Marine thin plates are susceptible to welding deformation owing to their low structural stiffness.Therefore,the efficient and accurate prediction of welding deformation is essential for improving welding quality.The t...Marine thin plates are susceptible to welding deformation owing to their low structural stiffness.Therefore,the efficient and accurate prediction of welding deformation is essential for improving welding quality.The traditional thermal elastic-plastic finite element method(TEP-FEM)can accurately predict welding deformation.However,its efficiency is low because of the complex nonlinear transient computation,making it difficult to meet the needs of rapid engineering evaluation.To address this challenge,this study proposes an efficient prediction method for welding deformation in marine thin plate butt welds.This method is based on the coupled temperature gradient-thermal strain method(TG-TSM)that integrates inherent strain theory with a shell element finite element model.The proposed method first extracts the distribution pattern and characteristic value of welding-induced inherent strain through TEP-FEM analysis.This strain is then converted into the equivalent thermal load applied to the shell element model for rapid computation.The proposed method-particularly,the gradual temperature gradient-thermal strain method(GTG-TSM)-achieved improved computational efficiency and consistent precision.Furthermore,the proposed method required much less computation time than the traditional TEP-FEM.Thus,this study lays the foundation for future prediction of welding deformation in more complex marine thin plates.展开更多
The stability of slopes and tunnels is controlled by rock discontinuities,and the rock discontinuities roughness and the sliding direction play a signifcant role in shear failure.However,three-dimensional roughness ev...The stability of slopes and tunnels is controlled by rock discontinuities,and the rock discontinuities roughness and the sliding direction play a signifcant role in shear failure.However,three-dimensional roughness evaluation considering shear directions is scare,and the internal shear fracturing processes,micromechanical mechanisms and failure precursor of rock discontinuities are not well understood.Therefore,this study proposes a novel roughness evaluation index to quantitatively analyze the anisotropic characteristics of rock discontinuities.In conjunction with shear tests,a novel 3D-GBM modelling method considering the micromineral constituent and particle size distribution characteristics of granite as well as the geometric shape of discontinuities was realized.The strength,macro and micro-fracture characteristics,visual anisotropic shear evolution process and microfailure mechanism of granite discontinuities at diferent roughness and shear direction were investigated.Finally,the spatial and temporal evolutions of AE parameter b-value and magnitude M were further analyzed to reveal the shear fracture precursor of granite discontinuities.展开更多
Two full 3D steady mathematical models are developed by finite element method (FEM) to calcalate coupled physics fields. the electro-magnetic model is built and solved first and so is the fluid motion model with the...Two full 3D steady mathematical models are developed by finite element method (FEM) to calcalate coupled physics fields. the electro-magnetic model is built and solved first and so is the fluid motion model with the acquired electromagnetic force as source body forces in Navier-Stokes equations. Effects caused by the ferromagnetic shell, busbar system around, and open boundary problem as well as inside induced current were considered in terms of the magnetic field. Furthermore, a new modeling method is found to set up solid models and then mesh them entirely with so-called structuralized grids, namely hex-mesh. Examples of 75kA prebaked cell with two kinds of busbar arrangements are presented. Results agree with those disclosed in the literature and confirm that the coupled simulation is valid. It is also concluded that the usage of these models facilitates the consistent analysis of the electric field to magnetic field and then flow motion to the greater extent, local distributions of current density and magnetic flux density are very much dependent on the cell structure, the steel shell is a shield to reduce the magnetic field and flow pattern is two dimensional in the main body of the metal pad.展开更多
Piled embankments are widely used in highway and railway engineering due to their economy and efficiency inovercoming several issues encountered in constructing embankments over weak soils. Soil arching, caused by the...Piled embankments are widely used in highway and railway engineering due to their economy and efficiency inovercoming several issues encountered in constructing embankments over weak soils. Soil arching, caused by the pile-subsoilrelative displacement (△s), plays an important role in reducing the embankment load falling on weak soil, however, the funda-mental characteristics (e.g., formation and features) of soil arching remain poorly understood. In this study, a series of discreteelement method (DEM) modellings are performed to study the formation and features of soil arching with the variation of As inpiled embankments with or without geosynthetic reinforcement. Firstly, calibration for the modelling parameters is carried out bycomparing the DEM results with the experimental data obtained from the existing literature. Secondly, the analysis of the macro-and micro-behaviours is performed in detail. Finally, a parametric study is conducted in an effort to identify the influences of threekey factors on soil arching: the friction coefficient of the embankment fill (f), the embankment height (h), and the pile clear spacing(s-a). Numerical results indicate that △s is a key factor governing the formation and features of soil arching in embankments. Tobe specific, soil arching gradually evolves from two inclined shear planes at a small △s to a hemispherical arch at a relatively largeAs. Then, with a continuous increase in △s, the soil arching height gradually increases and finally approaches a constant value of0.8(s-a) (i.e., the maximum soil arching height). For a given case, the higher the soil arching height, the greater the degree of soilarching effect. The parametric study shows that the friction coefficient of the embankment fill has a negligible influence on theformation and features of soil arching. However, embankment height is a key factor governing the formation and features of soilarching. In addition, pile clear spacing has a significant effect on the formation of soil arching, but not on its features.展开更多
