期刊文献+
共找到69,335篇文章
< 1 2 250 >
每页显示 20 50 100
Research Advances in Fertilizer Production Technologies Utilizing Solid Waste Resources
1
作者 Xiaofang ZHENG Yanjun GUO +4 位作者 Zitao WU Sen WANG Yue ZHANG Ying XIAO Yunxuan OUYANG 《Asian Agricultural Research》 2025年第11期29-35,40,共8页
The conversion of waste resources into fertilizer represents a crucial strategy for optimizing waste utilization and attaining"carbon peak and neutrality"objectives.This approach not only effectively mitigat... The conversion of waste resources into fertilizer represents a crucial strategy for optimizing waste utilization and attaining"carbon peak and neutrality"objectives.This approach not only effectively mitigates greenhouse gas emissions but also enhances the organic matter content in soil,thereby supporting the advancement of sustainable agriculture.Currently,the principal fertilizer production technologies utilizing solid waste resources encompass hydrothermal fertilizer production,aerobic fermentation,wrapping fertilizer production,micro-storage fertilizer production,and biochemical rapid decomposition.This paper examines the applicability and limitations of these technologies in practical contexts,and anticipates their developmental trends and future prospects.It aims to offer practical guidance and constructive support for the resource utilization of solid waste and the sustainable development of related industries. 展开更多
关键词 Solid WASTE utilization WASTE fertilizer production technology Hydrothermal CARBONIZATION AEROBIC fermentation Current application RESEARCH advance
在线阅读 下载PDF
Risks and governance of heavy metals in European soil applied phosphate fertilizers 被引量:1
2
作者 Lian-kai Zhang Xiang Liu +5 位作者 Ya-jie Sun Bernd G.Lottermoser Roland Bol Heike Windmann Silvia H.Haneklaus Ewald Schnug 《China Geology》 2025年第3期560-572,共13页
Phosphorus(P)poses a global challenge to the environment and human health due to its natural association with heavy metals.Sustainable use of P is crucial to ensure food security for future generations.An analysis of ... Phosphorus(P)poses a global challenge to the environment and human health due to its natural association with heavy metals.Sustainable use of P is crucial to ensure food security for future generations.An analysis of the 150 phosphate fertilizers stored at the Institute for Crop and Soil Science in Germany has been conducted,supplemented by previously published data.The elements Cd,Bi,U,Cr,Zn,Tl,As,B,Sb,Ni,and Se are found in higher concentrations in sedimentary derived phosphates compared to igneous derived phosphates.Mineral fertilizers contain more than ten times the amount of U,Cd,B,and As compared to farmyard manure.Principal component analyses(PCA)indicate that U,Cd,Be,and Cr are primarily present in sedimentary derived phosphates and their concentrations are 2 to 10 times higher than those in igneous derived phosphates.Regarding heavy metal contamination,over 1000 potential combinations were identified;36% of these were significant but weak(>0.1).It is estimated that approximately 707 t of uranium enter farmland annually through the application of mineral phosphate fertilizers in European countries.This contribution addresses environmental issues related to the utilization of rock phosphate as well as alternative production methods for cleaner and safer phosphate fertilizers while presenting a roadmap with measures for mitigation. 展开更多
关键词 Phosphorus fertilizer Heavy metals U-Cd-Cr-Tl SOIL Mitigation Sustainable measures EUROPE Sustainable Development Goals(SDG 3) Environmental geological survey engineering
在线阅读 下载PDF
Effects of Streptomyces <i>Biofertilizer</i>to Soil Fertility and Rhizosphere’s Functional Biodiversity of Agricultural Plants 被引量:3
3
作者 Tinatin Doolotkeldieva Saykal Bobusheva Maxabat Konurbaeva 《Advances in Microbiology》 2015年第7期555-571,共17页
In the present study, a biofertilizer on the basis of Streptomyces fumanus gn-2 was used for the treatment of wheat and soybean seeds (dose 104 spore/ml) before planting them in soil with low fertility in order to det... In the present study, a biofertilizer on the basis of Streptomyces fumanus gn-2 was used for the treatment of wheat and soybean seeds (dose 104 spore/ml) before planting them in soil with low fertility in order to determine the effect of this biological agent on germination rate;the growth of seedlings, shoots, and the maturation phase of plants;the rhizosphere’s functional biodiversity;and the resistance of these plants to pathogens. Seeds were soaked in the suspension for a period of two or three hours. During the growing season of the crop, no additional fertilizing and spraying of a biopesticide against diseases or pests occurred. Despite the soil having low fertility, low quantities of organic matter, and not having been before