Fertilizer effect model such as ternary quadratic, unary quadratic, straight line and platform model was respectively used to analyze the two-year "3414" test data collected from banana garden in Fushan Town of Hain...Fertilizer effect model such as ternary quadratic, unary quadratic, straight line and platform model was respectively used to analyze the two-year "3414" test data collected from banana garden in Fushan Town of Hainan Province. The results showed that the optimal fertilizing amount of ternary quadratic model simulation was0.374 kg/plant of N, 0.289 kg/plant of P2O5 and 0.891 kg/plant of K2 O. According to the yield trend characteristic, the optimal fertilizing amount of unary quadratic model was 0.400kg/plant of N, 0.214 kg/plant of P2O5 and 0.901kg/plant of K2 O. Thus it can be seen that only partial indices of the optimal fertilizing amount of ternary quadratic model simulation were higher than that of unary quadratic model. Considering the results, the optimal fertilizing amount of Brazil banana was 0.374-0.400kg/plant of N, 0.214-0.289 kg/plant of P2O5 and 0.891-0.901 kg/plant of K2 O.展开更多
To get the cultivation pattern featured by improved varieties and fine methods for strong-gluten and high-yielding wheat variety Taishan 27,this paper used Taishan 27 as material to study the effect of fertilizing amo...To get the cultivation pattern featured by improved varieties and fine methods for strong-gluten and high-yielding wheat variety Taishan 27,this paper used Taishan 27 as material to study the effect of fertilizing amount and planting density on yield and quality of material.The results showed that Taishan 27 had high yield under fertilizing amount of 225 kg/ha pure nitrogen and planting density of 240 × 104-300× 10~4/ha; the yield was lowest under fertilizing amount of 300 kg/ha pure nitrogen and planting density of 360 × 10~4/ha. The suitable planting density for Taishan 27 was 240 × 104-300 × 10~4/ha,and the fertilizing amount of nitrogen should be based on different soil fertility conditions to avoid water and fertilizer stress and improve yield.展开更多
Backgroud Before fertilization,spermatozoa undergo a crucial maturation step called capacitation,which is a unique event regulates the sperm’s ability for successful fertilization.The capacitation process takes place...Backgroud Before fertilization,spermatozoa undergo a crucial maturation step called capacitation,which is a unique event regulates the sperm’s ability for successful fertilization.The capacitation process takes place as the spermatozoa pass through the female reproductive tract(FRT).Dihydrolipoamide dehydrogenase(DLD)protein is a post-pyruvate metabolic enzyme,exhibiting reactive oxygen species(ROS)production which causes capacitation.Additionally,other vital functions of DLD in buffalo spermatozoa are hyperactivation and acrosome reaction.DLD produces the optimum amount of ROS required to induce capacitation process in FRT.Depending on physiological or patho-physiological conditions,DLD can either enhance or attenuate the production of reactive oxygen species(ROS).Aim of this study was to investigate whether changes in the production of ROS in sperm cells can impact their ability to fertilize by triggering the capacitation and acrosome reaction.Results In this study,abundance of DLD protein was quantified between high(n=5)and low fertile bull(n=5)sper-matozoa.It was found that compared to high-fertile(HF)bulls,low-fertile(LF)bulls exhibited significantly(P<0.05)higher DLD abundances.Herein,we optimised the MICA concentration to inhibit DLD function,spermatozoa were treated with MICA in time(0,1,2,3,4,and 5 h)and concentrations(1,2.5,5,and 10 mmol/L)dependent manner.Maximum DLD inhibition was found to be at 4 h in 10 mmol/L MICA concentration,which was used for further exper-imentation in HF and LF.Based on DLD inhibition it was seen that LF bull spermatozoa exhibited significantly(P<0.05)higher ROS production and acrosome reaction in comparison to the HF bull spermatozoa.The kinematic parameters of the spermatozoa such as percent total motility,velocity parameters(VCL,VSL,and VAP)and other parameters(BCF,STR,and LIN)were also decreased in MICA treated spermatozoa in comparison to the control(capacitated)spermatozoa.Conclusions The present study provides an initial evidence explaining the buffalo bull spermatozoa with higher DLD abundance undergo early capacitation,which subsequently reduces their capacity to fertilize.展开更多
This research study explored the efficacy of leaf litter compost as a sustainable soil amendment with the objective of promoting soil health and mitigating the accumulation of potentially toxic elements. The investiga...This research study explored the efficacy of leaf litter compost as a sustainable soil amendment with the objective of promoting soil health and mitigating the accumulation of potentially toxic elements. The investigation encompassed the impact of various organic compost amendments, including leaf compost, cow dung manure, kitchen waste compost, municipal organic waste compost, and vermicompost. The study employed Inductively Coupled Plasma Mass Spectrometry (ICP-MS) to evaluate soil nutrient levels and concentrations of Potentially Toxic Elements (PTEs) such as arsenic, chromium, cadmium, mercury, lead, nickel, and lithium. The fertilization and bioremediation potential of these compost amendments are quantified using an indexing method. Results indicated a substantial increase in overall nutrient levels (carbon, nitrogen, phosphorus, potassium, and sulfur) in soils treated with leaf compost and other organic composts. Fertility indices (FI) are notably higher in compost-amended soils (ranging from 2.667 to 3.938) compared to those amended with chemical fertilizers (ranging from 2.250 to 2.813) across all soil samples. Furthermore, the mean concentrations of PTEs were significantly lower in soils treated with leaf compost and other organic compost amendments compared to those treated with chemical fertilizers amendments. The assessment through the indexing method revealed a high clean index (CI) for leaf compost amendment (ranging from 3.407 to 3.58), whereas the chemical fertilizer amendment exhibits a relatively lower CI (ranging from 2.78 to 3.20). Consequently, leaf compost and other organic composts exhibit the potential to enhance sustainable productivity, promoting soil health and environmental safety by improving nutrient levels and remediating potentially toxic elements in the soil.展开更多
A field experiment was carried out at Ismailia Research Station, Ismailia Governorate from 2020-2022 to improve the growth of Khaya senegalensis and Swietenia mahagoni by using a combination of mineral fertilizer (NPK...A field experiment was carried out at Ismailia Research Station, Ismailia Governorate from 2020-2022 to improve the growth of Khaya senegalensis and Swietenia mahagoni by using a combination of mineral fertilizer (NPK) and biological fertilizer (Azotobacter chroococcum, Bacillus megatherium, and Bacillus circulant) as recommended dose under new sandy soils conditions. Split plot designed with four treatments (Control, (50% Mineral fertilizer (M.) + 50% Biological fertilizer (Bio.)), 100% M. and 100% Bio.) of each species. Vegetative growth, leaf area, tree biomass, stored carbon, basal area, tree volume, and in the soil both of microbial account and mineral content were determined. The experimental results showed no significant differences between studied species among the most studied parameters except for Khaya senegalensis which gave the highest significant difference in root biomass and below-stored carbon than Swietenia mahagoni. Evidently, the highest significant growth parameters were 100% mineral fertilizer followed by (50% M. + 50% Bio.) as compared with control. No significant difference between 100% M. and (50% M. + 50% Bio.) of shoot dry biomass (15.19 and 12.02 kg, respectively) and above-stored carbon (0.28 and 0.22 Mt, respectively). Microbial account and mineral content in soil were improved after cultivation of tree species compared to before planting and control, especially with 50% mineral fertilizer and 50% bio-fertilizer treatment. In conclusion, a treatment containing 50% mineral fertilizer and 50% bio-fertilizer has led to the ideal Khaya senegalensis and Swietenia mahagoni growth in sandy soil for cheaper and sustainable.展开更多
