1532.917 - 1560.300 nm at the fiber length of 0 - 6 km. To certify the consistency of measurement data, the criterion correction is introduced. By using the differential method of two fiber Bragg gratings with an optical path, the differential worth is compensated from the disturbance modulated by the time delay of fiber length.展开更多
文摘Alumina (MMAD: 32.45μm) was used to study dust cake formation in fiber filter at steady-state operation. Cake vertical profile along filter medium versus filtration velocity (ranging from 3 to 7cm/s), particle concentration (ranging from 40 to 120g/m^3) and particle areal mass to filter (ranging from 0.57 to 2.86 kg/m^2), was researched by experiments and modeling. The filtration was carried through by a plane filter media (Material: Terylene felt, Thickness: 1.8mm) covered on a framework which was fixed in a filter. During filtration, the cake thickness was measured up and down by a mobile microscope and a camera controlled by a PC. The results showed that the cake vertical profile accord with a peak function. The peak amplitude A, center displacement xc, the shape parameters W of the peak function was greatly depended on filtration velocity and particle areal mass to filter, whereas slightly on particle concentration. The relationships between the three coefficients (peak amplitude A, center displacement xc, the shape parameters W) and filtration velocity, areal mass to filter, particle concentration were associated as equations, based on which pressure drop model was deduced. The peak function and pressure drop model were verified with experimental data.
基金supported by the National Natural Science Foundation of China(Nos.61405096 and 61504058)the Introduction of Talent Research Fund of Nanjing University of Posts and Telecommunications(No.NY214158)+1 种基金the Open Fund of Laboratory of Solid State Micro-structures,Nanjing University(No.M28035)the Open Fund of State Key Laboratory of Transient Optics and Photonics,Chinese Academy of Sciences(No.SKLST201404)
文摘A tunable self-seeded multi-wavelength Brillouin-erbium fiber laser(BEFL) is proposed and demonstrated based on a few-mode fiber filter(FMFF) with varying temperature. The FMFF configuration is a section of uncoated few-mode fiber(FMF) sandwiched between two up-tapers. As the temperature varies from 25 °C to 125 °C, the transmission spectrum of FMFF moves towards the longer wavelength. The self-excited Brillouin pump is internally achieved by cascaded stimulated Brillouin scattering(SBS) in the single mode fiber(SMF). Then employing the FMFF temperature variation characteristics in the ring cavity fiber laser, the multi-wavelength of the output laser can be tuned, and the tunable range is about 8.0 nm. The generation of up to 15 Brillouin Stokes wavelengths with 16 d B optical signal-to-noise ratio(OSNR) is realized.
文摘Several high-performance and tunable erbium-doped fiber lasers are reviewed. They are constructed by using fiber Bragg gratings (FBGs) or short-wavelength-pass filters (SWPFs) as wavelength tunable components inside the laser cavity. Broadband wavelength tuning range including C- and/or S-band was achieved, and tunable laser output with high slope efficiency, high side-mode suppression ratio was obtained. These fiber lasers can find vast applications in lightwave transmission, optical test instrument, fiber-optic gyros, spectroscopy, material processing, biophotonic imaging, and fiber sensor technologies.
基金supports for this research were provided by the National Natural Science Foundation of China(No.12272301,12002278,U1906233)the Guangdong Basic and Applied Basic Research Foundation,China(Nos.2023A1515011970,2024A1515010256)+1 种基金the Dalian City Supports Innovation and Entrepreneurship Projects for High-Level Talents,China(2021RD16)the Key R&D Project of CSCEC,China(No.CSCEC-2020-Z-4).
文摘Fiber-reinforced composites are an ideal material for the lightweight design of aerospace structures. Especially in recent years, with the rapid development of composite additive manufacturing technology, the design optimization of variable stiffness of fiber-reinforced composite laminates has attracted widespread attention from scholars and industry. In these aerospace composite structures, numerous cutout panels and shells serve as access points for maintaining electrical, fuel, and hydraulic systems. The traditional fiber-reinforced composite laminate subtractive drilling manufacturing inevitably faces the problems of interlayer delamination, fiber fracture, and burr of the laminate. Continuous fiber additive manufacturing technology offers the potential for integrated design optimization and manufacturing with high structural performance. Considering the integration of design and manufacturability in continuous fiber additive manufacturing, the paper proposes linear and nonlinear filtering strategies based on the Normal Distribution Fiber Optimization (NDFO) material interpolation scheme to overcome the challenge of discrete fiber optimization results, which are difficult to apply directly to continuous fiber additive manufacturing. With minimizing structural compliance as the objective function, the proposed approach provides a strategy to achieve continuity of discrete fiber paths in the variable stiffness design optimization of composite laminates with regular and irregular holes. In the variable stiffness design optimization model, the number of candidate fiber laying angles in the NDFO material interpolation scheme is considered as design variable. The sensitivity information of structural compliance with respect to the number of candidate fiber laying angles is obtained using the analytical sensitivity analysis method. Based on the proposed variable stiffness design optimization method for complex perforated composite laminates, the numerical examples consider the variable stiffness design optimization of typical non-perforated and perforated composite laminates with circular, square, and irregular holes, and systematically discuss the number of candidate discrete fiber laying angles, discrete fiber continuous filtering strategies, and filter radius on structural compliance, continuity, and manufacturability. The optimized discrete fiber angles of variable stiffness laminates are converted into continuous fiber laying paths using a streamlined process for continuous fiber additive manufacturing. Meanwhile, the optimized non-perforated and perforated MBB beams after discrete fiber continuous treatment, are manufactured using continuous fiber co-extrusion additive manufacturing technology to verify the effectiveness of the variable stiffness fiber optimization framework proposed in this paper.