used for the cultivation of agricultural plants, this biofertilizer showed a strong stimulatory effect on the growth of seeds and seedlings of wheat and soybeans. The average germination and seed vigor increased by 1.5 - 2.0 times, and the phenophases were accelerated to three to five days. In all phases of vegetation, the ammonifying bacteria in the presence of an antagonist (a biological agent) developed rapidly and were constantly present in significant numbers in the rhizosphere. Streptomyces fumanus introduced into non-sterile soil entered into competition with the local soil microflora and had the ability to colonize the rhizosphere system of plants. The use of a formulation of Streptomyces gn-2 has improved the composition of rhizosphere microflora, attracting saprophytic microorganisms: ammonificators and oligotrophs. The presence of the biocontrol microorganism Streptomyces fumanus in the rhizosphere plays an important role in enhancing the growth and development of useful groups, such as nitrogen-fixing bacteria. 展开更多
关键词 A Low Fertility Soil A BIOfertilizer Streptomyces fumanus gn-2 Wheat and Soybean Seeds Stimulatory Effect on Seed Germination Rhizospheres FUNCTIONAL BIODIVERSITY
暂未订购
A Novel Route to the Large-Scale Utilization of Industrial CO_(2) as a Stable Liquid Fertilizer to Increase Crop Yields and Improve the Soil
4
作者 Bao-Chang Sun Meng-Tong Mi +7 位作者 Sheng-Yi Wang Xiao-Juan Wang Xiao-Ling Song Guang-Wen Chu Xue-Kuan Li Dong Huang Dan Wang Jian-Feng Chen 《Engineering》 2025年第5期12-15,共4页
1.The key to achieving China’s dual carbon goals As pointed out in the CO_(2) Emissions in 2023 report released by the International Energy Agency,global carbon dioxide(CO_(2))emis-sions reached 37.4 billion tonnes i... 1.The key to achieving China’s dual carbon goals As pointed out in the CO_(2) Emissions in 2023 report released by the International Energy Agency,global carbon dioxide(CO_(2))emis-sions reached 37.4 billion tonnes in 2023[1],setting a new record high.The increase in CO_(2) emissions has exacerbated global warm-ing and led to a series of global climate problems.China is a major emitter of CO_(2). 展开更多
关键词 fertilizer global warming carbon dioxide dual carbon goals crop yields climate problems carbon goals soil improvement
在线阅读 下载PDF
A moisture-driven direct air capture device for low-cost gas fertilizer
5
作者 Renyu XIE Sheng CHEN +1 位作者 Xuejun ZHANG Long JIANG 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 2025年第4期389-392,共4页
Direct air capture(DAC)is a negative carbon emission technology that faces challenges in scalability and practical deployment due to its exorbitant costs.Hou et al.(2017)integrated DAC technology with fertilization.A ... Direct air capture(DAC)is a negative carbon emission technology that faces challenges in scalability and practical deployment due to its exorbitant costs.Hou et al.(2017)integrated DAC technology with fertilization.A multi-bed desorption system driven by water provides a competitive and sustainable carbon source for indoor agriculture. 展开更多
关键词 negative carbon emission direct air capture dac direct air capture gas fertilizer negative carbon emission technology moisture driven carbon source indoor agriculture
原文传递
The wonders of earthworms &its vermicompost in farm production: Charles Darwin’s ‘friends of farmers’, with potential to replace destructive chemical fertilizers 被引量:4
6
作者 Rajiv K. Sinha Sunita Agarwal +1 位作者 Krunal Chauhan Dalsukh Valani 《Agricultural Sciences》 2010年第2期76-94,共19页
Earthworms and its excreta (vermicast) promises to usher in the ‘Second Green Revolution’ by completely replacing the destructive agro chemicals which did more harm than good to both the farmers and their farmland. ... Earthworms and its excreta (vermicast) promises to usher in the ‘Second Green Revolution’ by completely replacing the destructive agro chemicals which did more harm than good to both the farmers and their farmland. Earthworms restore & improve soil fertility and significantly boost crop productivity. Earthworms excreta (vermicast) is a nutritive ‘organic fertilizer’ rich in humus, NKP, micronutrients, beneficial soil microbes—‘nitrogenfixing & phosphate solubilizing bacteria’ & ‘actinomycets’ and growth hormones ‘auxins’, ‘gibberlins’ & ‘cytokinins’. Both earthworms and its vermicast & body liquid (vermiwash) are scientifically proving as both ‘growth promoters & protectors’ for crop plants. In our experiments with corn & wheat crops, tomato and eggplants it displayed excellent growth performances in terms of height of plants, color & texture of leaves, appearance of flowers & fruits, seed ears etc. as compared to chemical fertilizers and the conventional compost. There is also less incidences of ‘pest & disease attack’ and ‘reduced demand of water’ for irrigation