Elite maize hybrid Guidan0810 was selected as material, and the effects of fertilizing level and planting densities on yield and nitrogen utilization were dis- cussed in the study. In field experiments as per double-c...Elite maize hybrid Guidan0810 was selected as material, and the effects of fertilizing level and planting densities on yield and nitrogen utilization were dis- cussed in the study. In field experiments as per double-cropping system, 4 main plots (fertilization levels) and 6 subplots (planting densities) were set in a split plot design. The results suggested that yield had close relationship with fertilization levels and planting densities. Different fertilization levels and planting densities significantly affected yield. With the increase of nitrogen fertilization, nitrogen use efficiency, nitrogen agronomic efficiency and nitrogen physiological efficiency declined. Under the same fertilization level, nitrogen use efficiency, nitrogen agronomic efficiency and nitrogen physiological efficiency grew a little with the increase of planting density, so nitrogen efficiency could be improved by regulating planting density. The results also showed that A2 (including N 225.0 kg/hm2, P205 75.0 kg/hm^2, K20 187.5 kg/hm^2) matching to B3 (52 500 plants/hm^2) or B4(60 000 plants/hm^2) was a better design, which could obtain a higher yield in the range of 7 913.2-8 207.8 kg/hm2, respectively.展开更多
The effects of potassium (K) application rates on the yield, fiber quality and K fertilizer use efficiency of three hybrid cotton varieties (Jin102, Xiangzamian8, Siyang328) were studied in field experiment. Ferti...The effects of potassium (K) application rates on the yield, fiber quality and K fertilizer use efficiency of three hybrid cotton varieties (Jin102, Xiangzamian8, Siyang328) were studied in field experiment. Fertilizer rates of K2O 135 and 270 kg/hm2, representing 1x and 2x recommended K rates, were applied, no application of k fertilizer as the CK. The results show that the lint yield increased 39.13%-57.48%with potassium application, highly significantly. Al yield components of the three hy-brid cotton varieties increased with the increase of K application amounts. The bol number per plant, single bol weight and lint percentage were increased by 14.24%-40.29%, 3.59%-15.51% and 0.16%-4.89%, respectively, and the fiber length and specific strength also increased with the increasing K application amounts, showing no significant influence on Micronaire. When the K application amounts increased from 135 to 270 kg/hm2, the partial factor productivity (PFPk) reduced by 45.93%-48.01%, and the agronomic efficiency (AEk) reduced by 37.1%-42.9%. The PFPk and KE (K efficiency coefficients) of S328 were the highest among the three varieties, which also showed the strongest resistance to low potassium stress, and with no potassi-um fertilizer application (K0), the lint yield of S328 was 5.54% and 11.19% higher than that of X8 and J102. The AEk of J102 was the highest, and its reward of K fertilizer was the greatest among the three varieties.展开更多
[Objective] The paper was to study the nitrogen application amount and nitrogen application model for high grade hybrid rapeseed (Brassica napus L.) to get high yield. [Method] With "Youyan 599" and "Sanbei 98" ...[Objective] The paper was to study the nitrogen application amount and nitrogen application model for high grade hybrid rapeseed (Brassica napus L.) to get high yield. [Method] With "Youyan 599" and "Sanbei 98" as materials, using quadratic regression orthogonal gyration combination design, the impact of nitrogen application amount during various periods on rapeseed yield was studied. [Result] The combinations of factors to obtain the highest yield index (2 898.211 kg / hm 2 ) of "Youyan 599" were as follows: living rape fertilizer 89.27 kg / hm 2 , opening fertilizer 120 kg / hm 2 , 12 th lunar month fertilizer 101.12 kg / hm 2 , total nitrogen application amount 310.39 kg / hm 2 . The proportions of living rape fertilizer, opening fertilizer and 12th lunar month fertilizer were 28.76%, 38.66% and 32.58%, respectively. The combinations of factors to obtain the highest yield index (2 870.14 kg/hm 2 ) of "Sanbei 98" were as follows: living rape fertilizer 120 kg / hm 2 , opening fertilizer 120 kg / hm 2 , 12 th lunar month fertilizer 37.55kg / hm 2 , total nitrogen application amount 277.55 kg / hm 2 . The proportions of living rape fertilizer, opening fertilizer and 12 th lunar month fertilizer were 43.24%, 43.24% and 13.53%, respectively. The combinations of factors to obtain the highest yield index of two combined varieties (2 813.82 kg/hm 2 )were as follows: living rape fertilizer 120 kg/hm 2 , opening fertilizer 120 kg/hm 2 , 12 th lunar month fertilizer 76.23 kg/hm 2 , total nitrogen application amount 316.23 kg/hm 2 . The proportions of living rape fertilizer, opening fertilizer and 12 th lunar month fertilizer were 37.95% , 37.95% and 24.11% , respectively. [Conclusion] The paper provided theoretical basis for high yield cultivation of high grade hybridized rapeseed.展开更多
Agricultural practices significantly contribute to greenhouse gas(GHG)emissions,necessitating cleaner production technologies to reduce environmental pressure and achieve sustainable maize production.Plastic film mulc...Agricultural practices significantly contribute to greenhouse gas(GHG)emissions,necessitating cleaner production technologies to reduce environmental pressure and achieve sustainable maize production.Plastic film mulching is commonly used in the Loess Plateau region.Incorporating slow-release fertilizers as a replacement for urea within this practice can reduce nitrogen losses and enhance crop productivity.Combining these techniques represents a novel agricultural approach in semi-arid areas.However,the impact of this integration on soil carbon storage(SOCS),carbon footprint(CF),and economic benefits has received limited research attention.Therefore,we conducted an eight-year study(2015-2022)in the semi-arid northwestern region to quantify the effects of four treatments[urea supplied without plastic film mulching(CK-U),slow-release fertilizer supplied without plastic film mulching(CK-S),urea supplied with plastic film mulching(PM-U),and slow-release fertilizer supplied with plastic film mulching(PM-S)]on soil fertility,economic and environmental benefits.The results revealed that nitrogen fertilizer was the primary contributor to total GHG emissions(≥71.97%).Compared to other treatments,PM-S increased average grain yield by 12.01%-37.89%,water use efficiency by 9.19%-23.33%,nitrogen accumulation by 27.07%-66.19%,and net return by 6.21%-29.57%.Furthermore,PM-S decreased CF by 12.87%-44.31%and CF per net return by 14.25%-41.16%.After eight years,PM-S increased SOCS(0-40 cm)by 2.46%,while PM-U decreased it by 7.09%.These findings highlight the positive effects of PM-S on surface soil fertility,economic gains,and environmental benefits in spring maize production on the Loess Plateau,underscoring its potential for widespread adoption and application.展开更多
Both straw incorporation and irrigation practices affect biological nitrogen(N)fixation(BNF),but it is still unclear how straw incorporation impacts BNF under continuous(CFI)or intermittent(IFI)flooding irrigation in ...Both straw incorporation and irrigation practices affect biological nitrogen(N)fixation(BNF),but it is still unclear how straw incorporation impacts BNF under continuous(CFI)or intermittent(IFI)flooding irrigation in a rice cropping system.A15N2-labeling chamber system was placed in a rice field to evaluate BNF with straw incorporation under CFI or IFI for 90 d.The nif H(gene encoding the nitrogenase reductase subunit)DNA and c DNA in soil were amplified using real-time quantitative polymerase chain reaction,and high-throughput sequencing was applied to the nif H gene.The total fixed N in the straw incorporation treatment was 14.3 kg ha^(-1)under CFI,being 116%higher than that under IFI(6.62 kg ha^(-1)).Straw incorporation and CFI showed significant interactive effects on the total fixed N and abundances of nif H DNA and c DNA.The increase in BNF was mainly due to the increase in the abundances of heterotrophic diazotrophs such as Desulfovibrio,Azonexus,and Azotobacter.These results indicated that straw incorporation stimulated BNF under CFI relative to IFI,which might ultimately lead to a rapid enhancement of soil fertility.展开更多
Terrestrial ecosystems heavily depend on vegetation,which responds to carbon dioxide(CO_(2))fertilization in hot and humid regions.The subtropical humid karst region is a hot and humid region;whether and to what exten...Terrestrial ecosystems heavily depend on vegetation,which responds to carbon dioxide(CO_(2))fertilization in hot and humid regions.The subtropical humid karst region is a hot and humid region;whether and to what extent CO_(2)fertilization affects vegetation changes in such regions remains unclear.In this study,we investigated the degree to which CO_(2)fertilization influences vegetation changes,along with their spatial and temporal differences,in the subtropical humid karst region using time-lag effect analysis,a random forest model,and multiple regression analysis.Results showed that CO_(2)fertilization plays an important role in vegetation changes,exhibiting clear spatial variations across different geomorphological zones,with its degree of influence ranging mainly between 11%and 25%.The highest contribution of CO_(2)fertilization was observed in the karst basin and non-karstic region,whereas the lowest contribution was found in the karst plateau region.Previous studies have primarily attributed vegetation changes in subtropical humid karst region to ecological engineering,leading to an overestimation of its contribution to these changes.The findings of this study enhance the understanding of the mechanism of vegetation changes in humid karst region and provide theoretical and practical insights for ecological and environmental protection in these regions.展开更多