基金Supported by the International Cooperation Projects of Ministry of Science and Technology under Grant No 2012DFB10120the National Natural Science Foundation of China under Grant No 61177059
文摘By using a loop mirror filter, a novel wavelength-tunable single-frequency ytterbium-doped fiber laser is developed to select single longitudinal modes in a linear cavity. The output wavelength could be tuned 2.4 nm intervals range from 1063.3 to 1065.Tnrn with the temperature change of the fiber Bragg grating. The maximum output power could reach 32 m W while the pump power increases to 120 m W. The corresponding optical-to-optical conversion efficiency is 26.7% and the slope efficiency is 33.9%, respectively. The output power fluctuation is below 2%, and its highest signal-to-noise ratio is 60 dB.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61875238 and 61935007)。
文摘A novel plasmonic polarization filter based on the diamond-shape photonic crystal fiber(PCF) is proposed. The resonant coupling characteristics of the PCF polarization filter are investigated by the full-vector finite-element method. By optimizing the geometric parameters of the PCF, when the fiber length is 5 mm, the polarization filter has a bandwidth of 990 nm and an extinction ratio(ER) of lower than -20 dB. Moreover, a single wavelength polarization filter can also be achieved, along with an ER of -279.78 dB at wavelength 1.55 μm. It is believed that the proposed PCF polarization filter will be very useful in laser and optical communication systems.
基金This project is supported by National Natural Science Foundation of China(No.60377002).
文摘The optical wavelet filter is designed. It can filter and choose frequency swiftly. It can realize demodulation of distributed fiber Bragg grating(FBG) measurement system. Its scanning resolution and scanning period depend on wavelet function. Wavelet function is controlled by computer. Compared to conventional scan filter, optical wavelet filtering has some advantages such as simple structure, high scan frequency, high resolution and good linearity. At last, the error of optical wavelet filter scanning procedure is analyzed. Scanning step length refers to the shifting of optical wavelet window's central frequency. It affects system precision directly. If scanning step length is different, the measured signal is different. The methods of reducing step length guarantee scanning periodic time are presented.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11274181,10974100,and 10674075)the Tianjin Key Program of Application Foundations and Future Technology Research Project,China (Grant No. 10JCZDJC24300)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20120031110033)
文摘A novel tunable comb filter composed of a single-mode/multimode/polarization-maintaining-fiber-based Sagnac fiber loop is proposed and experimentally demonstrated. The filter tunability is achieved by rotating the polarization controller. The spectral shift is dependent on rotation direction and the position of the polarization controller. In addition, the adjustable range achieved by rotating the half-wave-plate polarization controller is twice higher than that of the quarter-wave-plate one.
文摘In this paper,the manufacturing of high-efficiency air filter paper is reported.The air filter paper was produced using ultra-fine fibers and wateroat fibers mercerized by alkali,using an electrospinning apparatus with multiple rings.The high efficiency air filter paper has an antibacterial effect after adding a chitosan-copper complex which is harmless to humans.As a result of the measurement,the filtering efficiency of the air filter paper is approximately 99.998%and its antibacterial efficiency is approximately 99.5%.
文摘The wavelength shift in fiber Bragg grating does not depend directly on the total light levels, losses in the connecting fibers and couplers, or source power. However, if the tunable Fabry-Perot filter is place on the end of incident fiber, the detected time delay of modulation light is occurred due to the unmatch between the scanning time and light transmission time in the transmission fiber. Consequently, the detected peak wavelength shifts with the length of transmission fiber. Thus, the peak wavelength shift effect of Bragg reflective light transmitted in fiber with different fiber length can be obvious in the demodulator with a prepositive tunable Fabry-Perot filter. The experiment indicates the shift rates of 0.109 - 0.126 nm/km increase approximately linearly with the original peak wavelength of 1532.917 - 1560.300 nm at the fiber length of 0 - 6 km. To certify the consistency of measurement data, the criterion correction is introduced. By using the differential method of two fiber Bragg gratings with an optical path, the differential worth is compensated from the disturbance modulated by the time delay of fiber length.