Numerous meta-learning methods focus on the few-shot learning issue,yet most of them assume that various tasks have a shared embedding space,so the generalization ability of the trained model is limited.In order to so...Numerous meta-learning methods focus on the few-shot learning issue,yet most of them assume that various tasks have a shared embedding space,so the generalization ability of the trained model is limited.In order to solve the aforementioned problem,a task-adaptive meta-learning method based on graph neural network(TAGN) is proposed in this paper,where the characterization ability of the original feature extraction network is ameliorated and the classification accuracy is remarkably improved.Firstly,a task-adaptation module based on the self-attention mechanism is employed,where the generalization ability of the model is enhanced on the new task.Secondly,images are classified in non-Euclidean domain,where the disadvantages of poor adaptability of the traditional distance function are overcome.A large number of experiments are conducted and the results show that the proposed methodology has a better performance than traditional task-independent classification methods on two real-word datasets.展开更多
As an important complement to cloud computing, edge computing can effectively reduce the workload of the backbone network. To reduce latency and energy consumption of edge computing, deep learning is used to learn the...As an important complement to cloud computing, edge computing can effectively reduce the workload of the backbone network. To reduce latency and energy consumption of edge computing, deep learning is used to learn the task offloading strategies by interacting with the entities. In actual application scenarios, users of edge computing are always changing dynamically. However, the existing task offloading strategies cannot be applied to such dynamic scenarios. To solve this problem, we propose a novel dynamic task offloading framework for distributed edge computing, leveraging the potential of meta-reinforcement learning (MRL). Our approach formulates a multi-objective optimization problem aimed at minimizing both delay and energy consumption. We model the task offloading strategy using a directed acyclic graph (DAG). Furthermore, we propose a distributed edge computing adaptive task offloading algorithm rooted in MRL. This algorithm integrates multiple Markov decision processes (MDP) with a sequence-to-sequence (seq2seq) network, enabling it to learn and adapt task offloading strategies responsively across diverse network environments. To achieve joint optimization of delay and energy consumption, we incorporate the non-dominated sorting genetic algorithm II (NSGA-II) into our framework. Simulation results demonstrate the superiority of our proposed solution, achieving a 21% reduction in time delay and a 19% decrease in energy consumption compared to alternative task offloading schemes. Moreover, our scheme exhibits remarkable adaptability, responding swiftly to changes in various network environments.展开更多
Recently,one of the main challenges facing the smart grid is insufficient computing resources and intermittent energy supply for various distributed components(such as monitoring systems for renewable energy power sta...Recently,one of the main challenges facing the smart grid is insufficient computing resources and intermittent energy supply for various distributed components(such as monitoring systems for renewable energy power stations).To solve the problem,we propose an energy harvesting based task scheduling and resource management framework to provide robust and low-cost edge computing services for smart grid.First,we formulate an energy consumption minimization problem with regard to task offloading,time switching,and resource allocation for mobile devices,which can be decoupled and transformed into a typical knapsack problem.Then,solutions are derived by two different algorithms.Furthermore,we deploy renewable energy and energy storage units at edge servers to tackle intermittency and instability problems.Finally,we design an energy management algorithm based on sampling average approximation for edge computing servers to derive the optimal charging/discharging strategies,number of energy storage units,and renewable energy utilization.The simulation results show the efficiency and superiority of our proposed framework.展开更多
In response to the scarcity of infrared aircraft samples and the tendency of traditional deep learning to overfit,a few-shot infrared aircraft classification method based on cross-correlation networks is proposed.This...In response to the scarcity of infrared aircraft samples and the tendency of traditional deep learning to overfit,a few-shot infrared aircraft classification method based on cross-correlation networks is proposed.This method combines two core modules:a simple parameter-free self-attention and cross-attention.By analyzing the self-correlation and cross-correlation between support images and query images,it achieves effective classification of infrared aircraft under few-shot conditions.The proposed cross-correlation network integrates these two modules and is trained in an end-to-end manner.The simple parameter-free self-attention is responsible for extracting the internal structure of the image while the cross-attention can calculate the cross-correlation between images further extracting and fusing the features between images.Compared with existing few-shot infrared target classification models,this model focuses on the geometric structure and thermal texture information of infrared images by modeling the semantic relevance between the features of the support set and query set,thus better attending to the target objects.Experimental results show that this method outperforms existing infrared aircraft classification methods in various classification tasks,with the highest classification accuracy improvement exceeding 3%.In addition,ablation experiments and comparative experiments also prove the effectiveness of the method.展开更多
With the rapid expansion of social media,analyzing emotions and their causes in texts has gained significant importance.Emotion-cause pair extraction enables the identification of causal relationships between emotions...With the rapid expansion of social media,analyzing emotions and their causes in texts has gained significant importance.Emotion-cause pair extraction enables the identification of causal relationships between emotions and their triggers within a text,facilitating a deeper understanding of expressed sentiments and their underlying reasons.This comprehension is crucial for making informed strategic decisions in various business and societal contexts.However,recent research approaches employing multi-task learning frameworks for modeling often face challenges such as the inability to simultaneouslymodel extracted features and their interactions,or inconsistencies in label prediction between emotion-cause pair extraction and independent assistant tasks like emotion and cause extraction.To address these issues,this study proposes an emotion-cause pair extraction methodology that incorporates joint feature encoding and task alignment mechanisms.The model consists of two primary components:First,joint feature encoding simultaneously generates features for emotion-cause pairs and clauses,enhancing feature interactions between emotion clauses,cause clauses,and emotion-cause pairs.Second,the task alignment technique is applied to reduce the labeling distance between emotion-cause pair extraction and the two assistant tasks,capturing deep semantic information interactions among tasks.The proposed method is evaluated on a Chinese benchmark corpus using 10-fold cross-validation,assessing key performance metrics such as precision,recall,and F1 score.Experimental results demonstrate that the model achieves an F1 score of 76.05%,surpassing the state-of-the-art by 1.03%.The proposed model exhibits significant improvements in emotion-cause pair extraction(ECPE)and cause extraction(CE)compared to existing methods,validating its effectiveness.This research introduces a novel approach based on joint feature encoding and task alignment mechanisms,contributing to advancements in emotion-cause pair extraction.However,the study’s limitation lies in the data sources,potentially restricting the generalizability of the findings.展开更多