Whilst phosphorus(P)in soil is considered to be abundant,the portion available for plant uptake constitutes less than 1%of the overall P present.To enhance crop productivity,the utilization of mineral P fertilizers ha...Whilst phosphorus(P)in soil is considered to be abundant,the portion available for plant uptake constitutes less than 1%of the overall P present.To enhance crop productivity,the utilization of mineral P fertilizers has become pervasive in agriculture.Nonetheless,the escalating prices of chemical fertilizers,coupled with new European regulations prohibiting the use of P fertilizers containing cadmium,have highlighted the urgency to identify environmentally friendly products and practices for P fertilization in agricultural soils.This comprehensive review delves into the current landscape of P fertilization from agricultural,political,and economic standpoints.We recognize the potential of microbes in mobilizing P,but emphasize the necessity for more robust research to establish their effectiveness in promoting plant P uptake under real-world conditions.Additionally,we explore the role of agricultural conservation practices,such as optimal tillage,diversified cropping systems,and increased organic carbon input,in conserving P.Furthermore,this review contemplates forthcoming innovations in research.These innovations encompass the development of enhanced formulations for biofertilizers and the undertaking of more comprehensive studies within the realm of conservation agriculture.All these endeavors collectively hold the potential to augment P accessibility to plants in a sustainable manner,thereby advancing agricultural sustainability and productivity.展开更多
The trade-off between yield and environmental effects caused by nitrogen fertilizer application is an important issue in wheat production.A reduction in fertile florets is one of the main reasons for the lower yields ...The trade-off between yield and environmental effects caused by nitrogen fertilizer application is an important issue in wheat production.A reduction in fertile florets is one of the main reasons for the lower yields under low nitrogen application rates.Brassinosteroids(BRs)have been found to play a role in nitrogen-induced rice spikelet degeneration.However,whether BRs play a role in wheat floret development and the mechanisms involved are not clear.Therefore,a nitrogen gradient experiment and exogenous spraying experiment were conducted to investigate the role and mechanism of BRs in wheat floret development under low nitrogen stress.The results showed that as the nitrogen application decreased,the endogenous BRs content of the spikes decreased,photosynthesis weakened,and total carbon,soluble sugar and starch in the spikes decreased,leading to a reduction in the number of fertile florets.Under low nitrogen stress,exogenous spraying of 24-epibrassinolide promoted photosynthesis,and stimulated stem fructan hydrolysis and the utilization and storage of sucrose in spikes,which directed more carbohydrates to the spikes and increased the number of fertile florets.In conclusion,BRs mediate the effects of nitrogen fertilizer on wheat floret development,and under low nitrogen stress,foliar spraying of 24-epibrassinolide promotes the flow of carbohydrates from the stem to the spikes,alleviating wheat floret degeneration.展开更多
Objective Selective estrogen receptor modulators(SERMs)have demonstrated efficacy in the treatment of hypogonadism in males and male factor infertility.Two SERMs,clomiphene citrate and tamoxifen,are now prescribed for...Objective Selective estrogen receptor modulators(SERMs)have demonstrated efficacy in the treatment of hypogonadism in males and male factor infertility.Two SERMs,clomiphene citrate and tamoxifen,are now prescribed for off-label use to treat both conditions in males.However,existing literature compares mixed protocols with active management.We aimed to conduct a meta-analysis to evaluate the effect of clomiphene and tamoxifen versus placebo on natural pregnancy rates.Methods We conducted a comprehensive systematic review of electronic databases:MEDLINE,PubMed/PMC,EMBASE,CINAHL,Cochrane Central Register of Controlled Trials(CENTRAL),Scopus,Google Scholar,and Web of Science.Articles satisfying all selection criteria were analyzed.The primary outcome was the incidence of pregnancy after receiving the treatment.Secondary outcomes included serum follicle-stimulating hormone,luteinizing hormone,and testosterone levels,and sperm count and motility.We calculated the pooled odds ratio,risk ratio,and risk difference to ascertain possible alterations in the direction of the pooled effect size.Results Ten randomized controlled trials were ultimately included and underwent data extraction.Clomiphene citrate and placebo groups had similar pregnancy rates(10.4%and 7.1%,respectively;odds ratio 1.30[95%confidence interval 0.27–6.17];p=0.74).No meta-analysis could be calculated for pregnancy rates in tamoxifen versus placebo groups.Heterogeneity among the studies of both SERMs ranged from low to high.Conclusion Although clomiphene citrate and tamoxifen are often used off-label for the treatment of male infertility secondary to hypogonadism,studies of SERMs in the treatment of idiopathic male factor infertility are limited and heterogenous,preventing this meta-analysis from investigating the efficacy of SERMs on male infertility.The effect of clomiphene citrate or tamoxifen on the pregnancy rate remains uncertain.展开更多
Organic material combined with inorganic fertilizer has been shown to greatly improve crop yield and maintain soil fertility globally. However, it remains unclear if crop yield and soil fertility can be sustained in t...Organic material combined with inorganic fertilizer has been shown to greatly improve crop yield and maintain soil fertility globally. However, it remains unclear if crop yield and soil fertility can be sustained in the long term under the combined application of organic and inorganic fertilizers. Three long-term field trials were conducted to investigate the effects of organic amendments on the grain sustainable yield index(SYI), soil fertility index(SFI)and nutrient balance in maize–wheat cropping systems of central and southern China during 1991–2019. Five treatments were included in the trials: 1) no fertilization(control);2) balanced mineral fertilization(NPK);3) NPK plus manure(NPKM);4) high dose of NPK plus manure(1.5NPKM);and 5) NPK plus crop straw(NPKS). Over time, the grain yields of wheat and maize showed an increasing trend in all four fertilization treatments at the Yangling(YL) and Zhengzhou(ZZ) locations, while they declined at Qiyang(QY). The grain yield in the NPKM and 1.5NPKM treatments gradually exceeded that of the NPK and NPKS treatments at the QY site. The largest SYI was recorded in the NPKM treatment across the three sites, suggesting that inorganic fertilizer combined with manure can effectively improve crop yield sustainability. Higher SYI values were recorded at the YL and ZZ sites than at the QY site, possibly because the soil was more acid at QY. The key factors affecting grain yield were soil available phosphorus(AP) and available potassium(AK) at the YL and ZZ sites, and pH and AP at the QY site.All fertilization treatments resulted in soil N and P surpluses at the three sites, but soil K surpluses were recorded only at the QY site. The SFI was greater in the 1.5NPKM, NPKM and NPKS treatments than in the NPK treatment by 13.3–40.0 and 16.4–63.6% at the YL and ZZ sites, respectively, and was significantly higher in the NPKM and 1.5NPKM treatments than in the NPK and NPKS treatments at the QY site. A significant, positive linear relationship was found between SFI and crop yield, and SYI and nutrient balance, indicating that grain yield and its sustainability significantly increased with increasing soil fertility. The apparent N, P and K balances positively affected SFI.This study suggests that the appropriate amount of manure mixed with mineral NPK fertilizer is beneficial to the development of sustainable agriculture, which effectively increases the crop yield and yield sustainability by improving soil fertility.展开更多