in plants grown on vermicompost. Presence of live earthworms in soil also makes significant difference in flower and fruit formation in vegetable crops. Composts work as a ‘slowrelease fertilizer’ whereas chemical fertilizers release their nutrients rather quickly in soil and soon get depleted. Significant amount of ‘chemical nitrogen’ is lost from soil due to oxidation in sunlight. However, with application of vermicompost the ‘organic nitro gen’ tends to be released much faster from the excreted ‘humus’ by worms and those mineralised by them and the net overall efficiency of nitrogen (N) is considerably greater than that of chemical fertilizers. Availability of phosphorus (P) is sometimes much greater. Our study sh ows that earthworms and vermicompost can promote growth from 50 to 100% over conventional compost & 30 to 40% over chemical fertilizers besides protecting the soil and the agro ecosystem while producing ‘nutritive and tasty food’ at a much economical cost (at least 50 75% less) as compared to the costly chemical fertilizers. 展开更多
关键词 fertilizer VERMICOMPOST MIRACLE Growth Promoter Rich in Nutrients Humus&Hormones VERMICOMPOST Induce Biological Resistance in Plant SUPPRESS & Repel Pest Attack
暂未订购
A novel nanosized FePO4 fertilizer is as effective as triple superphosphate in sustaining the growth of cucumber plants
7
作者 Andrea CIURLI Laura GIAGNONI +4 位作者 Davide SEGA Roberta PASTORELLI Zeno VARANINI Giancarlo RENELLA Anita ZAMBONI 《Pedosphere》 2025年第2期405-414,共10页
The behaviour of nanofertilizers(NFs)in plant-soil systems can differ from that of conventional chemical fertilizers due to their peculiar chemical-physical properties.Their effectiveness is still poorly understood.In... The behaviour of nanofertilizers(NFs)in plant-soil systems can differ from that of conventional chemical fertilizers due to their peculiar chemical-physical properties.Their effectiveness is still poorly understood.In this study,we evaluated the P fertilization potential of a novel nanosized FePO4NF(FePNF)in a plant-soil microcosm in a pot experiment.The efficacies of FePNF and a conventional P fertilizer(triple superphosphate,TSP)in sustaining the growth of cucumber plants were evaluated.Plants were grown for 28 d on a P-deficient soil,and determinations were made of plant growth parameters,mineral nutrient concentrations in plant tissues,P availability in soil,activities of soil enzymes involved in C,N,P,and S mineralization,and soil microbial community structure.No significant differences were found in plant dry weight,leaf area,chlorophyll content,or root growth between the FePNF and TSP treatments.Conversely,P availability in soil and P concentration in plant tissues at the end of the plant growth period were significantly higher after TSP fertilization compared to FePNF fertilization,whereas no significant differences were observed for other nutrients.Among the measured soil enzyme activities,there were no significant differences in the activities of soil acid phosphatase,β-glucosidase,and arylsulfatase between the FePNF and TSP treatments,while soil alkaline phosphatase activity was higher in the TSP treatment than in the FePNF treatment and the protease activity was higher in the FePNF treatment than in the TSP treatment.The FePNF and TSP treatments showed significant differences in soil archaeal,bacterial,and fungal community structures,although the microbial community profiles generally clustered closer to each other in the two treatments.We concluded that FePNF can be an efficient alternative to the conventional P fertilizer TSP. 展开更多
关键词 conceptual model conventional P fertilizer enzyme activity nanoparticles P availability P nutrition plant-soil system
原文传递
Effects of Green Manures and Zinc Fertilizer Sources on DTPA-Extractable Zinc in Soil and Zinc Content in Basmati Rice Plants at Different Growth Stages 被引量:7
8
作者 Amarpreet SINGH Yashbir Singh SHIVAY 《Pedosphere》 SCIE CAS CSCD 2019年第4期504-515,共12页
Rice is very sensitive to low zinc(Zn) supply in submerged paddy soils and Zn deficiency is one of the major limiting factors in determining rice production in India. A field experiment was conducted during the summer... Rice is very sensitive to low zinc(Zn) supply in submerged paddy soils and Zn deficiency is one of the major limiting factors in determining rice production in India. A field experiment was conducted during the summer-rainy seasons of 2009 and 2010 at the research farm of the Indian Agricultural Research Institute, New Delhi, to determine the effects of summer green manure crops and Zn fertilizers on diethylenetriaminepentaacetic acid(DTPA)-extractable(available) Zn concentration in soil and total Zn content in Basmati rice cultivar Pusa Basmati 1 at periodic intervals. Summer green manure crops included Sesbania