Semantic segmentation of novel object categories with limited labeled data remains a challenging problem in computer vision.Few-shot segmentation methods aim to address this problem by recognizing objects from specifi...Semantic segmentation of novel object categories with limited labeled data remains a challenging problem in computer vision.Few-shot segmentation methods aim to address this problem by recognizing objects from specific target classes with a few provided examples.Previous approaches for few-shot semantic segmentation typically represent target classes using class prototypes.These prototypes are matched with the features of the query set to get segmentation results.However,class prototypes are usually obtained by applying global average pooling on masked support images.Global pooling discards much structural information,which may reduce the accuracy of model predictions.To address this issue,we propose a Category-Guided Frequency Modulation(CGFM)method.CGFM is designed to learn category-specific information in the frequency space and leverage it to provide a twostage guidance for the segmentation process.First,to self-adaptively activate class-relevant frequency bands while suppressing irrelevant ones,we leverage the Dual-Perception Gaussian Band Pre-activation(DPGBP)module to generate Gaussian filters using class embedding vectors.Second,to further enhance category-relevant frequency components in activated bands,we design a Support-Guided Category Response Enhancement(SGCRE)module to effectively introduce support frequency components into the modulation of query frequency features.Experiments on the PASCAL-5^(i) and COCO-20^(i) datasets demonstrate the promising performance of our model.展开更多
Predicting the productivity of multistage fractured horizontal wells plays an important role in exploiting unconventional resources.In recent years,machine learning(ML)models have emerged as a new approach for such st...Predicting the productivity of multistage fractured horizontal wells plays an important role in exploiting unconventional resources.In recent years,machine learning(ML)models have emerged as a new approach for such studies.However,the scarcity of sufficient real data for model training often leads to imprecise predictions,even though the models trained with real data better characterize geological and engineering features.To tackle this issue,we propose an ML model that can obtain reliable results even with a small amount of data samples.Our model integrates the synthetic minority oversampling technique(SMOTE)to expand the data volume,the support vector machine(SVM)for model training,and the particle swarm optimization(PSO)algorithm for optimizing hyperparameters.To enhance the model performance,we conduct feature fusion and dimensionality reduction.Additionally,we examine the influences of different sample sizes and ML models for training.The proposed model demonstrates higher prediction accuracy and generalization ability,achieving a predicted R^(2)value of up to 0.9 for the test set,compared to the traditional ML techniques with an R^(2)of 0.13.This model accurately predicts the production of fractured horizontal wells even with limited samples,supplying an efficient tool for optimizing the production of unconventional resources.Importantly,the model holds the potential applicability to address similar challenges in other fields constrained by scarce data samples.展开更多
Image classification is crucial for various applications,including digital construction,smart manu-facturing,and medical imaging.Focusing on the inadequate model generalization and data privacy concerns in few-shot im...Image classification is crucial for various applications,including digital construction,smart manu-facturing,and medical imaging.Focusing on the inadequate model generalization and data privacy concerns in few-shot image classification,in this paper,we propose a federated learning approach that incorporates privacy-preserving techniques.First,we utilize contrastive learning to train on local few-shot image data and apply various data augmentation methods to expand the sample size,thereby enhancing the model’s generalization capabilities in few-shot contexts.Second,we introduce local differential privacy techniques and weight pruning methods to safeguard model parameters,perturbing the transmitted parameters to ensure user data privacy.Finally,numerical simulations are conducted to demonstrate the effectiveness of our proposed method.The results indicate that our approach significantly enhances model generalization and test accuracy compared to several popular federated learning algorithms while maintaining data privacy,highlighting its effectiveness and practicality in addressing the challenges of model generalization and data privacy in few-shot image scenarios.展开更多
Although conventional object detection methods achieve high accuracy through extensively annotated datasets,acquiring such large-scale labeled data remains challenging and cost-prohibitive in numerous real-world appli...Although conventional object detection methods achieve high accuracy through extensively annotated datasets,acquiring such large-scale labeled data remains challenging and cost-prohibitive in numerous real-world applications.Few-shot object detection presents a new research idea that aims to localize and classify objects in images using only limited annotated examples.However,the inherent challenge in few-shot object detection lies in the insufficient sample diversity to fully characterize the sample feature distribution,which consequently impacts model performance.Inspired by contrastive learning principles,we propose an Implicit Feature Contrastive Learning(IFCL)module to address this limitation and augment feature diversity for more robust representational learning.This module generates augmented support sample features in a mixed feature space and implicitly contrasts them with query Region of Interest(RoI)features.This approach facilitates more comprehensive learning of both intra-class feature similarity and inter-class feature diversity,thereby enhancing the model’s object classification and localization capabilities.Extensive experiments on PASCAL VOC show that our method achieves a respective improvement of 3.2%,1.8%,and 2.3%on 10-shot of three Novel Sets compared to the baseline model FPD.展开更多
Air quality estimation assesses the pollution level in the air,supports public health warnings,and is a valuable tool in environmental management.Although air sensors have proven helpful in this task,sensors are often...Air quality estimation assesses the pollution level in the air,supports public health warnings,and is a valuable tool in environmental management.Although air sensors have proven helpful in this task,sensors are often expensive and difficult to install,while cameras are becoming more popular and accessible,from which images can be collected as data for deep learning models to solve the above task.This leads to another problem:several labeled images are needed to achieve high accuracy when deep-learningmodels predict air quality.In this research,we have threemain contributions:(1)Collect and publish an air quality estimation dataset,namely PTIT_AQED,including environmental image data and air quality;(2)Propose a deep learning model to predict air quality with few data,called PTIT_FAQE(PTIT Few-shot air quality estimation).We build PTIT_FAQE based on EfficientNet-a CNN architecture that ensures high performance in deep learning applications and Few-shot Learning with Prototypical Networks.This helps the model use only a fewtraining data but still achieve high accuracy in air quality estimation.And(3)conduct experiments to prove the superiority of PTIT_FAQE compared to other studies on both PTIT_AQED and APIN datasets.The results show that our model achieves an accuracy of 0.9278 and an F1-Score of 0.9139 on the PTIT_AQED dataset and an accuracy of 0.9467 and an F1-Score of 0.9371 on the APIN dataset,which demonstrate a significant performance improvement compared to previous studies.We also conduct detailed experiments to evaluate the impact of each component on model performance.展开更多