Both soil organic carbon (SOC) and iron (Fe) oxide content, among other factors, drive the formation and stability of soil aggregates.However, the mechanism of these drivers in greenhouse soil fertilized with organic ...Both soil organic carbon (SOC) and iron (Fe) oxide content, among other factors, drive the formation and stability of soil aggregates.However, the mechanism of these drivers in greenhouse soil fertilized with organic fertilizer is not well understood.In a 3-year field experiment, we aimed to investigate the factors which drive the stability of soil aggregates in greenhouse soil.To explore the impact of organic fertilizer on soil aggregates, we established four treatments:no fertilization (CK);inorganic fertilizer (CF);organic fertilizer (OF);and combined application of inorganic and organic fertilizers(COF).The application of organic fertilizer significantly enhanced the stability of aggregates, that is it enhanced the mean weight diameter, geometric mean diameter and aggregate content (%) of>0.25 mm aggregate fractions.OF and COF treatments increased the concentration of SOC, especially the aliphatic-C, aromatic-C and polysaccharide-C components of SOC, particularly in>0.25 mm aggregates.Organic fertilizer application significantly increased the content of free Fe(Fed), reactive Fe (Feo), and non-crystalline Fe in both bulk soil and aggregates.Furthermore, non-crystalline Fe showed a positive correlation with SOC content in both bulk soil and aggregates.Both non-crystalline Fe and SOC were significantly positively correlated with>2 mm mean weight diameter.Overall, we believe that the increase of SOC, aromatic-C, and non-crystal ine Fe concentrations in soil after the application of organic fertilizer is the reason for improving soil aggregate stability.展开更多
To promote the growth of cutting seeding of poplar(Populus L.),nitrogen(N)fertilizer and surface weed managements were required.We here conducted a pot experiment to examine the effects of natural vegetation,barnyardg...To promote the growth of cutting seeding of poplar(Populus L.),nitrogen(N)fertilizer and surface weed managements were required.We here conducted a pot experiment to examine the effects of natural vegetation,barnyardgrass(Echinochloa Beauv.),and sesbania(Sesbania cannabina pers.)on the growth of poplar cutting seedlings,soil properties,and ammonia(NH3)volatilization under three N inputs(0,0.5,and 1.5 g/pot,i.e.,N0,N0.5,and N1,respectively).Results showed that N application promoted the growth of poplar cutting seedlings,including plant height,ground diameter,and biomass,compared with N0 treatment.Moreover,under N0,sesbania significantly increased the plant height by 87.1%,barnyardgrass and sesbania significantly increased the ground diameter(16.2%and 51.5%),and biomass(67.4%and 74.7%)of poplar cutting seedlings,compared with natural vegetation management.Compared to natural vegetation,soil organic matter(SOM)of barnyardgrass and sesbania covered soil significantly increased by 12.4%and 18.7%at N1,respectively.In addition,soil total N(TN)content was significantly increased by 15.8%in barnyardgrass planted at N0.The soil ammonium N(NH_(4)^(+)-N)content decreased with the planting of barnyardgrass and sesbania across all levels of N application.At N0.5,the nitrate N(NO_(3)^(−)-N)content of soil planted with barnyardgrass significantly increased compared to both the natural vegetation and the sesbania groups.Compared to the natural vegetation,the soil available phosphorus(AP)content of the barnyardgrass group significantly increasing by 78.8%at N0.5,soil available potassium(AK)content was significantly reduced by 12.5%in the sesbania group at N0 and increased by 24.1%in the barnyardgrass group at N1.We found that cumulative NH3 emissions were significantly higher in all treatment groups at the N1 level than that at the N0.5 level,while the differences among the three plants treated were not significant.The results suggest that both barnyardgrass and sesbania promote seedling growth in the short term,while also increase certain properties.Therefore,effective herb management during the seedling stage is recommended in nurseries to support seedling growth and retain soil fertility.展开更多
A four-year field experiment was conducted with two cultivars and four N rate to investigate the spatiotemporal characteristics of leaf senescence in maize after silking and its response to N fertilizer rates on them,...A four-year field experiment was conducted with two cultivars and four N rate to investigate the spatiotemporal characteristics of leaf senescence in maize after silking and its response to N fertilizer rates on them,as well as to reveal the differences in post-silking chlorophyll degradation between low-N-tolerant cultivars.The results showed that the order of leaf senescence after silking in maize was lower leaf>upper leaf>ear leaf,leaf tip>middle>base.Increasing N fertilizer down-regulated the expression of ZmCLH2 and ZmPPH in the leaves at 10-30 d after silking,reducing CLH and PPH activities,thereby delaying the leaf senescence.These effects were more prominent in low-N-sensitive cultivar Xianyu 508(XY508)than in low-N-tolerant cultivar Zhenghong 311(ZH311),especially in the lower leaves and leaf tip.Under low N condition,leaf yellowing and chlorophyll degradation occurred later and slower in ZH311 than in XY508.This resulted in a higher post-silking dry matter accumulation and grain yield in ZH311,which may be one of the important physiological bases of low nitrogen tolerant cultivars.Future research should focus on developing low-N-tolerant maize cultivars with slower leaf senescence near the ear after silking.展开更多
Phosphorus(P)poses a global challenge to the environment and human health due to its natural association with heavy metals.Sustainable use of P is crucial to ensure food security for future generations.An analysis of ...Phosphorus(P)poses a global challenge to the environment and human health due to its natural association with heavy metals.Sustainable use of P is crucial to ensure food security for future generations.An analysis of the 150 phosphate fertilizers stored at the Institute for Crop and Soil Science in Germany has been conducted,supplemented by previously published data.The elements Cd,Bi,U,Cr,Zn,Tl,As,B,Sb,Ni,and Se are found in higher concentrations in sedimentary derived phosphates compared to igneous derived phosphates.Mineral fertilizers contain more than ten times the amount of U,Cd,B,and As compared to farmyard manure.Principal component analyses(PCA)indicate that U,Cd,Be,and Cr are primarily present in sedimentary derived phosphates and their concentrations are 2 to 10 times higher than those in igneous derived phosphates.Regarding heavy metal contamination,over 1000 potential combinations were identified;36% of these were significant but weak(>0.1).It is estimated that approximately 707 t of uranium enter farmland annually through the application of mineral phosphate fertilizers in European countries.This contribution addresses environmental issues related to the utilization of rock phosphate as well as alternative production methods for cleaner and safer phosphate fertilizers while presenting a roadmap with measures for mitigation.展开更多
In view of the problems of completely depending on rain, low and unstable yield and complicated planting of dry land foxtail millet, the light simplified cultivation techniques of wide row and double ridge with filmin...In view of the problems of completely depending on rain, low and unstable yield and complicated planting of dry land foxtail millet, the light simplified cultivation techniques of wide row and double ridge with filming, fertilizing and sowing on one for foxtail millet was formed through the integration of plastic film mulching technology and mechanized production technology by Institute of Millet crops of Hebei Academy of Agriculture and Forestry Sciences, and the techniques were introduced from the key technologies of pre-sowing preparation, sowing, supporting equipment, field management, harvesting, plastic film recycling.展开更多
基金Supported by the National Science Found for Young Scholars of China(No.31101123)Natural Science Foundation of Hainan Province of China(No.311062)~~
文摘Fertilizer effect model such as ternary quadratic, unary quadratic, straight line and platform model was respectively used to analyze the two-year "3414" test data collected from banana garden in Fushan Town of Hainan Province. The results showed that the optimal fertilizing amount of ternary quadratic model simulation was0.374 kg/plant of N, 0.289 kg/plant of P2O5 and 0.891 kg/plant of K2 O. According to the yield trend characteristic, the optimal fertilizing amount of unary quadratic model was 0.400kg/plant of N, 0.214 kg/plant of P2O5 and 0.901kg/plant of K2 O. Thus it can be seen that only partial indices of the optimal fertilizing amount of ternary quadratic model simulation were higher than that of unary quadratic model. Considering the results, the optimal fertilizing amount of Brazil banana was 0.374-0.400kg/plant of N, 0.214-0.289 kg/plant of P2O5 and 0.891-0.901 kg/plant of K2 O.