aculeata(Dhaincha),Crotalaria juncea(Sunhemp), and Vigna unguiculata(Cowpea) and the Zn fertilizers used were ethylenediaminetetraacetic acid(EDTA)-chelated Zn, ZnSO4·7H2O, ZnSO4·H2O, ZnO, and ZnSO4·7H2O + ZnO. Beneficial effects of summer green manure crops and Zn fertilizers on DTPA-extractable Zn concentration in soil and total Zn content in dry matter of Basmati rice at periodic intervals were observed, with significant increases in all the determined parameters, in comparison with those in the control(no Zn application or summer fallow). The rate of increase varied among summer green manure crops and Zn fertilizers during both years. Among the summer green manures, incorporation of S. aculeata led to a significant increase in mean Zn content in Basmati rice grain and straw when compared with C. juncea, V. unguiculata, and summer fallow treatments. Among the Zn fertilizers, significant increases in Zn content in Basmati rice dry matter and DTPA-extractable Zn concentration in soil during various growth stages of the plant were recorded with EDTA-chelated Zn application, followed by the application of ZnSO4·7H2O, ZnSO4·H2O, ZnSO4·7H2O + ZnO, ZnO,and no Zn. The highest mean Zn content in Basmati rice grain and straw was recorded with EDTA-chelated Zn application in 2009 and 2010, respectively. The application of ZnSO4·7H2O was the second best treatment after EDTA-chelated Zn;however, it was statistically inferior to EDTA-chelated Zn. The lowest values were recorded with the control(no Zn application) during both years of study. The amount of Zn concentration in soil was found to be significantly positively correlated with the Zn content in Basmati rice dry matter during both years. Significantly higher levels of residual fertility in soil after the harvest of Basmati rice were observed with application of EDTA-chelated Zn and incorporation of S. aculeata when compared with those of other Zn sources and summer green manures. 展开更多
关键词 available Zn fertilizer application plant ZINC uptake rice production SOIL FERTILITY summer green MANURE ZINC deficiency ZINC source ZINC supply
原文传递
Effects of different ration of NPK fertilizer on the grain yield and protein content in forage rice 被引量:1
9
作者 吴朝晖 《Agricultural Science & Technology》 CAS 2005年第2期21-22,共2页
Different ratios of NPK were adopted in this research to study its effects on the objective traits of 2 early forage-rice varieties, and to obtain the optimum ratio to further improve the application technique in theo... Different ratios of NPK were adopted in this research to study its effects on the objective traits of 2 early forage-rice varieties, and to obtain the optimum ratio to further improve the application technique in theory. At the same time, the possibility of increasing yield and protein content in the grain through cultivation technique was also studied. The conclusions were: 展开更多
关键词 application rates crop yield CULTIVARS CULTIVATION mathematical models nitrogen fertilizers NPK fertilizers phosphorus fertilizers potassium fertilizers proteincontent RICE
在线阅读 下载PDF
Effect of Tithonia diversifolia (Hemsley) and Inorganic Fertilizers on Morpho-Agronomic Characteristics of Rice (Oryza sativa L.) Grown on Oxisols in Democratic Republic of Congo
10
作者 Constantin Kalubi Nkongolo Georges Mupala Muyayabantu André Mbumba Kayombo 《American Journal of Plant Sciences》 2025年第1期64-75,共12页
Rice (Oryza sativa) is becoming a staplefood in many regions of DR-Congo. However, its production is still limited to the North Eastern part of the country and grain yield is low. A study was carried out in the city o... Rice (Oryza sativa) is becoming a staplefood in many regions of DR-Congo. However, its production is still limited to the North Eastern part of the country and grain yield is low. A study was carried out in the city of Mbujimayi located in the Central part of the DR-Congo to assess the effects of organic and inorganic fertilizers on morpho-agronomic characteristics of O. sativa. The trial was conducted during the 2021 agricultural season A using a completely randomized design with three replicates. The six treatments studied consisted of application of T. diversifolia biomass at a dose of 2 kg/4m2 (BFT − 2 kg), 4 kg/4 m2 (BFT − 4 kg), inorganic fertilizer consisting with NPK17-17-17 + Urea (46% N) at a combined dose of 80 g/4 m2 (NP), 1/2 of the combination (BFT − 2 kg + NP) and finally 1/2 of the combination (BFT − 4 kg + NP). The untreated plots were used as controls. Plants treated with 1/2 combination (BFT − 4 kg + NP), BFT – 4 kg, and NP showed similar height (100.93 cm, 99.03 cm, and 98.63 cm, respectively) that were significantly higher than control and other treatments [1/2 (BFT – 2 kg + NP, BFT – 2 kg] For agronomic characteristics, days to 50% flowering varied between 