Research in different areas of orthopedic and trauma surgery requires a methodology that allows both a more economic approach and the ability to reproduce different situations in an easy way. Simulation models have be...Research in different areas of orthopedic and trauma surgery requires a methodology that allows both a more economic approach and the ability to reproduce different situations in an easy way. Simulation models have been introduced recently in bioengineering and could become an essential tool in the study of any physiological unity, regardless of its complexity. The main problem in modeling with finite elements simulation is to achieve an accurate reproduction of the anatomy and a perfect correlation of the different structures, in any region of the human body. Authors have developed a mixed technique, joining the use of a three-dimensional laser scanner Roland Picza captured together with computed tomography(CT) and 3D CT images, to achieve a perfect reproduction of the anatomy. Finite element(FE) simulation lets us know the biomechanical changes that take place after hipprostheses or osteosynthesis implantation and biological responses of bone to biomechanical changes. The simulation models are able to predict changes in bone stress distribution around the implant, so allowing preventing future pathologies. The development of a FE model of lumbar spine is another interesting application of the simulation. The model allows research on the lumbar spine, not only in physiological conditions but also simulating different load conditions, to assess the impact on biomechanics. Different degrees of disc degeneration can also be simulated to determine the impact on adjacent anatomical elements. Finally, FE models may be useful to test different fixation systems, i.e., pedicular screws, interbody devices or rigid fixations compared with the dynamic ones. We have also developed models of lumbar spine and hip joint to predict the occurrence of osteoporotic fractures, based on densitometric determinations and specific biomechanical models, including approaches from damage and fracture mechanics. FE simulations also allow us to predict the behavior of orthopedic splints applied to the correction of deformities, providing the recovering force-displacement and angle-moment curves that characterize the mechanical behavior of the splint in the overall range of movement.展开更多
The evolution of microstructure in the drawing process of commercially pure aluminum wire (CPAW) does not only depend on the nature of materials, but also on the stress profile. In this study, the effect of stress p...The evolution of microstructure in the drawing process of commercially pure aluminum wire (CPAW) does not only depend on the nature of materials, but also on the stress profile. In this study, the effect of stress profile on the texture evolution of the CPAW was systematically investigated by combining the numerical simulation and the microstructure observation. The results show that the tensile stress at the wire center promotes the formation of 〈111〉 texture, whereas the shear stress nearby the rim makes little contribution to the texture formation. Therefore, the 〈111 〉 texture at the wire center is stronger than that in the surface layer, which also results in a higher microhardness at the center of the CPAW under axial loading.2017 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology.展开更多
To investigate the effects of billet geometry on the cold precision forging process of a helical gear, six different billet geometries were designed utilizing the relief-hole principle. And the influences of the bille...To investigate the effects of billet geometry on the cold precision forging process of a helical gear, six different billet geometries were designed utilizing the relief-hole principle. And the influences of the billet geometry on the forming load and the deformation uniformity were analyzed by three-dimensional (3D) finite element method (FEM) under the commercial software DEFORM 3D. The billet geometry was optimized to meet lower forming load and better deformation uniformity requirement. Deformation mechanism was studied through the distribution of flow velocity field and effective strain field. The forging experiments of the helical gear were successfully performed using lead material as a model material under the same process conditions used in the FE simulations. The results show that the forming load decreases as the diameter of relief-hole do increases, but the effect of do on the deformation uniformity is very complicated. The forming load is lower and the deformation is more uniform when do is 10 mm.展开更多
A thermo-mechanical coupling.finite element model was built to investigate the inertia friction welding of GH4169 bars. The remeshing and map solution techniques were adopted. Ttle whole welding process was investigat...A thermo-mechanical coupling.finite element model was built to investigate the inertia friction welding of GH4169 bars. The remeshing and map solution techniques were adopted. Ttle whole welding process was investigated by adopting an innovative heat generation model and the flywheel rotational speed measured via the experiment. The simulated evolution of axial shortening shows a good agreement with the experiment. In addition, extensive .strain concentration presents in the interface and flash, and the largest ,strain exists near the flash root. Moreover, an intere.sting thermal reflux phenomenon during the cooling stage was found.展开更多
During the process of finite element simulation of precision warm forging, the selection of friction models has a direct effect on the precision accuracy of finite element simulation results. Among all the factors whi...During the process of finite element simulation of precision warm forging, the selection of friction models has a direct effect on the precision accuracy of finite element simulation results. Among all the factors which influence the selection of friction models, the distribution rule of normal stress at the tool-workpiece interface is a key one. To find out the distribution rule of normal stress at the tool-workpiece interface, this paper has made a systematic research on three typical plastic deformation processes: forward extrusion, backward extrusion, and lateral extrusion by a method of finite element simulation. Then on the base of synthesizing and correcting traditional friction models, a new general friction model which is fit for warm extrusion is developed at last.展开更多
Based on CT scanning pictures from a volunteer's knee joint, a three-dimensional finite element model of the healthy human knee joint is constructed including complete femur, tibia, fibular, patellar and the main car...Based on CT scanning pictures from a volunteer's knee joint, a three-dimensional finite element model of the healthy human knee joint is constructed including complete femur, tibia, fibular, patellar and the main cartilage and ligaments. This model was validated using experimental and numerical results obtained from other authors. The pressure distribution of contact surfaces of knee joint are calculated and analyzed under the load action of ‘heel strike', ‘single limb stance' and ‘toe-off'. The results of the gait cycle are that the contact areas of medial cartilage are larger than that of lateral cartilage; the contact force and contact areas would grow larger with the load increasing; the pressure of lateral meniscus is steady, relative to the significant variation of peak pressure in medial meniscus; and the peak value of contact pressure on all components are usually found at about 4570 of the gait cycle.展开更多