基金Supported by National Modern Agricultural Technology System for Wheat(CARS-3-2-22)Special Research Fund for National Public Service Sector(Agriculture)(201203033)+1 种基金Modern Agricultural Industry Technology System Project(nycytx-03)Shandong Modern Agricultural Industry Technology System(SDAIT-04-021-12)
文摘To get the cultivation pattern featured by improved varieties and fine methods for strong-gluten and high-yielding wheat variety Taishan 27,this paper used Taishan 27 as material to study the effect of fertilizing amount and planting density on yield and quality of material.The results showed that Taishan 27 had high yield under fertilizing amount of 225 kg/ha pure nitrogen and planting density of 240 × 104-300× 10~4/ha; the yield was lowest under fertilizing amount of 300 kg/ha pure nitrogen and planting density of 360 × 10~4/ha. The suitable planting density for Taishan 27 was 240 × 104-300 × 10~4/ha,and the fertilizing amount of nitrogen should be based on different soil fertility conditions to avoid water and fertilizer stress and improve yield.
基金Bill&Melinda Gates Foundation(Grant number OPP1154401).
文摘Backgroud Before fertilization,spermatozoa undergo a crucial maturation step called capacitation,which is a unique event regulates the sperm’s ability for successful fertilization.The capacitation process takes place as the spermatozoa pass through the female reproductive tract(FRT).Dihydrolipoamide dehydrogenase(DLD)protein is a post-pyruvate metabolic enzyme,exhibiting reactive oxygen species(ROS)production which causes capacitation.Additionally,other vital functions of DLD in buffalo spermatozoa are hyperactivation and acrosome reaction.DLD produces the optimum amount of ROS required to induce capacitation process in FRT.Depending on physiological or patho-physiological conditions,DLD can either enhance or attenuate the production of reactive oxygen species(ROS).Aim of this study was to investigate whether changes in the production of ROS in sperm cells can impact their ability to fertilize by triggering the capacitation and acrosome reaction.Results In this study,abundance of DLD protein was quantified between high(n=5)and low fertile bull(n=5)sper-matozoa.It was found that compared to high-fertile(HF)bulls,low-fertile(LF)bulls exhibited significantly(P<0.05)higher DLD abundances.Herein,we optimised the MICA concentration to inhibit DLD function,spermatozoa were treated with MICA in time(0,1,2,3,4,and 5 h)and concentrations(1,2.5,5,and 10 mmol/L)dependent manner.Maximum DLD inhibition was found to be at 4 h in 10 mmol/L MICA concentration,which was used for further exper-imentation in HF and LF.Based on DLD inhibition it was seen that LF bull spermatozoa exhibited significantly(P<0.05)higher ROS production and acrosome reaction in comparison to the HF bull spermatozoa.The kinematic parameters of the spermatozoa such as percent total motility,velocity parameters(VCL,VSL,and VAP)and other parameters(BCF,STR,and LIN)were also decreased in MICA treated spermatozoa in comparison to the control(capacitated)spermatozoa.Conclusions The present study provides an initial evidence explaining the buffalo bull spermatozoa with higher DLD abundance undergo early capacitation,which subsequently reduces their capacity to fertilize.
文摘This research study explored the efficacy of leaf litter compost as a sustainable soil amendment with the objective of promoting soil health and mitigating the accumulation of potentially toxic elements. The investigation encompassed the impact of various organic compost amendments, including leaf compost, cow dung manure, kitchen waste compost, municipal organic waste compost, and vermicompost. The study employed Inductively Coupled Plasma Mass Spectrometry (ICP-MS) to evaluate soil nutrient levels and concentrations of Potentially Toxic Elements (PTEs) such as arsenic, chromium, cadmium, mercury, lead, nickel, and lithium. The fertilization and bioremediation potential of these compost amendments are quantified using an indexing method. Results indicated a substantial increase in overall nutrient levels (carbon, nitrogen, phosphorus, potassium, and sulfur) in soils treated with leaf compost and other organic composts. Fertility indices (FI) are notably higher in compost-amended soils (ranging from 2.667 to 3.938) compared to those amended with chemical fertilizers (ranging from 2.250 to 2.813) across all soil samples. Furthermore, the mean concentrations of PTEs were significantly lower in soils treated with leaf compost and other organic compost amendments compared to those treated with chemical fertilizers amendments. The assessment through the indexing method revealed a high clean index (CI) for leaf compost amendment (ranging from 3.407 to 3.58), whereas the chemical fertilizer amendment exhibits a relatively lower CI (ranging from 2.78 to 3.20). Consequently, leaf compost and other organic composts exhibit the potential to enhance sustainable productivity, promoting soil health and environmental safety by improving nutrient levels and remediating potentially toxic elements in the soil.
文摘A field experiment was carried out at Ismailia Research Station, Ismailia Governorate from 2020-2022 to improve the growth of Khaya senegalensis and Swietenia mahagoni by using a combination of mineral fertilizer (NPK) and biological fertilizer (Azotobacter chroococcum, Bacillus megatherium, and Bacillus circulant) as recommended dose under new sandy soils conditions. Split plot designed with four treatments (Control, (50% Mineral fertilizer (M.) + 50% Biological fertilizer (Bio.)), 100% M. and 100% Bio.) of each species. Vegetative growth, leaf area, tree biomass, stored carbon, basal area, tree volume, and in the soil both of microbial account and mineral content were determined. The experimental results showed no significant differences between studied species among the most studied parameters except for Khaya senegalensis which gave the highest significant difference in root biomass and below-stored carbon than Swietenia mahagoni. Evidently, the highest significant growth parameters were 100% mineral fertilizer followed by (50% M. + 50% Bio.) as compared with control. No significant difference between 100% M. and (50% M. + 50% Bio.) of shoot dry biomass (15.19 and 12.02 kg, respectively) and above-stored carbon (0.28 and 0.22 Mt, respectively). Microbial account and mineral content in soil were improved after cultivation of tree species compared to before planting and control, especially with 50% mineral fertilizer and 50% bio-fertilizer treatment. In conclusion, a treatment containing 50% mineral fertilizer and 50% bio-fertilizer has led to the ideal Khaya senegalensis and Swietenia mahagoni growth in sandy soil for cheaper and sustainable.
文摘Elite maize hybrid Guidan0810 was selected as material, and the effects of fertilizing level and planting densities on yield and nitrogen utilization were dis- cussed in the study. In field experiments as per double-cropping system, 4 main plots (fertilization levels) and 6 subplots (planting densities) were set in a split plot design. The results suggested that yield had close relationship with fertilization levels and planting densities. Different fertilization levels and planting densities significantly affected yield. With the increase of nitrogen fertilization, nitrogen use efficiency, nitrogen agronomic efficiency and nitrogen physiological efficiency declined. Under the same fertilization level, nitrogen use efficiency, nitrogen agronomic efficiency and nitrogen physiological efficiency grew a little with the increase of planting density, so nitrogen efficiency could be improved by regulating planting density. The results also showed that A2 (including N 225.0 kg/hm2, P205 75.0 kg/hm^2, K20 187.5 kg/hm^2) matching to B3 (52 500 plants/hm^2) or B4(60 000 plants/hm^2) was a better design, which could obtain a higher yield in the range of 7 913.2-8 207.8 kg/hm2, respectively.