Few-shot point cloud 3D object detection(FS3D)aims to identify and locate objects of novel classes within point clouds using knowledge acquired from annotated base classes and a minimal number of samples from the nove...Few-shot point cloud 3D object detection(FS3D)aims to identify and locate objects of novel classes within point clouds using knowledge acquired from annotated base classes and a minimal number of samples from the novel classes.Due to imbalanced training data,existing FS3D methods based on fully supervised learning can lead to overfitting toward base classes,which impairs the network’s ability to generalize knowledge learned from base classes to novel classes and also prevents the network from extracting distinctive foreground and background representations for novel class objects.To address these issues,this thesis proposes a category-agnostic contrastive learning approach,enhancing the generalization and identification abilities for almost unseen categories through the construction of pseudo-labels and positive-negative sample pairs unrelated to specific classes.Firstly,this thesis designs a proposal-wise context contrastive module(CCM).By reducing the distance between foreground point features and increasing the distance between foreground and background point features within a region proposal,CCM aids the network in extracting more discriminative foreground and background feature representations without reliance on categorical annotations.Secondly,this thesis utilizes a geometric contrastive module(GCM),which enhances the network’s geometric perception capability by employing contrastive learning on the foreground point features associated with various basic geometric components,such as edges,corners,and surfaces,thereby enabling these geometric components to exhibit more distinguishable representations.This thesis also combines category-aware contrastive learning with former modules to maintain categorical distinctiveness.Extensive experimental results on FS-SUNRGBD and FS-ScanNet datasets demonstrate the effectiveness of this method with average precision exceeding the baseline by up to 8%.展开更多
The key to the success of few-shot semantic segmentation(FSS)depends on the efficient use of limited annotated support set to accurately segment novel classes in the query set.Due to the few samples in the support set...The key to the success of few-shot semantic segmentation(FSS)depends on the efficient use of limited annotated support set to accurately segment novel classes in the query set.Due to the few samples in the support set,FSS faces challenges such as intra-class differences,background(BG)mismatches between query and support sets,and ambiguous segmentation between the foreground(FG)and BG in the query set.To address these issues,The paper propose a multi-module network called CAMSNet,which includes four modules:the General Information Module(GIM),the Class Activation Map Aggregation(CAMA)module,the Self-Cross Attention(SCA)Block,and the Feature Fusion Module(FFM).In CAMSNet,The GIM employs an improved triplet loss,which concatenates word embedding vectors and support prototypes as anchors,and uses local support features of FG and BG as positive and negative samples to help solve the problem of intra-class differences.Then for the first time,the Class Activation Map(CAM)from the Weakly Supervised Semantic Segmentation(WSSS)is applied to FSS within the CAMA module.This method replaces the traditional use of cosine similarity to locate query information.Subsequently,the SCA Block processes the support and query features aggregated by the CAMA module,significantly enhancing the understanding of input information,leading to more accurate predictions and effectively addressing BG mismatch and ambiguous FG-BG segmentation.Finally,The FFM combines general class information with the enhanced query information to achieve accurate segmentation of the query image.Extensive Experiments on PASCAL and COCO demonstrate that-5i-20ithe CAMSNet yields superior performance and set a state-of-the-art.展开更多
Blockchain technology,based on decentralized data storage and distributed consensus design,has become a promising solution to address data security risks and provide privacy protection in the Internet-of-Things(IoT)du...Blockchain technology,based on decentralized data storage and distributed consensus design,has become a promising solution to address data security risks and provide privacy protection in the Internet-of-Things(IoT)due to its tamper-proof and non-repudiation features.Although blockchain typically does not require the endorsement of third-party trust organizations,it mostly needs to perform necessary mathematical calculations to prevent malicious attacks,which results in stricter requirements for computation resources on the participating devices.By offloading the computation tasks required to support blockchain consensus to edge service nodes or the cloud,while providing data privacy protection for IoT applications,it can effectively address the limitations of computation and energy resources in IoT devices.However,how to make reasonable offloading decisions for IoT devices remains an open issue.Due to the excellent self-learning ability of Reinforcement Learning(RL),this paper proposes a RL enabled Swarm Intelligence Optimization Algorithm(RLSIOA)that aims to improve the quality of initial solutions and achieve efficient optimization of computation task offloading decisions.The algorithm considers various factors that may affect the revenue obtained by IoT devices executing consensus algorithms(e.g.,Proof-of-Work),it optimizes the proportion of sub-tasks to be offloaded and the scale of computing resources to be rented from the edge and cloud to maximize the revenue of devices.Experimental results show that RLSIOA can obtain higher-quality offloading decision-making schemes at lower latency costs compared to representative benchmark algorithms.展开更多
Intelligent fault diagnosis technology plays an indispensable role in ensuring the safety,stability,and efficiency of railway operations.However,existing studies have the following limitations.1)They are typical black-...Intelligent fault diagnosis technology plays an indispensable role in ensuring the safety,stability,and efficiency of railway operations.However,existing studies have the following limitations.1)They are typical black-box models that lacks interpretability as well as they fuse features by simply stacking them,overlooking the discrepancies in the importance of different features,which reduces the credibility and diagnosis accuracy of the models.2)They ignore the effects of potentially mistaken labels in the training datasets disrupting the ability of the models to learn the true data distribution,which degrades the generalization performance of intelligent diagnosis models,especially when the training samples are limited.To address the above items,an interpretable few-shot framework for fault diagnosis with noisy labels is proposed for train transmission systems.In the proposed framework,a feature extractor is constructed by stacked frequency band focus modules,which can capture signal features in different frequency bands and further adaptively concentrate on the features corresponding to the potential fault characteristic frequency.Then,according to prototypical network,a novel metric-based classifier is developed that is tolerant to mislabeled support samples in the case of limited samples.Besides,a new loss function is designed to decrease the impact of label mistakes in query datasets.Finally,fault simulation experiments of subway train transmission systems are designed and conducted,and the effectiveness as well as superiority of the proposed method are proved by ablation experiments and comparison with the existing methods.展开更多
Fog computing is a key enabling technology of 6G systems as it provides quick and reliable computing,and data storage services which are required for several 6G applications.Artificial Intelligence(AI)algorithms will ...Fog computing is a key enabling technology of 6G systems as it provides quick and reliable computing,and data storage services which are required for several 6G applications.Artificial Intelligence(AI)algorithms will be an integral part of 6G systems and efficient task offloading techniques using fog computing will improve their performance and reliability.In this paper,the focus is on the scenario of Partial Offloading of a Task to Multiple Helpers(POMH)in which larger tasks are divided into smaller subtasks and processed in parallel,hence expediting task completion.However,using POMH presents challenges such as breaking tasks into subtasks and scaling these subtasks based on many interdependent factors to ensure that all subtasks of a task finish simultaneously,preventing resource wastage.Additionally,applying matching theory to POMH scenarios results in dynamic preference profiles of helping devices due to changing subtask sizes,resulting in a difficult-to-solve,externalities problem.This paper introduces a novel many-to-one matching-based algorithm,designed to address the externalities problem and optimize resource allocation within POMH scenarios.Additionally,we propose a new time-efficient preference profiling technique that further enhances time optimization in POMH scenarios.The performance of the proposed technique is thoroughly evaluated in comparison to alternate baseline schemes,revealing many advantages of the proposed approach.The simulation findings indisputably show that the proposed matching-based offloading technique outperforms existing methodologies in the literature,yielding a remarkable 52 reduction in task latency,particularly under high workloads.展开更多