Single-point incremental forming (SPIF) is an innovational sheet metal forming method without dedicated dies, which belongs to rapid prototyping technology. In generalizing the SPIF of sheet metal, the deformation a...Single-point incremental forming (SPIF) is an innovational sheet metal forming method without dedicated dies, which belongs to rapid prototyping technology. In generalizing the SPIF of sheet metal, the deformation analysis on forming process becomes an important and useful method for the planning of shell products, the choice of material, the design of the forming process and the planning of the forming tool. Using solid brick elements, the finite element method(FEM) model of truncated pyramid was established. Based on the theory of anisotropy and assumed strain formulation, the SPIF processes with different parameters were simulated. The resulted comparison between the simulations and the experiments shows that the FEM model is feasible and effective. Then, according to the simulated forming process, the deformation pattern of SPIF can be summarized as the combination of plane-stretching deformation and bending deformation. And the study about the process parameters' impact on deformation shows that the process parameter of interlayer spacing is a dominant factor on the deformation. Decreasing interlayer spacing, the strain of one step decreases and the formability of blank will be improved. With bigger interlayer spacing, the plastic deformation zone increases and the forming force will be bigger.展开更多
The discrete element method (DEM) was used to simulate the flow characteristic and strength characteristic of the conditioned sands in the earth pressure balance (EPB) tunneling. In the laboratory the conditioned sand...The discrete element method (DEM) was used to simulate the flow characteristic and strength characteristic of the conditioned sands in the earth pressure balance (EPB) tunneling. In the laboratory the conditioned sands were reproduced and the slump test and the direct shear test of the conditioned sands were implemented. A DEM equivalent model that can simulate the macro mechanical characteristic of the conditioned sands was proposed,and the corresponding numerical models of the slump test and the shear test were established. By selecting proper DEM model parameters,the errors of the slump values between the simulation results and the test results are in the range of 10.3%-14.3%,and the error of the curves between the shear displacement and the shear stress calculated with the DEM simulation is 4.68%-16.5% compared with that of the laboratory direct shear test. This illustrates that the proposed DEM equivalent model can approximately simulate the mechanical characteristics of the conditioned sands,which provides the basis for further simulation of the interaction between the conditioned soil and the chamber pressure system of the EPB machine.展开更多
Materials with the same elastic modulus E and representative stress and strain (σr,εr) present similar indentation-loading curves, whatever the value of strain hardening exponent n. Based on this definition, a goo...Materials with the same elastic modulus E and representative stress and strain (σr,εr) present similar indentation-loading curves, whatever the value of strain hardening exponent n. Based on this definition, a good approach was proposed to extract the plastic properties or constitutive equations of metals from nanoindentation test combining finite element simulation. Firstly, without consideration of strain hardening, the representative stress was determined by varying assumed representative stress over a wide range until a good agreement was reached between the computed and experimental loading curves. Similarly, the corresponding representative strain was determined with different hypothetical values of strain hardening exponent in the range of 0-0.6. Through modulating assumed strain hardening exponent values to make the computed unloading curve coincide with that of the experiment, the real strain hardening exponent was acquired. Once the strain hardening exponent was determined, the initial yield stress ay of metals could be obtained by the power law constitution. The validity of the proposed methodology was verified by three real metals: AISI 304 steel, Fe andA1 alloy.展开更多
Being aimed at the ground subsidence due to underground coal mining,a numerical model of rock was established and an appropriate method of numerical simulation was put forward.Using the measured subsidence data on the...Being aimed at the ground subsidence due to underground coal mining,a numerical model of rock was established and an appropriate method of numerical simulation was put forward.Using the measured subsidence data on the ground,the equivalent mechanical parameters of the rock stratums can be back-calculated by the properly treatment of coal excavation area,then the ground subsidence of other coal mining area can be predicted by FFM.It provided reference for the treatment of the buildings on the ground of this colliery.展开更多
To study the hot deformation behavior of Mg-8.3 Gd-4.4 Y-1.5 Zn-0.8 Mn(wt%) alloy,hot compression tests were conducted using a Gleeble-3500 thermal simulator at temperatures ranging from 653 to773 K,true strain rates ...To study the hot deformation behavior of Mg-8.3 Gd-4.4 Y-1.5 Zn-0.8 Mn(wt%) alloy,hot compression tests were conducted using a Gleeble-3500 thermal simulator at temperatures ranging from 653 to773 K,true strain rates of 0.001-1 s^(-1),and a deformation degree of 60%.Results of hot compression experiments show that the flow stress of the alloy increases with the strain rate.The true stress-true strain curves are corrected by correcting the effect of temperature rise in the deformation process.Activation energy,Q,equal to 287380 J/mol and material constant,n,equal to 4.59 were calculated by fitting the true stress-true strain curves.Then,the constitutive equation was established and verified via finite element simulation.Results of the hot processing map show that the probability of material instability increases with the degree of deformation,which indicates that the material is not suitable for large deformation in a single pass.On the whole,the alloy is appropriate for multipass processing with small deformation and a suitable processing temperature and strain rate are 733 K and 0.01 s-1,respectively.展开更多