基金Supported by the Project for Cotton Industry of Hunan Province(Xiangnongyelian[2012]No.278)the Foundation for Talents Stabilization of Hunan Agricultural University(09WD19)~~
文摘The effects of potassium (K) application rates on the yield, fiber quality and K fertilizer use efficiency of three hybrid cotton varieties (Jin102, Xiangzamian8, Siyang328) were studied in field experiment. Fertilizer rates of K2O 135 and 270 kg/hm2, representing 1x and 2x recommended K rates, were applied, no application of k fertilizer as the CK. The results show that the lint yield increased 39.13%-57.48%with potassium application, highly significantly. Al yield components of the three hy-brid cotton varieties increased with the increase of K application amounts. The bol number per plant, single bol weight and lint percentage were increased by 14.24%-40.29%, 3.59%-15.51% and 0.16%-4.89%, respectively, and the fiber length and specific strength also increased with the increasing K application amounts, showing no significant influence on Micronaire. When the K application amounts increased from 135 to 270 kg/hm2, the partial factor productivity (PFPk) reduced by 45.93%-48.01%, and the agronomic efficiency (AEk) reduced by 37.1%-42.9%. The PFPk and KE (K efficiency coefficients) of S328 were the highest among the three varieties, which also showed the strongest resistance to low potassium stress, and with no potassi-um fertilizer application (K0), the lint yield of S328 was 5.54% and 11.19% higher than that of X8 and J102. The AEk of J102 was the highest, and its reward of K fertilizer was the greatest among the three varieties.
基金Supported by Construction Project of National Rapeseed Modern Industrial Technology System (nycytx-00563)Guizhou Academy of Agricultural Sciences "Research of High Yield and High Quality Cultivation Technology for High Grade Hybrid Rapeseed with High Oil" [C ZX(2007)015]+2 种基金Department of Agriculture of Guizhou Province "Research, Promotion and Application of High Yield Cultivation Technology for Hybridized Rapeseed of New Variety Youyan 599" [QNYZZ (2009) 007]Guizhou Academy of Agricultural Sciences "Large Area Intermediate Experiment, Promotion and Application of Hybridized Rapeseed Youyan 599" [QNKZX (2009) 030]Department of Agriculture of Guizhou Province "Integrated Innovation of Seed Production Techniques and Large Area Demonstration for New High Oil Rapeseed Hybrid Variety Sanbei 98 [QKH NY (2010) 3087]~~
文摘[Objective] The paper was to study the nitrogen application amount and nitrogen application model for high grade hybrid rapeseed (Brassica napus L.) to get high yield. [Method] With "Youyan 599" and "Sanbei 98" as materials, using quadratic regression orthogonal gyration combination design, the impact of nitrogen application amount during various periods on rapeseed yield was studied. [Result] The combinations of factors to obtain the highest yield index (2 898.211 kg / hm 2 ) of "Youyan 599" were as follows: living rape fertilizer 89.27 kg / hm 2 , opening fertilizer 120 kg / hm 2 , 12 th lunar month fertilizer 101.12 kg / hm 2 , total nitrogen application amount 310.39 kg / hm 2 . The proportions of living rape fertilizer, opening fertilizer and 12th lunar month fertilizer were 28.76%, 38.66% and 32.58%, respectively. The combinations of factors to obtain the highest yield index (2 870.14 kg/hm 2 ) of "Sanbei 98" were as follows: living rape fertilizer 120 kg / hm 2 , opening fertilizer 120 kg / hm 2 , 12 th lunar month fertilizer 37.55kg / hm 2 , total nitrogen application amount 277.55 kg / hm 2 . The proportions of living rape fertilizer, opening fertilizer and 12 th lunar month fertilizer were 43.24%, 43.24% and 13.53%, respectively. The combinations of factors to obtain the highest yield index of two combined varieties (2 813.82 kg/hm 2 )were as follows: living rape fertilizer 120 kg/hm 2 , opening fertilizer 120 kg/hm 2 , 12 th lunar month fertilizer 76.23 kg/hm 2 , total nitrogen application amount 316.23 kg/hm 2 . The proportions of living rape fertilizer, opening fertilizer and 12 th lunar month fertilizer were 37.95% , 37.95% and 24.11% , respectively. [Conclusion] The paper provided theoretical basis for high yield cultivation of high grade hybridized rapeseed.
基金supported by the National Natural Science Foundation of China(No.32071980)the Key Projects of Shaanxi Agricultural Collaborative Innovation and Extension Alliance(No.LMZD202201)+1 种基金the Key R&D Project in Shaanxi Province(No.2021LLRH-07)Shaanxi Natural Scientific Basic Research Program project(No.2022JQ-157).
文摘Agricultural practices significantly contribute to greenhouse gas(GHG)emissions,necessitating cleaner production technologies to reduce environmental pressure and achieve sustainable maize production.Plastic film mulching is commonly used in the Loess Plateau region.Incorporating slow-release fertilizers as a replacement for urea within this practice can reduce nitrogen losses and enhance crop productivity.Combining these techniques represents a novel agricultural approach in semi-arid areas.However,the impact of this integration on soil carbon storage(SOCS),carbon footprint(CF),and economic benefits has received limited research attention.Therefore,we conducted an eight-year study(2015-2022)in the semi-arid northwestern region to quantify the effects of four treatments[urea supplied without plastic film mulching(CK-U),slow-release fertilizer supplied without plastic film mulching(CK-S),urea supplied with plastic film mulching(PM-U),and slow-release fertilizer supplied with plastic film mulching(PM-S)]on soil fertility,economic and environmental benefits.The results revealed that nitrogen fertilizer was the primary contributor to total GHG emissions(≥71.97%).Compared to other treatments,PM-S increased average grain yield by 12.01%-37.89%,water use efficiency by 9.19%-23.33%,nitrogen accumulation by 27.07%-66.19%,and net return by 6.21%-29.57%.Furthermore,PM-S decreased CF by 12.87%-44.31%and CF per net return by 14.25%-41.16%.After eight years,PM-S increased SOCS(0-40 cm)by 2.46%,while PM-U decreased it by 7.09%.These findings highlight the positive effects of PM-S on surface soil fertility,economic gains,and environmental benefits in spring maize production on the Loess Plateau,underscoring its potential for widespread adoption and application.
基金supported by the National Natural Science Foundation of China(Nos.42177333 and 31870500)the National Special Program for Key Basic Research of the Ministry of Science and Technology of China(No.2015FY110700)the Jiangsu Agriculture Science and Technology Innovation Fund,China(No.JASTIFCX(20)2003)。
文摘Both straw incorporation and irrigation practices affect biological nitrogen(N)fixation(BNF),but it is still unclear how straw incorporation impacts BNF under continuous(CFI)or intermittent(IFI)flooding irrigation in a rice cropping system.A15N2-labeling chamber system was placed in a rice field to evaluate BNF with straw incorporation under CFI or IFI for 90 d.The nif H(gene encoding the nitrogenase reductase subunit)DNA and c DNA in soil were amplified using real-time quantitative polymerase chain reaction,and high-throughput sequencing was applied to the nif H gene.The total fixed N in the straw incorporation treatment was 14.3 kg ha^(-1)under CFI,being 116%higher than that under IFI(6.62 kg ha^(-1)).Straw incorporation and CFI showed significant interactive effects on the total fixed N and abundances of nif H DNA and c DNA.The increase in BNF was mainly due to the increase in the abundances of heterotrophic diazotrophs such as Desulfovibrio,Azonexus,and Azotobacter.These results indicated that straw incorporation stimulated BNF under CFI relative to IFI,which might ultimately lead to a rapid enhancement of soil fertility.