Full ceramic bearings are mission-critical components in oil-free environments,such as food processing,semiconductor manufacturing,and medical applications.Developing effective fault diagnosis methods for these bearin...Full ceramic bearings are mission-critical components in oil-free environments,such as food processing,semiconductor manufacturing,and medical applications.Developing effective fault diagnosis methods for these bearings is essential to ensuring operational reliability and preventing costly failures.Traditional supervised deep learning approaches have demonstrated promise in fault detection,but their dependence on large labeled datasets poses significant challenges in industrial settings where fault-labeled data is scarce.This paper introduces a few-shot learning approach for full ceramic bearing fault diagnosis by leveraging the pre-trained GPT-2 model.Large language models(LLMs)like GPT-2,pre-trained on diverse textual data,exhibit remarkable transfer learning and few-shot learning capabilities,making them ideal for applications with limited labeled data.In this study,acoustic emission(AE)signals from bearings were processed using empirical mode decomposition(EMD),and the extracted AE features were converted into structured text for fine-tuning GPT-2 as a fault classifier.To enhance its performance,we incorporated a modified loss function and softmax activation with cosine similarity,ensuring better generalization in fault identification.Experimental evaluations on a laboratory-collected full ceramic bearing dataset demonstrated that the proposed approach achieved high diagnostic accuracy with as few as five labeled samples,outperforming conventional methods such as k-nearest neighbor(KNN),large memory storage and retrieval(LAMSTAR)neural network,deep neural network(DNN),recurrent neural network(RNN),long short-term memory(LSTM)network,and model-agnostic meta-learning(MAML).The results highlight LLMs’potential to revolutionize fault diagnosis,enabling faster deployment,reduced reliance on extensive labeled datasets,and improved adaptability in industrial monitoring systems.展开更多
With the development of vehicle networks and the construction of roadside units,Vehicular Ad Hoc Networks(VANETs)are increasingly promoting cooperative computing patterns among vehicles.Vehicular edge computing(VEC)of...With the development of vehicle networks and the construction of roadside units,Vehicular Ad Hoc Networks(VANETs)are increasingly promoting cooperative computing patterns among vehicles.Vehicular edge computing(VEC)offers an effective solution to mitigate resource constraints by enabling task offloading to edge cloud infrastructure,thereby reducing the computational burden on connected vehicles.However,this sharing-based and distributed computing paradigm necessitates ensuring the credibility and reliability of various computation nodes.Existing vehicular edge computing platforms have not adequately considered themisbehavior of vehicles.We propose a practical task offloading algorithm based on reputation assessment to address the task offloading problem in vehicular edge computing under an unreliable environment.This approach integrates deep reinforcement learning and reputation management to address task offloading challenges.Simulation experiments conducted using Veins demonstrate the feasibility and effectiveness of the proposed method.展开更多
Drawing upon self-determination theory,this study examines the effects of vicarious abusive supervision on third-party’s self-efficacy and task performance within organizational contexts.Data were collected via surve...Drawing upon self-determination theory,this study examines the effects of vicarious abusive supervision on third-party’s self-efficacy and task performance within organizational contexts.Data were collected via surveys from 337 employees across diverse organizations.The results indicate that vicarious abusive supervision significantly undermines both self-efficacy and task performance among employees who are indirectly exposed to such behavior but not directly targeted.Furthermore,self-efficacy serves as a mediator between vicarious abusive supervision and task performance;however,this mediating effect is attenuated for employees with a high promotion focus.These findings provide valuable theoretical and practical insights,particularly in the domain of organizational behavior,by emphasizing the critical role of promotion focus in mitigating the negative effects of vicarious abusive supervision.This research contributes to the organizational behavior literature by shifting the focus from the traditional supervisor-subordinate dynamic to a third-party perspective,thereby enriching our understanding of how vicarious abusive supervision impacts employees within organizational settings.The study underscores the importance of self-efficacy and promotion focus as key factors in unethical leadership contexts.展开更多
Porters play a crucial role in hospitals because they ensure the efficient transportation of patients,medical equipment,and vital documents.Despite its importance,there is a lack of research addressing the prediction ...Porters play a crucial role in hospitals because they ensure the efficient transportation of patients,medical equipment,and vital documents.Despite its importance,there is a lack of research addressing the prediction of completion times for porter tasks.To address this gap,we utilized real-world porter delivery data from Taiwan University Hospital,China,Yunlin Branch,Taiwan Region of China.We first identified key features that can influence the duration of porter tasks.We then employed three widely-used machine learning algorithms:decision tree,random forest,and gradient boosting.To leverage the strengths of each algorithm,we finally adopted an ensemble modeling approach that aggregates their individual predictions.Our experimental results show that the proposed ensemble model can achieve a mean absolute error of 3 min in predicting task response time and 4.42 min in task completion time.The prediction error is around 50%lower compared to using only the historical average.These results demonstrate that our method significantly improves the accuracy of porter task time prediction,supporting better resource planning and patient care.It helps ward staff streamline workflows by reducing delays,enables porter managers to allocate resources more effectively,and shortens patient waiting times,contributing to a better care experience.展开更多
Under the background of training practical compound talents in software engineering,this paper analyzes the problems existing in the current teaching of software engineering courses represented by software project man...Under the background of training practical compound talents in software engineering,this paper analyzes the problems existing in the current teaching of software engineering courses represented by software project management,puts forward the team task mechanism of software engineering courses with AI empowerment and cooperation and competition,develops a unified project management platform to support the implementation of team tasks,and proves the effectiveness of the scheme through the results obtained.展开更多
基金Supported by the National High Technology Research and Development Program of China(20-H863-05-XXX-XX)the National Natural Science Foundation of China(61171131)+1 种基金Shandong Province Key Research and Development Program(YD01033)the China Scholarship Council Program(201608370049)。
文摘Numerous meta-learning methods focus on the few-shot learning issue,yet most of them assume that various tasks have a shared embedding space,so the generalization ability of the trained model is limited.In order to solve the aforementioned problem,a task-adaptive meta-learning method based on graph neural network(TAGN) is proposed in this paper,where the characterization ability of the original feature extraction network is ameliorated and the classification accuracy is remarkably improved.Firstly,a task-adaptation module based on the self-attention mechanism is employed,where the generalization ability of the model is enhanced on the new task.Secondly,images are classified in non-Euclidean domain,where the disadvantages of poor adaptability of the traditional distance function are overcome.A large number of experiments are conducted and the results show that the proposed methodology has a better performance than traditional task-independent classification methods on two real-word datasets.