Isothermal hot compression experiments were conducted on homogenized Mg-8.5Gd-4.5Y-0.8Zn-0.4Zr alloy to investigate hot deformation behavior at the temperature range of 673-773 K and the strain rate range of 0.001-1 s...Isothermal hot compression experiments were conducted on homogenized Mg-8.5Gd-4.5Y-0.8Zn-0.4Zr alloy to investigate hot deformation behavior at the temperature range of 673-773 K and the strain rate range of 0.001-1 s^(-1)by using a Gleeble-1500D thermo mechanical simulator.Metallographic characterization on samples deformed to true strain of 0.70 illustrates the occurrence of flow localization and/or microcrack at deformation conditions of 673 K/0.01 s^(-1),673 K/1 s^(-1)and 698 K/1 s^(-1),indicating that these three deformation conditions should be excluded during hot working of homogenized Mg-8.5Gd-4.5Y-0.8Zn-0.4Zr alloy.Based on the measured true stress-strain data,the strain-compensated Arrhenius constitutive model was constructed and then incorporated into UHARD subroutine of ABAQUS software to study hot deformation process of homogenized Mg-8.5Gd-4.5Y-0.8Zn-0.4Zr alloy.By comparison with measured force-displacement curves,the predicted results can describe well the rheological behavior of homogenized Mg-8.5Gd-4.5Y-0.8Zn-0.4Zr alloy,verifying the validity of finite element simulation of hot compression process with this complicated constitutive model.Numerical results demonstrate that the distribution of values of material parameters(α,n,Q and ln A)within deformed sample is inhomogeneous.This issue is directly correlated to the uneven distribution of equivalent plastic strain due to the friction effect.Moreover,at a given temperature the increase of strain rate would result in the decrease of equivalent plastic strain within the central region of deformed sample,which hinders the occurrence of dynamic recrystallization(DRX).展开更多
In the process of thin-wall parts assembly for an antenna,the parts assembly deformation deviation is occurring due to the riveting assembly.In view of the riveting assembly deformation problems,it can be analyzed thr...In the process of thin-wall parts assembly for an antenna,the parts assembly deformation deviation is occurring due to the riveting assembly.In view of the riveting assembly deformation problems,it can be analyzed through transient and static simulation.In this work,the theoretical deformation model for riveting assembly is established with round head rivet.The simulation analysis for riveting deformation is carried out with the riveting assembly piece including four rivets,which comparing with the measuring points experiment results of riveting test piece through dealing with the experimental data using the point coordinate transform method and the space line fitting method.Simultaneously,the deformation deviation of the overall thin-wall parts assembly structure is analyzed through finite element simulation;and its results are verified by the measuring experiment for riveting assembly with the deformation deviation of some key points on the thin-wall parts.Through the comparison analysis,it is shown that the simulation results agree well with the experimental results,which proves the correctness and effectiveness of the theoretical analysis,simulation results and the given experiment data processing method.Through the study on the riveting assembly for thin-wall parts,it will provide a theoretical foundation for improving thin-wall parts assembly quality of large antenna in future.展开更多
The deep drawing of titanium thin-walled surface part was simulated based on a self-developed three-dimensional finite element model. After an investigation on forming rules, a virtual orthogonal experimental design w...The deep drawing of titanium thin-walled surface part was simulated based on a self-developed three-dimensional finite element model. After an investigation on forming rules, a virtual orthogonal experimental design was adopted to determine the significance of processing parameters, such as die radius, blank holder force, and friction coefficient, on the forming process. The distributions of thickness and equivalent plastic strain of the drawn part were evaluated. The results show that die radius has a relative major influence on the deep drawing process, followed by friction coefficient and blank holder force.展开更多
In medium/high entropy alloys, their mechanical properties are strongly dependent on the chemicalelemental composition. Thus, searching for optimum elemental composition remains a critical issue to maximize the mechan...In medium/high entropy alloys, their mechanical properties are strongly dependent on the chemicalelemental composition. Thus, searching for optimum elemental composition remains a critical issue to maximize the mechanical performance. However, this issue solved by traditional optimization process via "trial and error" or experiences of domain experts is extremely difficult. Here we propose an approach based on high-throughput simulation combined machine learning to obtain medium entropy alloys with high strength and low cost. This method not only obtains a large amount of data quickly and accurately,but also helps us to determine the relationship between the composition and mechanical properties.The results reveal a vital importance of high-throughput simulation combined machine learning to find best mechanical properties in a wide range of elemental compositions for development of alloys with expected performance.展开更多
A rate dependent crystal plasticity constitutive model considering self and latent hardening in finite element analysis was developed to simulate rolling textures of pure aluminum. By changing the assignment of orient...A rate dependent crystal plasticity constitutive model considering self and latent hardening in finite element analysis was developed to simulate rolling textures of pure aluminum. By changing the assignment of orientations to finite elements, i.e. assigning the same set of orientations to all elements or different orientations to different elements, the influences of grain interaction on the formation of rolling textures were numerically simulated with this kind of crystal plasticity finite element model. The simulation results reveal that the grains without considering grain interaction rotate faster than those considering grain interaction, and the rotation of grain boundary is slowed down due to the grain interaction. For a good simulation more elements should be assigned to one grain, in which the effects of both the boundary and interior parts of grain contribute to the formation of rolling textures.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No.51975138the High-Tech Ship Scientific Research Project from the Ministry of Industry and Information Technology under Grant No.CJ05N20the National Defense Basic Research Project under Grant No.JCKY2023604C006.