73.00 and 74 days with an average of 74 days. The control and BFT – 4 kg showed significantly shorter panicles compared to other treatments. For yield components, 1/2 (BFT – 4 kg + NP) and the NP treatments generated a higher weight of 1000 grains. For yield per hectare, 1/2 (BFT − 4 kg + NP) induced significantly different levels of production than the control and other treatments, including 1/2 (BFT – 2 kg + NP), BFT – 4 kg + NP, BFT – 2 kg, BFT – 4 kg. The correlation coefficients between agronomic traits revealed that with the exception of the length of particle and the abortion rates, all the yield components (panicles per plant, seeds per panicle, weight of 1000 grains, and grail yield per plot) were strongly correlated with grain yield per hectare. 展开更多
关键词 RICE FERTILIZATION Mineral fertilizer Organic fertilizer YIELD
在线阅读 下载PDF
Polyphosphate-enriched algae fertilizer as a slow-release phosphorus resource can improve plant growth and soil health
11
作者 Jiahong Yu Bingbing Luo +6 位作者 Yujie Yang Suna Ren Lei Xu Long Wang Xianqing Jia Yiyong Zhu Keke Yi 《Journal of Integrative Agriculture》 2025年第9期3656-3670,共15页
Using phosphorus(P)fertilizers has historically increased agricultural productivity,yet the highly dissipative nature of phosphate rock and the low effciency due to soil fxation and runoff raise sustainability concern... Using phosphorus(P)fertilizers has historically increased agricultural productivity,yet the highly dissipative nature of phosphate rock and the low effciency due to soil fxation and runoff raise sustainability concerns.Algae fertilizers have emerged as a promising eco-friendly alternative.However,the potential of algae fertilizers for providing sustained P availability and their impacts on plant growth,soil microbes,and nutrient cycling remains to be explored.In this study,we developed a polyphosphate-enriched algae fertilizer(PEA)and conducted comparative experiments with chemical P fertilizers(CP)through soil and solution cultures,as well as crop growth trials.Soil cultivation experiments showed that PEA released twice as much labile P as initially available in the soil,and it functioned as a slow-release P source.In contrast,soils treated with CP initially exhibited high levels of labile P,which was gradually converted to stable forms,but it dropped to 30%of the labile P level in PEA after three months.Further tests revealed that the slow release of P from PEA was linked to increased microbial activity,and the microbial biomass P(MBP)content was about eight times higher than in soils treated with CP after three months,resulting in a 75%decline in the microbial biomass carbon(MBC)to MBP ratio.Microbial diversity analysis showed that algae fertilizers could recruit more benefcial microbes than CP,like phosphorus-solubilizing bacteria,plant growth-promoting bacteria,and stress-resistant bacteria.Crop pot experiments,along with amplicon and metagenomic analysis of tomato root-associated microbes,revealed that algae fertilizers including PEA promoted plant growth comparable to CP,and enhanced soil P cycling and overall nutrient dynamics.These data showed that algae fertilizers,especially PEA,can stabilize soil P fertility and stimulate plant growth through their slow P release and the recruitment of benefcial microbes.Our study highlights the potential of PEA to foster sustainable agriculture by mitigating the P scarcity and soil P loss associated with chemical fertilizers and improving plant growth and soil health. 展开更多
关键词 algae fertilizer slow-release fertilizer polyphosphate-enriched P fraction soil microbiome
在线阅读 下载PDF
Influence of Organic and Mineral Fertilizer on Soil Proprieties and Performance of Rice (Oryza sativa) in Casamance, Senegal
12
作者 Pierre Claver Cesar Diedhiou Pape Samba Sokhna +1 位作者 Antoine Sambou Sory Sissoko 《Journal of Agricultural Chemistry and Environment》 2025年第1期132-146,共15页
Chemical fertilizers are a source of soil degradation. In order to mitigate soil degradation and to face the negative impacts of climate change, the use of organic fertilizers, accessible to small farmers can maintain... Chemical fertilizers are a source of soil degradation. In order to mitigate soil degradation and to face the negative impacts of climate change, the use of organic fertilizers, accessible to small farmers can maintain the productivity of cereals including rice. The objective of this experiment is to study the effect of organo-mineral fertilizers on soil chemical properties, growth and physiology parameters and yield of rice. For this purpose, a completely randomized block design with three replications was adopted. Different organic (Fertinova, Organova and Fertinova + Organova) and mineral (NPK + Urea) fertilizers were applied to cultivate the NERICA L19 variety of rice. The soil