基金National Natural Science Foundation of China,No.41761003The Karst Science Research Center of Guizhou Province,No.U1812401。
文摘Terrestrial ecosystems heavily depend on vegetation,which responds to carbon dioxide(CO_(2))fertilization in hot and humid regions.The subtropical humid karst region is a hot and humid region;whether and to what extent CO_(2)fertilization affects vegetation changes in such regions remains unclear.In this study,we investigated the degree to which CO_(2)fertilization influences vegetation changes,along with their spatial and temporal differences,in the subtropical humid karst region using time-lag effect analysis,a random forest model,and multiple regression analysis.Results showed that CO_(2)fertilization plays an important role in vegetation changes,exhibiting clear spatial variations across different geomorphological zones,with its degree of influence ranging mainly between 11%and 25%.The highest contribution of CO_(2)fertilization was observed in the karst basin and non-karstic region,whereas the lowest contribution was found in the karst plateau region.Previous studies have primarily attributed vegetation changes in subtropical humid karst region to ecological engineering,leading to an overestimation of its contribution to these changes.The findings of this study enhance the understanding of the mechanism of vegetation changes in humid karst region and provide theoretical and practical insights for ecological and environmental protection in these regions.
基金financed by the Spanish Ministry of Science and Innovation and the European Regional Development Fund(ERDF)(No.PID20211234690BI00)the European Joint Program EJP_Soil(TRACE-Soils)(No.862695)+1 种基金the Spanish Ministry of Science and Innovation(RED2018-102624TMCIN/AEI/10.13039/501100011033)the Project PREPSOIL European Union(No.101070045,HORIZON CSA)。
文摘Whilst phosphorus(P)in soil is considered to be abundant,the portion available for plant uptake constitutes less than 1%of the overall P present.To enhance crop productivity,the utilization of mineral P fertilizers has become pervasive in agriculture.Nonetheless,the escalating prices of chemical fertilizers,coupled with new European regulations prohibiting the use of P fertilizers containing cadmium,have highlighted the urgency to identify environmentally friendly products and practices for P fertilization in agricultural soils.This comprehensive review delves into the current landscape of P fertilization from agricultural,political,and economic standpoints.We recognize the potential of microbes in mobilizing P,but emphasize the necessity for more robust research to establish their effectiveness in promoting plant P uptake under real-world conditions.Additionally,we explore the role of agricultural conservation practices,such as optimal tillage,diversified cropping systems,and increased organic carbon input,in conserving P.Furthermore,this review contemplates forthcoming innovations in research.These innovations encompass the development of enhanced formulations for biofertilizers and the undertaking of more comprehensive studies within the realm of conservation agriculture.All these endeavors collectively hold the potential to augment P accessibility to plants in a sustainable manner,thereby advancing agricultural sustainability and productivity.
基金supported by the Key Research and Development Program of Shaanxi,China(2021NY-083)the National Natural Science Foundation of China(31871567)。
文摘The trade-off between yield and environmental effects caused by nitrogen fertilizer application is an important issue in wheat production.A reduction in fertile florets is one of the main reasons for the lower yields under low nitrogen application rates.Brassinosteroids(BRs)have been found to play a role in nitrogen-induced rice spikelet degeneration.However,whether BRs play a role in wheat floret development and the mechanisms involved are not clear.Therefore,a nitrogen gradient experiment and exogenous spraying experiment were conducted to investigate the role and mechanism of BRs in wheat floret development under low nitrogen stress.The results showed that as the nitrogen application decreased,the endogenous BRs content of the spikes decreased,photosynthesis weakened,and total carbon,soluble sugar and starch in the spikes decreased,leading to a reduction in the number of fertile florets.Under low nitrogen stress,exogenous spraying of 24-epibrassinolide promoted photosynthesis,and stimulated stem fructan hydrolysis and the utilization and storage of sucrose in spikes,which directed more carbohydrates to the spikes and increased the number of fertile florets.In conclusion,BRs mediate the effects of nitrogen fertilizer on wheat floret development,and under low nitrogen stress,foliar spraying of 24-epibrassinolide promotes the flow of carbohydrates from the stem to the spikes,alleviating wheat floret degeneration.
文摘Objective Selective estrogen receptor modulators(SERMs)have demonstrated efficacy in the treatment of hypogonadism in males and male factor infertility.Two SERMs,clomiphene citrate and tamoxifen,are now prescribed for off-label use to treat both conditions in males.However,existing literature compares mixed protocols with active management.We aimed to conduct a meta-analysis to evaluate the effect of clomiphene and tamoxifen versus placebo on natural pregnancy rates.Methods We conducted a comprehensive systematic review of electronic databases:MEDLINE,PubMed/PMC,EMBASE,CINAHL,Cochrane Central Register of Controlled Trials(CENTRAL),Scopus,Google Scholar,and Web of Science.Articles satisfying all selection criteria were analyzed.The primary outcome was the incidence of pregnancy after receiving the treatment.Secondary outcomes included serum follicle-stimulating hormone,luteinizing hormone,and testosterone levels,and sperm count and motility.We calculated the pooled odds ratio,risk ratio,and risk difference to ascertain possible alterations in the direction of the pooled effect size.Results Ten randomized controlled trials were ultimately included and underwent data extraction.Clomiphene citrate and placebo groups had similar pregnancy rates(10.4%and 7.1%,respectively;odds ratio 1.30[95%confidence interval 0.27–6.17];p=0.74).No meta-analysis could be calculated for pregnancy rates in tamoxifen versus placebo groups.Heterogeneity among the studies of both SERMs ranged from low to high.Conclusion Although clomiphene citrate and tamoxifen are often used off-label for the treatment of male infertility secondary to hypogonadism,studies of SERMs in the treatment of idiopathic male factor infertility are limited and heterogenous,preventing this meta-analysis from investigating the efficacy of SERMs on male infertility.The effect of clomiphene citrate or tamoxifen on the pregnancy rate remains uncertain.
基金supported by the National Natural Science Foundation of China(42177341)the Natural Science Basic Research Program of Shanxi,China(202203021222138).
文摘Organic material combined with inorganic fertilizer has been shown to greatly improve crop yield and maintain soil fertility globally. However, it remains unclear if crop yield and soil fertility can be sustained in the long term under the combined application of organic and inorganic fertilizers. Three long-term field trials were conducted to investigate the effects of organic amendments on the grain sustainable yield index(SYI), soil fertility index(SFI)and nutrient balance in maize–wheat cropping systems of central and southern China during 1991–2019. Five treatments were included in the trials: 1) no fertilization(control);2) balanced mineral fertilization(NPK);3) NPK plus manure(NPKM);4) high dose of NPK plus manure(1.5NPKM);and 5) NPK plus crop straw(NPKS). Over time, the grain yields of wheat and maize showed an increasing trend in all four fertilization treatments at the Yangling(YL) and Zhengzhou(ZZ) locations, while they declined at Qiyang(QY). The grain yield in the NPKM and 1.5NPKM treatments gradually exceeded that of the NPK and NPKS treatments at the QY site. The largest SYI was recorded in the NPKM treatment across the three sites, suggesting that inorganic fertilizer combined with manure can effectively improve crop yield sustainability. Higher SYI values were recorded at the YL and ZZ sites than at the QY site, possibly because the soil was more acid at QY. The key factors affecting grain yield were soil available phosphorus(AP) and available potassium(AK) at the YL and ZZ sites, and pH and AP at the QY site.All fertilization treatments resulted in soil N and P surpluses at the three sites, but soil K surpluses were recorded only at the QY site. The SFI was greater in the 1.5NPKM, NPKM and NPKS treatments than in the NPK treatment by 13.3–40.0 and 16.4–63.6% at the YL and ZZ sites, respectively, and was significantly higher in the NPKM and 1.5NPKM treatments than in the NPK and NPKS treatments at the QY site. A significant, positive linear relationship was found between SFI and crop yield, and SYI and nutrient balance, indicating that grain yield and its sustainability significantly increased with increasing soil fertility. The apparent N, P and K balances positively affected SFI.This study suggests that the appropriate amount of manure mixed with mineral NPK fertilizer is beneficial to the development of sustainable agriculture, which effectively increases the crop yield and yield sustainability by improving soil fertility.