文摘Marine thin plates are susceptible to welding deformation owing to their low structural stiffness.Therefore,the efficient and accurate prediction of welding deformation is essential for improving welding quality.The traditional thermal elastic-plastic finite element method(TEP-FEM)can accurately predict welding deformation.However,its efficiency is low because of the complex nonlinear transient computation,making it difficult to meet the needs of rapid engineering evaluation.To address this challenge,this study proposes an efficient prediction method for welding deformation in marine thin plate butt welds.This method is based on the coupled temperature gradient-thermal strain method(TG-TSM)that integrates inherent strain theory with a shell element finite element model.The proposed method first extracts the distribution pattern and characteristic value of welding-induced inherent strain through TEP-FEM analysis.This strain is then converted into the equivalent thermal load applied to the shell element model for rapid computation.The proposed method-particularly,the gradual temperature gradient-thermal strain method(GTG-TSM)-achieved improved computational efficiency and consistent precision.Furthermore,the proposed method required much less computation time than the traditional TEP-FEM.Thus,this study lays the foundation for future prediction of welding deformation in more complex marine thin plates.
基金Financial support to complete this study was provided in part by National Natural Science Foundation of China(52109119)the Open Research Fund of State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin(China Institute of Water Resources and Hydropower Research)(IWHR-SKL-202202)+1 种基金the China Postdoctoral Science Foundation Project(2022M723408)the Systematic Project of Guangxi Key Laboratory of Disaster Prevention and Engineering Safety(2020ZDK007)。
文摘The stability of slopes and tunnels is controlled by rock discontinuities,and the rock discontinuities roughness and the sliding direction play a signifcant role in shear failure.However,three-dimensional roughness evaluation considering shear directions is scare,and the internal shear fracturing processes,micromechanical mechanisms and failure precursor of rock discontinuities are not well understood.Therefore,this study proposes a novel roughness evaluation index to quantitatively analyze the anisotropic characteristics of rock discontinuities.In conjunction with shear tests,a novel 3D-GBM modelling method considering the micromineral constituent and particle size distribution characteristics of granite as well as the geometric shape of discontinuities was realized.The strength,macro and micro-fracture characteristics,visual anisotropic shear evolution process and microfailure mechanism of granite discontinuities at diferent roughness and shear direction were investigated.Finally,the spatial and temporal evolutions of AE parameter b-value and magnitude M were further analyzed to reveal the shear fracture precursor of granite discontinuities.
基金the National High Technical Reasearch and Development Programme of China (No. 2003AA327140) the National Natural Science Foundation of China (No. 50374081).
文摘Two full 3D steady mathematical models are developed by finite element method (FEM) to calcalate coupled physics fields. the electro-magnetic model is built and solved first and so is the fluid motion model with the acquired electromagnetic force as source body forces in Navier-Stokes equations. Effects caused by the ferromagnetic shell, busbar system around, and open boundary problem as well as inside induced current were considered in terms of the magnetic field. Furthermore, a new modeling method is found to set up solid models and then mesh them entirely with so-called structuralized grids, namely hex-mesh. Examples of 75kA prebaked cell with two kinds of busbar arrangements are presented. Results agree with those disclosed in the literature and confirm that the coupled simulation is valid. It is also concluded that the usage of these models facilitates the consistent analysis of the electric field to magnetic field and then flow motion to the greater extent, local distributions of current density and magnetic flux density are very much dependent on the cell structure, the steel shell is a shield to reduce the magnetic field and flow pattern is two dimensional in the main body of the metal pad.
基金supported by the National Key Research and Development Program of China(2016YFC0800208)the National Natural Science Foundation of China(Nos.51278216,51478201,51308241,and 51608316)
文摘Piled embankments are widely used in highway and railway engineering due to their economy and efficiency inovercoming several issues encountered in constructing embankments over weak soils. Soil arching, caused by the pile-subsoilrelative displacement (△s), plays an important role in reducing the embankment load falling on weak soil, however, the funda-mental characteristics (e.g., formation and features) of soil arching remain poorly understood. In this study, a series of discreteelement method (DEM) modellings are performed to study the formation and features of soil arching with the variation of As inpiled embankments with or without geosynthetic reinforcement. Firstly, calibration for the modelling parameters is carried out bycomparing the DEM results with the experimental data obtained from the existing literature. Secondly, the analysis of the macro-and micro-behaviours is performed in detail. Finally, a parametric study is conducted in an effort to identify the influences of threekey factors on soil arching: the friction coefficient of the embankment fill (f), the embankment height (h), and the pile clear spacing(s-a). Numerical results indicate that △s is a key factor governing the formation and features of soil arching in embankments. Tobe specific, soil arching gradually evolves from two inclined shear planes at a small △s to a hemispherical arch at a relatively largeAs. Then, with a continuous increase in △s, the soil arching height gradually increases and finally approaches a constant value of0.8(s-a) (i.e., the maximum soil arching height). For a given case, the higher the soil arching height, the greater the degree of soilarching effect. The parametric study shows that the friction coefficient of the embankment fill has a negligible influence on theformation and features of soil arching. However, embankment height is a key factor governing the formation and features of soilarching. In addition, pile clear spacing has a significant effect on the formation of soil arching, but not on its features.