基金funded by the Fundamental Research Funds for the Central Universities(J2023-024,J2023-027).
文摘As an important complement to cloud computing, edge computing can effectively reduce the workload of the backbone network. To reduce latency and energy consumption of edge computing, deep learning is used to learn the task offloading strategies by interacting with the entities. In actual application scenarios, users of edge computing are always changing dynamically. However, the existing task offloading strategies cannot be applied to such dynamic scenarios. To solve this problem, we propose a novel dynamic task offloading framework for distributed edge computing, leveraging the potential of meta-reinforcement learning (MRL). Our approach formulates a multi-objective optimization problem aimed at minimizing both delay and energy consumption. We model the task offloading strategy using a directed acyclic graph (DAG). Furthermore, we propose a distributed edge computing adaptive task offloading algorithm rooted in MRL. This algorithm integrates multiple Markov decision processes (MDP) with a sequence-to-sequence (seq2seq) network, enabling it to learn and adapt task offloading strategies responsively across diverse network environments. To achieve joint optimization of delay and energy consumption, we incorporate the non-dominated sorting genetic algorithm II (NSGA-II) into our framework. Simulation results demonstrate the superiority of our proposed solution, achieving a 21% reduction in time delay and a 19% decrease in energy consumption compared to alternative task offloading schemes. Moreover, our scheme exhibits remarkable adaptability, responding swiftly to changes in various network environments.
基金supported in part by the National Natural Science Foundation of China under Grant No.61473066in part by the Natural Science Foundation of Hebei Province under Grant No.F2021501020+2 种基金in part by the S&T Program of Qinhuangdao under Grant No.202401A195in part by the Science Research Project of Hebei Education Department under Grant No.QN2025008in part by the Innovation Capability Improvement Plan Project of Hebei Province under Grant No.22567637H
文摘Recently,one of the main challenges facing the smart grid is insufficient computing resources and intermittent energy supply for various distributed components(such as monitoring systems for renewable energy power stations).To solve the problem,we propose an energy harvesting based task scheduling and resource management framework to provide robust and low-cost edge computing services for smart grid.First,we formulate an energy consumption minimization problem with regard to task offloading,time switching,and resource allocation for mobile devices,which can be decoupled and transformed into a typical knapsack problem.Then,solutions are derived by two different algorithms.Furthermore,we deploy renewable energy and energy storage units at edge servers to tackle intermittency and instability problems.Finally,we design an energy management algorithm based on sampling average approximation for edge computing servers to derive the optimal charging/discharging strategies,number of energy storage units,and renewable energy utilization.The simulation results show the efficiency and superiority of our proposed framework.
基金Supported by the National Pre-research Program during the 14th Five-Year Plan(514010405)。
文摘In response to the scarcity of infrared aircraft samples and the tendency of traditional deep learning to overfit,a few-shot infrared aircraft classification method based on cross-correlation networks is proposed.This method combines two core modules:a simple parameter-free self-attention and cross-attention.By analyzing the self-correlation and cross-correlation between support images and query images,it achieves effective classification of infrared aircraft under few-shot conditions.The proposed cross-correlation network integrates these two modules and is trained in an end-to-end manner.The simple parameter-free self-attention is responsible for extracting the internal structure of the image while the cross-attention can calculate the cross-correlation between images further extracting and fusing the features between images.Compared with existing few-shot infrared target classification models,this model focuses on the geometric structure and thermal texture information of infrared images by modeling the semantic relevance between the features of the support set and query set,thus better attending to the target objects.Experimental results show that this method outperforms existing infrared aircraft classification methods in various classification tasks,with the highest classification accuracy improvement exceeding 3%.In addition,ablation experiments and comparative experiments also prove the effectiveness of the method.
文摘With the rapid expansion of social media,analyzing emotions and their causes in texts has gained significant importance.Emotion-cause pair extraction enables the identification of causal relationships between emotions and their triggers within a text,facilitating a deeper understanding of expressed sentiments and their underlying reasons.This comprehension is crucial for making informed strategic decisions in various business and societal contexts.However,recent research approaches employing multi-task learning frameworks for modeling often face challenges such as the inability to simultaneouslymodel extracted features and their interactions,or inconsistencies in label prediction between emotion-cause pair extraction and independent assistant tasks like emotion and cause extraction.To address these issues,this study proposes an emotion-cause pair extraction methodology that incorporates joint feature encoding and task alignment mechanisms.The model consists of two primary components:First,joint feature encoding simultaneously generates features for emotion-cause pairs and clauses,enhancing feature interactions between emotion clauses,cause clauses,and emotion-cause pairs.Second,the task alignment technique is applied to reduce the labeling distance between emotion-cause pair extraction and the two assistant tasks,capturing deep semantic information interactions among tasks.The proposed method is evaluated on a Chinese benchmark corpus using 10-fold cross-validation,assessing key performance metrics such as precision,recall,and F1 score.Experimental results demonstrate that the model achieves an F1 score of 76.05%,surpassing the state-of-the-art by 1.03%.The proposed model exhibits significant improvements in emotion-cause pair extraction(ECPE)and cause extraction(CE)compared to existing methods,validating its effectiveness.This research introduces a novel approach based on joint feature encoding and task alignment mechanisms,contributing to advancements in emotion-cause pair extraction.However,the study’s limitation lies in the data sources,potentially restricting the generalizability of the findings.