基金supported by the Shenyang Municipal Science and Technology Project,China(23-409-2-03)the Liaoning Provincial Department of Science and Technology Project,China(Z20230183)the Liaoning Provincial Applied Basic Research Program,China(2022JH2/101300173).
文摘Both soil organic carbon (SOC) and iron (Fe) oxide content, among other factors, drive the formation and stability of soil aggregates.However, the mechanism of these drivers in greenhouse soil fertilized with organic fertilizer is not well understood.In a 3-year field experiment, we aimed to investigate the factors which drive the stability of soil aggregates in greenhouse soil.To explore the impact of organic fertilizer on soil aggregates, we established four treatments:no fertilization (CK);inorganic fertilizer (CF);organic fertilizer (OF);and combined application of inorganic and organic fertilizers(COF).The application of organic fertilizer significantly enhanced the stability of aggregates, that is it enhanced the mean weight diameter, geometric mean diameter and aggregate content (%) of>0.25 mm aggregate fractions.OF and COF treatments increased the concentration of SOC, especially the aliphatic-C, aromatic-C and polysaccharide-C components of SOC, particularly in>0.25 mm aggregates.Organic fertilizer application significantly increased the content of free Fe(Fed), reactive Fe (Feo), and non-crystalline Fe in both bulk soil and aggregates.Furthermore, non-crystalline Fe showed a positive correlation with SOC content in both bulk soil and aggregates.Both non-crystalline Fe and SOC were significantly positively correlated with>2 mm mean weight diameter.Overall, we believe that the increase of SOC, aromatic-C, and non-crystal ine Fe concentrations in soil after the application of organic fertilizer is the reason for improving soil aggregate stability.
基金funded by the Science and Technology Innovation Programof Jiangsu Province,China for“Carbon Dioxide Emission Peaking and Carbon Neutrality”(BE2022307).
文摘To promote the growth of cutting seeding of poplar(Populus L.),nitrogen(N)fertilizer and surface weed managements were required.We here conducted a pot experiment to examine the effects of natural vegetation,barnyardgrass(Echinochloa Beauv.),and sesbania(Sesbania cannabina pers.)on the growth of poplar cutting seedlings,soil properties,and ammonia(NH3)volatilization under three N inputs(0,0.5,and 1.5 g/pot,i.e.,N0,N0.5,and N1,respectively).Results showed that N application promoted the growth of poplar cutting seedlings,including plant height,ground diameter,and biomass,compared with N0 treatment.Moreover,under N0,sesbania significantly increased the plant height by 87.1%,barnyardgrass and sesbania significantly increased the ground diameter(16.2%and 51.5%),and biomass(67.4%and 74.7%)of poplar cutting seedlings,compared with natural vegetation management.Compared to natural vegetation,soil organic matter(SOM)of barnyardgrass and sesbania covered soil significantly increased by 12.4%and 18.7%at N1,respectively.In addition,soil total N(TN)content was significantly increased by 15.8%in barnyardgrass planted at N0.The soil ammonium N(NH_(4)^(+)-N)content decreased with the planting of barnyardgrass and sesbania across all levels of N application.At N0.5,the nitrate N(NO_(3)^(−)-N)content of soil planted with barnyardgrass significantly increased compared to both the natural vegetation and the sesbania groups.Compared to the natural vegetation,the soil available phosphorus(AP)content of the barnyardgrass group significantly increasing by 78.8%at N0.5,soil available potassium(AK)content was significantly reduced by 12.5%in the sesbania group at N0 and increased by 24.1%in the barnyardgrass group at N1.We found that cumulative NH3 emissions were significantly higher in all treatment groups at the N1 level than that at the N0.5 level,while the differences among the three plants treated were not significant.The results suggest that both barnyardgrass and sesbania promote seedling growth in the short term,while also increase certain properties.Therefore,effective herb management during the seedling stage is recommended in nurseries to support seedling growth and retain soil fertility.
基金supported by the National Key Research and Development Program of China(2022YFD190160304 and 2018YFD0301206)Natural Science Foundation of Sichuan Province(2022NSFSC0013)Sichuan Provincial Maize Innovation Team Construction Project(SCCXTD-2023-02).
文摘A four-year field experiment was conducted with two cultivars and four N rate to investigate the spatiotemporal characteristics of leaf senescence in maize after silking and its response to N fertilizer rates on them,as well as to reveal the differences in post-silking chlorophyll degradation between low-N-tolerant cultivars.The results showed that the order of leaf senescence after silking in maize was lower leaf>upper leaf>ear leaf,leaf tip>middle>base.Increasing N fertilizer down-regulated the expression of ZmCLH2 and ZmPPH in the leaves at 10-30 d after silking,reducing CLH and PPH activities,thereby delaying the leaf senescence.These effects were more prominent in low-N-sensitive cultivar Xianyu 508(XY508)than in low-N-tolerant cultivar Zhenghong 311(ZH311),especially in the lower leaves and leaf tip.Under low N condition,leaf yellowing and chlorophyll degradation occurred later and slower in ZH311 than in XY508.This resulted in a higher post-silking dry matter accumulation and grain yield in ZH311,which may be one of the important physiological bases of low nitrogen tolerant cultivars.Future research should focus on developing low-N-tolerant maize cultivars with slower leaf senescence near the ear after silking.
基金funded by the Project of Yunnan Province’s Xingdian Talents Support Program(yfgrc202437)the Project of the International Cooperation Science Program of National Natural Science Foundation of China(42361144885).
文摘Phosphorus(P)poses a global challenge to the environment and human health due to its natural association with heavy metals.Sustainable use of P is crucial to ensure food security for future generations.An analysis of the 150 phosphate fertilizers stored at the Institute for Crop and Soil Science in Germany has been conducted,supplemented by previously published data.The elements Cd,Bi,U,Cr,Zn,Tl,As,B,Sb,Ni,and Se are found in higher concentrations in sedimentary derived phosphates compared to igneous derived phosphates.Mineral fertilizers contain more than ten times the amount of U,Cd,B,and As compared to farmyard manure.Principal component analyses(PCA)indicate that U,Cd,Be,and Cr are primarily present in sedimentary derived phosphates and their concentrations are 2 to 10 times higher than those in igneous derived phosphates.Regarding heavy metal contamination,over 1000 potential combinations were identified;36% of these were significant but weak(>0.1).It is estimated that approximately 707 t of uranium enter farmland annually through the application of mineral phosphate fertilizers in European countries.This contribution addresses environmental issues related to the utilization of rock phosphate as well as alternative production methods for cleaner and safer phosphate fertilizers while presenting a roadmap with measures for mitigation.
基金Supported by the National Key Technology R&D Program(2014BAD07B01-02)the Science and Technology Demonstration Project of Bohai Granary in Hebei Provincethe Special Fund for Agro-scientific Research in Public Interest(201303133-1-6)~~
文摘In view of the problems of completely depending on rain, low and unstable yield and complicated planting of dry land foxtail millet, the light simplified cultivation techniques of wide row and double ridge with filming, fertilizing and sowing on one for foxtail millet was formed through the integration of plastic film mulching technology and mechanized production technology by Institute of Millet crops of Hebei Academy of Agriculture and Forestry Sciences, and the techniques were introduced from the key technologies of pre-sowing preparation, sowing, supporting equipment, field management, harvesting, plastic film recycling.