文摘Research in different areas of orthopedic and trauma surgery requires a methodology that allows both a more economic approach and the ability to reproduce different situations in an easy way. Simulation models have been introduced recently in bioengineering and could become an essential tool in the study of any physiological unity, regardless of its complexity. The main problem in modeling with finite elements simulation is to achieve an accurate reproduction of the anatomy and a perfect correlation of the different structures, in any region of the human body. Authors have developed a mixed technique, joining the use of a three-dimensional laser scanner Roland Picza captured together with computed tomography(CT) and 3D CT images, to achieve a perfect reproduction of the anatomy. Finite element(FE) simulation lets us know the biomechanical changes that take place after hipprostheses or osteosynthesis implantation and biological responses of bone to biomechanical changes. The simulation models are able to predict changes in bone stress distribution around the implant, so allowing preventing future pathologies. The development of a FE model of lumbar spine is another interesting application of the simulation. The model allows research on the lumbar spine, not only in physiological conditions but also simulating different load conditions, to assess the impact on biomechanics. Different degrees of disc degeneration can also be simulated to determine the impact on adjacent anatomical elements. Finally, FE models may be useful to test different fixation systems, i.e., pedicular screws, interbody devices or rigid fixations compared with the dynamic ones. We have also developed models of lumbar spine and hip joint to predict the occurrence of osteoporotic fractures, based on densitometric determinations and specific biomechanical models, including approaches from damage and fracture mechanics. FE simulations also allow us to predict the behavior of orthopedic splints applied to the correction of deformities, providing the recovering force-displacement and angle-moment curves that characterize the mechanical behavior of the splint in the overall range of movement.
基金financially supported by the State Grid Corporation of China (No. 52110416001z)the National Natural Science Foundation of China (No. 51331007)
文摘The evolution of microstructure in the drawing process of commercially pure aluminum wire (CPAW) does not only depend on the nature of materials, but also on the stress profile. In this study, the effect of stress profile on the texture evolution of the CPAW was systematically investigated by combining the numerical simulation and the microstructure observation. The results show that the tensile stress at the wire center promotes the formation of 〈111〉 texture, whereas the shear stress nearby the rim makes little contribution to the texture formation. Therefore, the 〈111 〉 texture at the wire center is stronger than that in the surface layer, which also results in a higher microhardness at the center of the CPAW under axial loading.2017 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology.
基金Project(51105287)supported by the National Natural Science Foundation of China
文摘To investigate the effects of billet geometry on the cold precision forging process of a helical gear, six different billet geometries were designed utilizing the relief-hole principle. And the influences of the billet geometry on the forming load and the deformation uniformity were analyzed by three-dimensional (3D) finite element method (FEM) under the commercial software DEFORM 3D. The billet geometry was optimized to meet lower forming load and better deformation uniformity requirement. Deformation mechanism was studied through the distribution of flow velocity field and effective strain field. The forging experiments of the helical gear were successfully performed using lead material as a model material under the same process conditions used in the FE simulations. The results show that the forming load decreases as the diameter of relief-hole do increases, but the effect of do on the deformation uniformity is very complicated. The forming load is lower and the deformation is more uniform when do is 10 mm.
基金The work is supported by the National Natural Science Foundation of" China (51005180).
文摘A thermo-mechanical coupling.finite element model was built to investigate the inertia friction welding of GH4169 bars. The remeshing and map solution techniques were adopted. Ttle whole welding process was investigated by adopting an innovative heat generation model and the flywheel rotational speed measured via the experiment. The simulated evolution of axial shortening shows a good agreement with the experiment. In addition, extensive .strain concentration presents in the interface and flash, and the largest ,strain exists near the flash root. Moreover, an intere.sting thermal reflux phenomenon during the cooling stage was found.
文摘During the process of finite element simulation of precision warm forging, the selection of friction models has a direct effect on the precision accuracy of finite element simulation results. Among all the factors which influence the selection of friction models, the distribution rule of normal stress at the tool-workpiece interface is a key one. To find out the distribution rule of normal stress at the tool-workpiece interface, this paper has made a systematic research on three typical plastic deformation processes: forward extrusion, backward extrusion, and lateral extrusion by a method of finite element simulation. Then on the base of synthesizing and correcting traditional friction models, a new general friction model which is fit for warm extrusion is developed at last.
基金supported by the National Natural Science Foundation of China(No.10702048).
文摘Based on CT scanning pictures from a volunteer's knee joint, a three-dimensional finite element model of the healthy human knee joint is constructed including complete femur, tibia, fibular, patellar and the main cartilage and ligaments. This model was validated using experimental and numerical results obtained from other authors. The pressure distribution of contact surfaces of knee joint are calculated and analyzed under the load action of ‘heel strike', ‘single limb stance' and ‘toe-off'. The results of the gait cycle are that the contact areas of medial cartilage are larger than that of lateral cartilage; the contact force and contact areas would grow larger with the load increasing; the pressure of lateral meniscus is steady, relative to the significant variation of peak pressure in medial meniscus; and the peak value of contact pressure on all components are usually found at about 4570 of the gait cycle.
基金supported by National Natural Science Foundation of China(No. 50175034).