文摘Semantic segmentation of novel object categories with limited labeled data remains a challenging problem in computer vision.Few-shot segmentation methods aim to address this problem by recognizing objects from specific target classes with a few provided examples.Previous approaches for few-shot semantic segmentation typically represent target classes using class prototypes.These prototypes are matched with the features of the query set to get segmentation results.However,class prototypes are usually obtained by applying global average pooling on masked support images.Global pooling discards much structural information,which may reduce the accuracy of model predictions.To address this issue,we propose a Category-Guided Frequency Modulation(CGFM)method.CGFM is designed to learn category-specific information in the frequency space and leverage it to provide a twostage guidance for the segmentation process.First,to self-adaptively activate class-relevant frequency bands while suppressing irrelevant ones,we leverage the Dual-Perception Gaussian Band Pre-activation(DPGBP)module to generate Gaussian filters using class embedding vectors.Second,to further enhance category-relevant frequency components in activated bands,we design a Support-Guided Category Response Enhancement(SGCRE)module to effectively introduce support frequency components into the modulation of query frequency features.Experiments on the PASCAL-5^(i) and COCO-20^(i) datasets demonstrate the promising performance of our model.
基金supported by the National Natural Science Foundation of China(52274055)the Shandong Provincial Natural Science Foundation(ZR2022YQ50)the Taishan Scholar Program of Shandong Province(tsqn202408088)。
文摘Predicting the productivity of multistage fractured horizontal wells plays an important role in exploiting unconventional resources.In recent years,machine learning(ML)models have emerged as a new approach for such studies.However,the scarcity of sufficient real data for model training often leads to imprecise predictions,even though the models trained with real data better characterize geological and engineering features.To tackle this issue,we propose an ML model that can obtain reliable results even with a small amount of data samples.Our model integrates the synthetic minority oversampling technique(SMOTE)to expand the data volume,the support vector machine(SVM)for model training,and the particle swarm optimization(PSO)algorithm for optimizing hyperparameters.To enhance the model performance,we conduct feature fusion and dimensionality reduction.Additionally,we examine the influences of different sample sizes and ML models for training.The proposed model demonstrates higher prediction accuracy and generalization ability,achieving a predicted R^(2)value of up to 0.9 for the test set,compared to the traditional ML techniques with an R^(2)of 0.13.This model accurately predicts the production of fractured horizontal wells even with limited samples,supplying an efficient tool for optimizing the production of unconventional resources.Importantly,the model holds the potential applicability to address similar challenges in other fields constrained by scarce data samples.
基金supported by Suzhou Science and Technology Plan(Basic Research)Project under Grant SJC2023002Postgraduate Research&Practice Innovation Program of Jiangsu Province under Grant KYCX23_3322.
文摘Image classification is crucial for various applications,including digital construction,smart manu-facturing,and medical imaging.Focusing on the inadequate model generalization and data privacy concerns in few-shot image classification,in this paper,we propose a federated learning approach that incorporates privacy-preserving techniques.First,we utilize contrastive learning to train on local few-shot image data and apply various data augmentation methods to expand the sample size,thereby enhancing the model’s generalization capabilities in few-shot contexts.Second,we introduce local differential privacy techniques and weight pruning methods to safeguard model parameters,perturbing the transmitted parameters to ensure user data privacy.Finally,numerical simulations are conducted to demonstrate the effectiveness of our proposed method.The results indicate that our approach significantly enhances model generalization and test accuracy compared to several popular federated learning algorithms while maintaining data privacy,highlighting its effectiveness and practicality in addressing the challenges of model generalization and data privacy in few-shot image scenarios.
基金funded by the China Chongqing Municipal Science and Technology Bureau,grant numbers CSTB2024TIAD-CYKJCXX0009,CSTB2024NSCQ-LZX0043,CSTB2022NSCQ-MSX0288Chongqing Municipal Commission of Housing and Urban-Rural Development,grant number CKZ2024-87+3 种基金the Chongqing University of Technology Graduate Education High-Quality Development Project,grant number gzlsz202401the Chongqing University of Technology—Chongqing LINGLUE Technology Co.,Ltd.Electronic Information(Artificial Intelligence)Graduate Joint Training Basethe Postgraduate Education and Teaching Reform Research Project in Chongqing,grant number yjg213116the Chongqing University of Technology-CISDI Chongqing Information Technology Co.,Ltd.Computer Technology Graduate Joint Training Base.
文摘Although conventional object detection methods achieve high accuracy through extensively annotated datasets,acquiring such large-scale labeled data remains challenging and cost-prohibitive in numerous real-world applications.Few-shot object detection presents a new research idea that aims to localize and classify objects in images using only limited annotated examples.However,the inherent challenge in few-shot object detection lies in the insufficient sample diversity to fully characterize the sample feature distribution,which consequently impacts model performance.Inspired by contrastive learning principles,we propose an Implicit Feature Contrastive Learning(IFCL)module to address this limitation and augment feature diversity for more robust representational learning.This module generates augmented support sample features in a mixed feature space and implicitly contrasts them with query Region of Interest(RoI)features.This approach facilitates more comprehensive learning of both intra-class feature similarity and inter-class feature diversity,thereby enhancing the model’s object classification and localization capabilities.Extensive experiments on PASCAL VOC show that our method achieves a respective improvement of 3.2%,1.8%,and 2.3%on 10-shot of three Novel Sets compared to the baseline model FPD.
文摘Air quality estimation assesses the pollution level in the air,supports public health warnings,and is a valuable tool in environmental management.Although air sensors have proven helpful in this task,sensors are often expensive and difficult to install,while cameras are becoming more popular and accessible,from which images can be collected as data for deep learning models to solve the above task.This leads to another problem:several labeled images are needed to achieve high accuracy when deep-learningmodels predict air quality.In this research,we have threemain contributions:(1)Collect and publish an air quality estimation dataset,namely PTIT_AQED,including environmental image data and air quality;(2)Propose a deep learning model to predict air quality with few data,called PTIT_FAQE(PTIT Few-shot air quality estimation).We build PTIT_FAQE based on EfficientNet-a CNN architecture that ensures high performance in deep learning applications and Few-shot Learning with Prototypical Networks.This helps the model use only a fewtraining data but still achieve high accuracy in air quality estimation.And(3)conduct experiments to prove the superiority of PTIT_FAQE compared to other studies on both PTIT_AQED and APIN datasets.The results show that our model achieves an accuracy of 0.9278 and an F1-Score of 0.9139 on the PTIT_AQED dataset and an accuracy of 0.9467 and an F1-Score of 0.9371 on the APIN dataset,which demonstrate a significant performance improvement compared to previous studies.We also conduct detailed experiments to evaluate the impact of each component on model performance.