chemical properties (pH), germination rate, growth, yield and physiological (chlorophyll content) parameters were assessed. The results revealed a germination rate of the grains varying between 87.5 and 100%. Fertinova and Fertinova + Organova had the highest germination rates. Soil pH decreased significantly from initial (6.71 ± 0.01) to final (5.73 ± 0.04) with the development cycle of the rice. Organo-mineral fertilizers influenced significantly (p = 5.36e−09) soil chemical properties by increasing pH (4%) compared to Control. Analysis of variance on growth and yield parameters, yield and chlorophyll content revealed a significant difference (p < 0.05) between fertilizers. Growth and yield parameters and yield were significantly higher in NPK and Fertinova + Organova than in Fertinova, Organova and Control. For the biomass the NPK + Urea recorded significantly highest biomass (488.28 ± 60.83 g). Leaves chlorophyll content varied significantly according to the daytime and the status of leaf development. The higher chlorophyll content was recorded at noon (27.96 ± 0.32 SPAD value) and with young leaves (30.21 ± 0.35 SPAD value). NPK + Urea (29.36 ± 0.45 SPAD value) and Fertinova (27.78 ± 0.40 SPAD value) favored more chlorophyll content in the rice leaves. Rice performed better in NPK + Urea and Fertinova + Organova fertilizers. 展开更多
关键词 fertilizers Soil pH RICE Growth YIELD CHLOROPHYLL
在线阅读 下载PDF
Determinants of Marketability for Organic Biomass Liquid Fertilizer from Human Waste in Da Nang City, Vietnam
13
作者 Buixuan Hong Yoshifumi Takahashi Mitsuyasu Yabe 《Journal of Environmental Protection》 2017年第11期1354-1371,共18页
Recently, 90 tons of human waste per day are collected from private residences, offices, and public facilities in Da Nang City. Meanwhile, farmers in this region have to allocate 10% - 20% of rice sales for purchasing... Recently, 90 tons of human waste per day are collected from private residences, offices, and public facilities in Da Nang City. Meanwhile, farmers in this region have to allocate 10% - 20% of rice sales for purchasing chemical fertilizer. Therefore, it is essential to be adopted more inexpensive organic fertilizer. To deal with these problems, Japan International Cooperation Agency (JICA) has signed a contract with Da Nang city government about human waste treatment and production of organic biomass liquid fertilizer (OBLF) in 2015. The aims of this project are to promote the use of OBLF in farming and improve public awareness of environmental protection. 530 respondents were interviewed at Hoa Vang districts of Da Nang city, and data was analyzed by Contingent Valuation Method (CVM) under double bounded dichotomous choice approach. The results have revealed that 436 respondents (82%) agreed to use OBLF. The farmers’ WTP depends on factors including household income, experience in using organic fertilizer, awareness of environment and training of organic fertilizer in the past. The estimated price for OBLF was 94,856 VND (4.0 USD)/ton. The cost that farmers paid for OBLF was lower than that of current available chemical fertilizers in Da Nang city. This proves that marketability seems to be existed for OBLF product in Da Nang city. From these findings, the government should have policies to support and subsidize the farmers to encourage them to use OBLF in a large scale of cultivation. Furthermore, establishment of a market to consume the organic products harvested from cultivated areas using OBLF is also recommended. 展开更多
关键词 CONTINGENT Valuation Method (CVM) Double-Bound Dichotomous Choice ORGANIC BIOMASS Liquid fertilizer (OBLF) WILLINGNESS to Pay (WTP) MARKETABILITY
暂未订购
Combining slow-release fertilizer and plastic film mulching reduced the carbon footprint and enhanced maize yield on the Loess Plateau 被引量:2
14
作者 Xiaoqing Han Pengfei Dang +12 位作者 Lechen Liao Fangqi Song Miaomiao Zhang Maoxue Zhang Guoqing Li Shuyue Wen Ning Yang Xiping Pan Xiaofan Wang WenWang Xiaoliang Qin Charles O.Joseph Kadambot H.M.Siddique 《Journal of Environmental Sciences》 2025年第1期359-369,共11页
Agricultural practices significantly contribute to greenhouse gas(GHG)emissions,necessitating cleaner production technologies to reduce environmental pressure and achieve sustainable maize production.Plastic film mulc... Agricultural practices significantly contribute to greenhouse gas(GHG)emissions,necessitating cleaner production technologies to reduce environmental pressure and achieve sustainable maize production.Plastic film mulching is commonly used in the Loess Plateau region.Incorporating slow-release fertilizers as a replacement for urea within this practice can reduce nitrogen losses and enhance crop productivity.Combining these techniques represents a novel agricultural approach in semi-arid areas.However,the impact of