文摘Single-point incremental forming (SPIF) is an innovational sheet metal forming method without dedicated dies, which belongs to rapid prototyping technology. In generalizing the SPIF of sheet metal, the deformation analysis on forming process becomes an important and useful method for the planning of shell products, the choice of material, the design of the forming process and the planning of the forming tool. Using solid brick elements, the finite element method(FEM) model of truncated pyramid was established. Based on the theory of anisotropy and assumed strain formulation, the SPIF processes with different parameters were simulated. The resulted comparison between the simulations and the experiments shows that the FEM model is feasible and effective. Then, according to the simulated forming process, the deformation pattern of SPIF can be summarized as the combination of plane-stretching deformation and bending deformation. And the study about the process parameters' impact on deformation shows that the process parameter of interlayer spacing is a dominant factor on the deformation. Decreasing interlayer spacing, the strain of one step decreases and the formability of blank will be improved. With bigger interlayer spacing, the plastic deformation zone increases and the forming force will be bigger.
基金Project (2007CB714006) supported by the National Basic Research Program of China
文摘The discrete element method (DEM) was used to simulate the flow characteristic and strength characteristic of the conditioned sands in the earth pressure balance (EPB) tunneling. In the laboratory the conditioned sands were reproduced and the slump test and the direct shear test of the conditioned sands were implemented. A DEM equivalent model that can simulate the macro mechanical characteristic of the conditioned sands was proposed,and the corresponding numerical models of the slump test and the shear test were established. By selecting proper DEM model parameters,the errors of the slump values between the simulation results and the test results are in the range of 10.3%-14.3%,and the error of the curves between the shear displacement and the shear stress calculated with the DEM simulation is 4.68%-16.5% compared with that of the laboratory direct shear test. This illustrates that the proposed DEM equivalent model can approximately simulate the mechanical characteristics of the conditioned sands,which provides the basis for further simulation of the interaction between the conditioned soil and the chamber pressure system of the EPB machine.
基金Project (51171125) supported by the National Natural Science Foundation of China Project (20110321051 ) supported by the Science and Technology Key Project of Shanxi Province, China
文摘Materials with the same elastic modulus E and representative stress and strain (σr,εr) present similar indentation-loading curves, whatever the value of strain hardening exponent n. Based on this definition, a good approach was proposed to extract the plastic properties or constitutive equations of metals from nanoindentation test combining finite element simulation. Firstly, without consideration of strain hardening, the representative stress was determined by varying assumed representative stress over a wide range until a good agreement was reached between the computed and experimental loading curves. Similarly, the corresponding representative strain was determined with different hypothetical values of strain hardening exponent in the range of 0-0.6. Through modulating assumed strain hardening exponent values to make the computed unloading curve coincide with that of the experiment, the real strain hardening exponent was acquired. Once the strain hardening exponent was determined, the initial yield stress ay of metals could be obtained by the power law constitution. The validity of the proposed methodology was verified by three real metals: AISI 304 steel, Fe andA1 alloy.
文摘Being aimed at the ground subsidence due to underground coal mining,a numerical model of rock was established and an appropriate method of numerical simulation was put forward.Using the measured subsidence data on the ground,the equivalent mechanical parameters of the rock stratums can be back-calculated by the properly treatment of coal excavation area,then the ground subsidence of other coal mining area can be predicted by FFM.It provided reference for the treatment of the buildings on the ground of this colliery.
基金Project supported by the General Program of National Natural Science Foundation of China (51874062)。
文摘To study the hot deformation behavior of Mg-8.3 Gd-4.4 Y-1.5 Zn-0.8 Mn(wt%) alloy,hot compression tests were conducted using a Gleeble-3500 thermal simulator at temperatures ranging from 653 to773 K,true strain rates of 0.001-1 s^(-1),and a deformation degree of 60%.Results of hot compression experiments show that the flow stress of the alloy increases with the strain rate.The true stress-true strain curves are corrected by correcting the effect of temperature rise in the deformation process.Activation energy,Q,equal to 287380 J/mol and material constant,n,equal to 4.59 were calculated by fitting the true stress-true strain curves.Then,the constitutive equation was established and verified via finite element simulation.Results of the hot processing map show that the probability of material instability increases with the degree of deformation,which indicates that the material is not suitable for large deformation in a single pass.On the whole,the alloy is appropriate for multipass processing with small deformation and a suitable processing temperature and strain rate are 733 K and 0.01 s-1,respectively.