文摘Few-shot point cloud 3D object detection(FS3D)aims to identify and locate objects of novel classes within point clouds using knowledge acquired from annotated base classes and a minimal number of samples from the novel classes.Due to imbalanced training data,existing FS3D methods based on fully supervised learning can lead to overfitting toward base classes,which impairs the network’s ability to generalize knowledge learned from base classes to novel classes and also prevents the network from extracting distinctive foreground and background representations for novel class objects.To address these issues,this thesis proposes a category-agnostic contrastive learning approach,enhancing the generalization and identification abilities for almost unseen categories through the construction of pseudo-labels and positive-negative sample pairs unrelated to specific classes.Firstly,this thesis designs a proposal-wise context contrastive module(CCM).By reducing the distance between foreground point features and increasing the distance between foreground and background point features within a region proposal,CCM aids the network in extracting more discriminative foreground and background feature representations without reliance on categorical annotations.Secondly,this thesis utilizes a geometric contrastive module(GCM),which enhances the network’s geometric perception capability by employing contrastive learning on the foreground point features associated with various basic geometric components,such as edges,corners,and surfaces,thereby enabling these geometric components to exhibit more distinguishable representations.This thesis also combines category-aware contrastive learning with former modules to maintain categorical distinctiveness.Extensive experimental results on FS-SUNRGBD and FS-ScanNet datasets demonstrate the effectiveness of this method with average precision exceeding the baseline by up to 8%.
基金supported by funding from the following sources:National Natural Science Foundation of China(U1904119)Research Programs of Henan Science and Technology Department(232102210033,232102210054)+3 种基金Chongqing Natural Science Foundation(CSTB2023NSCQ-MSX0070)Henan Province Key Research and Development Project(231111212000)Aviation Science Foundation(20230001055002)supported by Henan Center for Outstanding Overseas Scientists(GZS2022011).
文摘The key to the success of few-shot semantic segmentation(FSS)depends on the efficient use of limited annotated support set to accurately segment novel classes in the query set.Due to the few samples in the support set,FSS faces challenges such as intra-class differences,background(BG)mismatches between query and support sets,and ambiguous segmentation between the foreground(FG)and BG in the query set.To address these issues,The paper propose a multi-module network called CAMSNet,which includes four modules:the General Information Module(GIM),the Class Activation Map Aggregation(CAMA)module,the Self-Cross Attention(SCA)Block,and the Feature Fusion Module(FFM).In CAMSNet,The GIM employs an improved triplet loss,which concatenates word embedding vectors and support prototypes as anchors,and uses local support features of FG and BG as positive and negative samples to help solve the problem of intra-class differences.Then for the first time,the Class Activation Map(CAM)from the Weakly Supervised Semantic Segmentation(WSSS)is applied to FSS within the CAMA module.This method replaces the traditional use of cosine similarity to locate query information.Subsequently,the SCA Block processes the support and query features aggregated by the CAMA module,significantly enhancing the understanding of input information,leading to more accurate predictions and effectively addressing BG mismatch and ambiguous FG-BG segmentation.Finally,The FFM combines general class information with the enhanced query information to achieve accurate segmentation of the query image.Extensive Experiments on PASCAL and COCO demonstrate that-5i-20ithe CAMSNet yields superior performance and set a state-of-the-art.
基金supported by the Project of Science and Technology Research Program of Chongqing Education Commission of China(No.KJZD-K202401105)High-Quality Development Action Plan for Graduate Education at Chongqing University of Technology(No.gzljg2023308,No.gzljd2024204)+1 种基金the Graduate Innovation Program of Chongqing University of Technology(No.gzlcx20233197)Yunnan Provincial Key R&D Program(202203AA080006).
文摘Blockchain technology,based on decentralized data storage and distributed consensus design,has become a promising solution to address data security risks and provide privacy protection in the Internet-of-Things(IoT)due to its tamper-proof and non-repudiation features.Although blockchain typically does not require the endorsement of third-party trust organizations,it mostly needs to perform necessary mathematical calculations to prevent malicious attacks,which results in stricter requirements for computation resources on the participating devices.By offloading the computation tasks required to support blockchain consensus to edge service nodes or the cloud,while providing data privacy protection for IoT applications,it can effectively address the limitations of computation and energy resources in IoT devices.However,how to make reasonable offloading decisions for IoT devices remains an open issue.Due to the excellent self-learning ability of Reinforcement Learning(RL),this paper proposes a RL enabled Swarm Intelligence Optimization Algorithm(RLSIOA)that aims to improve the quality of initial solutions and achieve efficient optimization of computation task offloading decisions.The algorithm considers various factors that may affect the revenue obtained by IoT devices executing consensus algorithms(e.g.,Proof-of-Work),it optimizes the proportion of sub-tasks to be offloaded and the scale of computing resources to be rented from the edge and cloud to maximize the revenue of devices.Experimental results show that RLSIOA can obtain higher-quality offloading decision-making schemes at lower latency costs compared to representative benchmark algorithms.
基金supported in part by the National Key R&D Program of China under Grant 2022YFB4300601in part by the State Key Laboratory of Advanced Rail Autonomous Operation under Grant RAO2023ZZ003.
文摘Intelligent fault diagnosis technology plays an indispensable role in ensuring the safety,stability,and efficiency of railway operations.However,existing studies have the following limitations.1)They are typical black-box models that lacks interpretability as well as they fuse features by simply stacking them,overlooking the discrepancies in the importance of different features,which reduces the credibility and diagnosis accuracy of the models.2)They ignore the effects of potentially mistaken labels in the training datasets disrupting the ability of the models to learn the true data distribution,which degrades the generalization performance of intelligent diagnosis models,especially when the training samples are limited.To address the above items,an interpretable few-shot framework for fault diagnosis with noisy labels is proposed for train transmission systems.In the proposed framework,a feature extractor is constructed by stacked frequency band focus modules,which can capture signal features in different frequency bands and further adaptively concentrate on the features corresponding to the potential fault characteristic frequency.Then,according to prototypical network,a novel metric-based classifier is developed that is tolerant to mislabeled support samples in the case of limited samples.Besides,a new loss function is designed to decrease the impact of label mistakes in query datasets.Finally,fault simulation experiments of subway train transmission systems are designed and conducted,and the effectiveness as well as superiority of the proposed method are proved by ablation experiments and comparison with the existing methods.
基金supported and funded by theDeanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University(IMSIU)(grant number IMSIU-RP23082).