this integration on soil carbon storage(SOCS),carbon footprint(CF),and economic benefits has received limited research attention.Therefore,we conducted an eight-year study(2015-2022)in the semi-arid northwestern region to quantify the effects of four treatments[urea supplied without plastic film mulching(CK-U),slow-release fertilizer supplied without plastic film mulching(CK-S),urea supplied with plastic film mulching(PM-U),and slow-release fertilizer supplied with plastic film mulching(PM-S)]on soil fertility,economic and environmental benefits.The results revealed that nitrogen fertilizer was the primary contributor to total GHG emissions(≥71.97%).Compared to other treatments,PM-S increased average grain yield by 12.01%-37.89%,water use efficiency by 9.19%-23.33%,nitrogen accumulation by 27.07%-66.19%,and net return by 6.21%-29.57%.Furthermore,PM-S decreased CF by 12.87%-44.31%and CF per net return by 14.25%-41.16%.After eight years,PM-S increased SOCS(0-40 cm)by 2.46%,while PM-U decreased it by 7.09%.These findings highlight the positive effects of PM-S on surface soil fertility,economic gains,and environmental benefits in spring maize production on the Loess Plateau,underscoring its potential for widespread adoption and application. 展开更多
关键词 Plastic film mulching Slow-release fertilizer Maize grain yield Carbon footprint Economic benefits
原文传递
Organic fertilizer enhances soil aggregate stability by altering greenhouse soil content of iron oxide and organic carbon 被引量:1
15
作者 Lijun Ren Han Yang +4 位作者 Jin Li Nan Zhang Yanyu Han Hongtao Zou Yulong Zhang 《Journal of Integrative Agriculture》 2025年第1期306-321,共16页
Both soil organic carbon (SOC) and iron (Fe) oxide content, among other factors, drive the formation and stability of soil aggregates.However, the mechanism of these drivers in greenhouse soil fertilized with organic ... Both soil organic carbon (SOC) and iron (Fe) oxide content, among other factors, drive the formation and stability of soil aggregates.However, the mechanism of these drivers in greenhouse soil fertilized with organic fertilizer is not well understood.In a 3-year field experiment, we aimed to investigate the factors which drive the stability of soil aggregates in greenhouse soil.To explore the impact of organic fertilizer on soil aggregates, we established four treatments:no fertilization (CK);inorganic fertilizer (CF);organic fertilizer (OF);and combined application of inorganic and organic fertilizers(COF).The application of organic fertilizer significantly enhanced the stability of aggregates, that is it enhanced the mean weight diameter, geometric mean diameter and aggregate content (%) of>0.25 mm aggregate fractions.OF and COF treatments increased the concentration of SOC, especially the aliphatic-C, aromatic-C and polysaccharide-C components of SOC, particularly in>0.25 mm aggregates.Organic fertilizer application significantly increased the content of free Fe(Fed), reactive Fe (Feo), and non-crystalline Fe in both bulk soil and aggregates.Furthermore, non-crystalline Fe showed a positive correlation with SOC content in both bulk soil and aggregates.Both non-crystalline Fe and SOC were significantly positively correlated with>2 mm mean weight diameter.Overall, we believe that the increase of SOC, aromatic-C, and non-crystal ine Fe concentrations in soil after the application of organic fertilizer is the reason for improving soil aggregate stability. 展开更多
关键词 organic fertilizer soil aggregates soil organic carbon iron oxides greenhouse soil
在线阅读 下载PDF
Soil Test Based Fertilizer Prescriptions through Inductive cum Targeted Yield Model for Sesamum on Alfisol
16
作者 Adusumilli Madhavi Matli Srinivasa Chari +2 位作者 Tumula Srijaya Pasupuleti Surendra Babu Pradip Dey 《Journal of Agricultural Science and Technology(A)》 2020年第3期115-122,共8页
Studies on Soil Test Crop Response Based Integrated Plant Nutrition System(STCR-IPNS)were conducted for three years adopting the Inductive cum Targeted Yield Model,on alfisols of Unified Andhra Pradesh,Southern India ... Studies on Soil Test Crop Response Based Integrated Plant Nutrition System(STCR-IPNS)were conducted for three years adopting the Inductive cum Targeted Yield Model,on alfisols of Unified Andhra Pradesh,Southern India during summer 2016-2018 in order to develop fertilizer prescriptions through IPNS for the desired yield targets of Sesamum under field conditions.The bases for making the fertilizer prescriptions viz.nutrient requirement(NR),contribution of nutrients from soil(Cs),fertilizer(Cf)and vermicompost(CVC)were computed using the field experimental data.Making use of these basic parameters,the fertilizer prescription equations were developed under NPK alone and under IPNS for the desired yield targets of Sesamum for a range of soil test values.The quantity