基金supported by the National Natural Science Foundation of China(Grant Nos.51805064,51701034)the Scientific and Technological Research Program of Chongqing Municipal Education Commission(Grant Nos.KJQN201801137,KJ1600922)+1 种基金the Basic and Advanced Research Project of Chongqing Science and Technology Commission(Grant Nos.cstc2017jcyj AX0062,cstc2018jcyj AX0035)the Chongqing University Key Laboratory of Micro/Nano Materials Engineering and Technology(Grant Nos.KFJJ2003)
文摘Isothermal hot compression experiments were conducted on homogenized Mg-8.5Gd-4.5Y-0.8Zn-0.4Zr alloy to investigate hot deformation behavior at the temperature range of 673-773 K and the strain rate range of 0.001-1 s^(-1)by using a Gleeble-1500D thermo mechanical simulator.Metallographic characterization on samples deformed to true strain of 0.70 illustrates the occurrence of flow localization and/or microcrack at deformation conditions of 673 K/0.01 s^(-1),673 K/1 s^(-1)and 698 K/1 s^(-1),indicating that these three deformation conditions should be excluded during hot working of homogenized Mg-8.5Gd-4.5Y-0.8Zn-0.4Zr alloy.Based on the measured true stress-strain data,the strain-compensated Arrhenius constitutive model was constructed and then incorporated into UHARD subroutine of ABAQUS software to study hot deformation process of homogenized Mg-8.5Gd-4.5Y-0.8Zn-0.4Zr alloy.By comparison with measured force-displacement curves,the predicted results can describe well the rheological behavior of homogenized Mg-8.5Gd-4.5Y-0.8Zn-0.4Zr alloy,verifying the validity of finite element simulation of hot compression process with this complicated constitutive model.Numerical results demonstrate that the distribution of values of material parameters(α,n,Q and ln A)within deformed sample is inhomogeneous.This issue is directly correlated to the uneven distribution of equivalent plastic strain due to the friction effect.Moreover,at a given temperature the increase of strain rate would result in the decrease of equivalent plastic strain within the central region of deformed sample,which hinders the occurrence of dynamic recrystallization(DRX).
基金Project(51675100)supported by the National Natural Science Foundation of ChinaProject(2016ZX04004008)supported by the National Numerical Control Equipment Major Project of ChinaProject(6902002116)supported by the Foundation of Certain Ministry of China
文摘In the process of thin-wall parts assembly for an antenna,the parts assembly deformation deviation is occurring due to the riveting assembly.In view of the riveting assembly deformation problems,it can be analyzed through transient and static simulation.In this work,the theoretical deformation model for riveting assembly is established with round head rivet.The simulation analysis for riveting deformation is carried out with the riveting assembly piece including four rivets,which comparing with the measuring points experiment results of riveting test piece through dealing with the experimental data using the point coordinate transform method and the space line fitting method.Simultaneously,the deformation deviation of the overall thin-wall parts assembly structure is analyzed through finite element simulation;and its results are verified by the measuring experiment for riveting assembly with the deformation deviation of some key points on the thin-wall parts.Through the comparison analysis,it is shown that the simulation results agree well with the experimental results,which proves the correctness and effectiveness of the theoretical analysis,simulation results and the given experiment data processing method.Through the study on the riveting assembly for thin-wall parts,it will provide a theoretical foundation for improving thin-wall parts assembly quality of large antenna in future.
基金supported by the National Key Basic Research Program of China (No. 2007CB613802)the National Natural Science Foundation of China (No. 50805121)China Postdoctoral Science Foundation (No. 20080440192)
文摘The deep drawing of titanium thin-walled surface part was simulated based on a self-developed three-dimensional finite element model. After an investigation on forming rules, a virtual orthogonal experimental design was adopted to determine the significance of processing parameters, such as die radius, blank holder force, and friction coefficient, on the forming process. The distributions of thickness and equivalent plastic strain of the drawn part were evaluated. The results show that die radius has a relative major influence on the deep drawing process, followed by friction coefficient and blank holder force.
基金supported financially by the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (No. 51621004)the National Natural Science Foundation of China (Nos. 51871092, 11772122, 51625404, 51771232+5 种基金51671217)the State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body (No. 71865015)the State Key Laboratory of Powder Metallurgythe National Key Research and Development Program of China (Nos. 2016YFB0700300 and 2016YFB1100103)support of the U.S. Army Research Office Project (Nos. W911NF-13-1-0438 and W911NF-19-2-0049) with the program managers,Drs. M.P. Bakas,S.N. Mathaudhusupport from the National Science Foundation (Nos. DMR-1611180 and 1809640)with the program directors,Drs. J. Yang,J.G. Shiflet,and D. Farkas。
文摘In medium/high entropy alloys, their mechanical properties are strongly dependent on the chemicalelemental composition. Thus, searching for optimum elemental composition remains a critical issue to maximize the mechanical performance. However, this issue solved by traditional optimization process via "trial and error" or experiences of domain experts is extremely difficult. Here we propose an approach based on high-throughput simulation combined machine learning to obtain medium entropy alloys with high strength and low cost. This method not only obtains a large amount of data quickly and accurately,but also helps us to determine the relationship between the composition and mechanical properties.The results reveal a vital importance of high-throughput simulation combined machine learning to find best mechanical properties in a wide range of elemental compositions for development of alloys with expected performance.
基金Projects(50230310 ,50301016) supported by the National Natural Science Foundation of China project(2004053304)supported by the Doctor Program Foundation of the Ministry of Education of China project(2005CB623706) supported by the State KeyFundamental Research and Development Programof China
文摘A rate dependent crystal plasticity constitutive model considering self and latent hardening in finite element analysis was developed to simulate rolling textures of pure aluminum. By changing the assignment of orientations to finite elements, i.e. assigning the same set of orientations to all elements or different orientations to different elements, the influences of grain interaction on the formation of rolling textures were numerically simulated with this kind of crystal plasticity finite element model. The simulation results reveal that the grains without considering grain interaction rotate faster than those considering grain interaction, and the rotation of grain boundary is slowed down due to the grain interaction. For a good simulation more elements should be assigned to one grain, in which the effects of both the boundary and interior parts of grain contribute to the formation of rolling textures.