文摘Fog computing is a key enabling technology of 6G systems as it provides quick and reliable computing,and data storage services which are required for several 6G applications.Artificial Intelligence(AI)algorithms will be an integral part of 6G systems and efficient task offloading techniques using fog computing will improve their performance and reliability.In this paper,the focus is on the scenario of Partial Offloading of a Task to Multiple Helpers(POMH)in which larger tasks are divided into smaller subtasks and processed in parallel,hence expediting task completion.However,using POMH presents challenges such as breaking tasks into subtasks and scaling these subtasks based on many interdependent factors to ensure that all subtasks of a task finish simultaneously,preventing resource wastage.Additionally,applying matching theory to POMH scenarios results in dynamic preference profiles of helping devices due to changing subtask sizes,resulting in a difficult-to-solve,externalities problem.This paper introduces a novel many-to-one matching-based algorithm,designed to address the externalities problem and optimize resource allocation within POMH scenarios.Additionally,we propose a new time-efficient preference profiling technique that further enhances time optimization in POMH scenarios.The performance of the proposed technique is thoroughly evaluated in comparison to alternate baseline schemes,revealing many advantages of the proposed approach.The simulation findings indisputably show that the proposed matching-based offloading technique outperforms existing methodologies in the literature,yielding a remarkable 52 reduction in task latency,particularly under high workloads.
文摘Full ceramic bearings are mission-critical components in oil-free environments,such as food processing,semiconductor manufacturing,and medical applications.Developing effective fault diagnosis methods for these bearings is essential to ensuring operational reliability and preventing costly failures.Traditional supervised deep learning approaches have demonstrated promise in fault detection,but their dependence on large labeled datasets poses significant challenges in industrial settings where fault-labeled data is scarce.This paper introduces a few-shot learning approach for full ceramic bearing fault diagnosis by leveraging the pre-trained GPT-2 model.Large language models(LLMs)like GPT-2,pre-trained on diverse textual data,exhibit remarkable transfer learning and few-shot learning capabilities,making them ideal for applications with limited labeled data.In this study,acoustic emission(AE)signals from bearings were processed using empirical mode decomposition(EMD),and the extracted AE features were converted into structured text for fine-tuning GPT-2 as a fault classifier.To enhance its performance,we incorporated a modified loss function and softmax activation with cosine similarity,ensuring better generalization in fault identification.Experimental evaluations on a laboratory-collected full ceramic bearing dataset demonstrated that the proposed approach achieved high diagnostic accuracy with as few as five labeled samples,outperforming conventional methods such as k-nearest neighbor(KNN),large memory storage and retrieval(LAMSTAR)neural network,deep neural network(DNN),recurrent neural network(RNN),long short-term memory(LSTM)network,and model-agnostic meta-learning(MAML).The results highlight LLMs’potential to revolutionize fault diagnosis,enabling faster deployment,reduced reliance on extensive labeled datasets,and improved adaptability in industrial monitoring systems.
基金supported by the Open Foundation of Henan Key Laboratory of Cyberspace Situation Awareness(No.HNTS2022020)the Science and Technology Research Program of Henan Province of China(232102210134,182102210130)Key Research Projects of Henan Provincial Universities(25B520005).
文摘With the development of vehicle networks and the construction of roadside units,Vehicular Ad Hoc Networks(VANETs)are increasingly promoting cooperative computing patterns among vehicles.Vehicular edge computing(VEC)offers an effective solution to mitigate resource constraints by enabling task offloading to edge cloud infrastructure,thereby reducing the computational burden on connected vehicles.However,this sharing-based and distributed computing paradigm necessitates ensuring the credibility and reliability of various computation nodes.Existing vehicular edge computing platforms have not adequately considered themisbehavior of vehicles.We propose a practical task offloading algorithm based on reputation assessment to address the task offloading problem in vehicular edge computing under an unreliable environment.This approach integrates deep reinforcement learning and reputation management to address task offloading challenges.Simulation experiments conducted using Veins demonstrate the feasibility and effectiveness of the proposed method.
文摘Drawing upon self-determination theory,this study examines the effects of vicarious abusive supervision on third-party’s self-efficacy and task performance within organizational contexts.Data were collected via surveys from 337 employees across diverse organizations.The results indicate that vicarious abusive supervision significantly undermines both self-efficacy and task performance among employees who are indirectly exposed to such behavior but not directly targeted.Furthermore,self-efficacy serves as a mediator between vicarious abusive supervision and task performance;however,this mediating effect is attenuated for employees with a high promotion focus.These findings provide valuable theoretical and practical insights,particularly in the domain of organizational behavior,by emphasizing the critical role of promotion focus in mitigating the negative effects of vicarious abusive supervision.This research contributes to the organizational behavior literature by shifting the focus from the traditional supervisor-subordinate dynamic to a third-party perspective,thereby enriching our understanding of how vicarious abusive supervision impacts employees within organizational settings.The study underscores the importance of self-efficacy and promotion focus as key factors in unethical leadership contexts.
基金supported by National Taiwan University Hospital Yunlin Branch Project NTUHYL 110.C018National Science and Technology Council,Taiwan.
文摘Porters play a crucial role in hospitals because they ensure the efficient transportation of patients,medical equipment,and vital documents.Despite its importance,there is a lack of research addressing the prediction of completion times for porter tasks.To address this gap,we utilized real-world porter delivery data from Taiwan University Hospital,China,Yunlin Branch,Taiwan Region of China.We first identified key features that can influence the duration of porter tasks.We then employed three widely-used machine learning algorithms:decision tree,random forest,and gradient boosting.To leverage the strengths of each algorithm,we finally adopted an ensemble modeling approach that aggregates their individual predictions.Our experimental results show that the proposed ensemble model can achieve a mean absolute error of 3 min in predicting task response time and 4.42 min in task completion time.The prediction error is around 50%lower compared to using only the historical average.These results demonstrate that our method significantly improves the accuracy of porter task time prediction,supporting better resource planning and patient care.It helps ward staff streamline workflows by reducing delays,enables porter managers to allocate resources more effectively,and shortens patient waiting times,contributing to a better care experience.
文摘Under the background of training practical compound talents in software engineering,this paper analyzes the problems existing in the current teaching of software engineering courses represented by software project management,puts forward the team task mechanism of software engineering courses with AI empowerment and cooperation and competition,develops a unified project management platform to support the implementation of team tasks,and proves the effectiveness of the scheme through the results obtained.