of fertilizers contributed by the application of vermicompost was assessed.Nutrient requirement to produce 100 kg of sesame seed was worked out to be 10.20 kg N,3.90 kg P2O5 and 5.22 kg K2O.In the present investigation,the requirement of N was higher which is followed by K2O and P2O5.The requirement of N was 2.62 times higher than P and 1.95 times higher than K.The percent contribution of N,P and K was 12.25,15.75 and 6.00 from soils,41.68,22.85 and 59.97 from fertilizer and 9.87,6.74 and 18.65 from organic manures,respectively.Thus the Inductive cum Targeted Yield Model used to develop fertilizer prescription equations provides a strong basis for soil fertility maintenance consistent with high productivity and efficient nutrient management in farming for sustainable and enduring agriculture. 展开更多
关键词 fertilizer PRESCRIPTION equations ALFISOL Soil Test Crop Response BASED Integrated Plant Nutrition System Sesamum yield target
在线阅读 下载PDF
Key fungal communities related to alleviating replanting stress of Lanzhou lily under silicon fertilizer and microbial agents application
17
作者 WANG Yi-qin YU Yan-lin +5 位作者 YANG Hong-yu LI Hui HOU Lei MAN Hua-li HAN Jia SHI Gui-ying 《植物营养与肥料学报》 北大核心 2025年第2期395-406,共12页
【Objectives】Si and microbial application could relieve the crop replanting problems(CRPs).We further studied the change of key microorganisms that are related to the beneficial effects,aiming at provide reference fo... 【Objectives】Si and microbial application could relieve the crop replanting problems(CRPs).We further studied the change of key microorganisms that are related to the beneficial effects,aiming at provide reference for the manufacture and application of both microbial agents and Si fertilizer in food lily production.【Methods】A field experiment was conducted over a three-year period,from March 2019 to March 2022.The experimental field had been continuously cultivated with lily for 9 years.Three treatments were established:silicon fertilizer(SF),microbial agents(“Special 8^(TM)”,MF),and combined application of silicon fertilizer and microbial agents(SMF).A control group with blank soil(CK)was also included.At seedling stage of Lanzhou lilies in 2020 and 2021,the shoot and bulb dry weight,and the plant height and stem diameter of Lanzhou lilies were investigated for calculation of seedling index.In July 2020,20 plants were selected in each plot,and root zone soils were sampled at a depth of 20 cm,10 cm away from the roots,and then mixed to form a composite sample.The soil available Si and organic matter content were analyzed,and the fungal community structure and some specific microbial groups in soils were determined with high-throughput sequencing of ITS.【Results】All the three treatments significantly enhanced the lily plant growth and the seedling index,compared to CK.Besides,SF and MF treatments increased the relative abundances(RA)and diversity of fungal communities,and altered the community structures.The RA of some specific groups were found to be significantly correlated with the seedling index and/or soil available Si.Of them,the RA of the genera Fusarium,Dactylonectria,Humicola,Stilbella,and the species Humicola_grisea showed a positive correlation,while that of the genera Mortierella,Stilbella,Holtermanniella,and the species Mortierella_fatshederae showed a negative correlation with seedling index.The genera Fusarium,Stilbella,the species Humicola_grisea,and Dactylonectria_estremocensis showed a positive correlation,while the genura Stilbella,and the species Mortierella fatshederae showed a negative correlation with available Si content.In the co-occurence network of top twenty fungal genera and top sixteen bacterial genera(RA>0.2%),Holtermanniella was the only genus that interacted with the bacteria and negatively correlated with bacterial genus Blastococcus.Holtermanniella was also the most densely connected genera,followed by the genus Fusarium,Didymella and Humicola.In addition,the genus Holtermanniella was the key species connecting fungal and bacterial community in soil.Fungal functional prediction revealed that SF,MF and SMF treatments decreased plant pathogens guilds and increased the beneficial guilds Ectomycorrhizal,plant saprophyte,leaf saprophyte,and arbuscular mycorrhizal compared to CK.【Conclusions】Combined application of silicon fertilizer and microbial agents can alleviate continuous replanting problems of Lanzhou lilies through restoring the fungal community diversity,and promoting plant residue depredation,thus reducing soil born disease incidence.The beneficial genus Humicola and its one species H.grisea acts as bioconversion,and the genus Acremonium acts as plant pathogen inhibitor. 展开更多
关键词 Lanzhou lily soil fungi diversity pathotroph saprophyte silicon fertilization microbial agent
在线阅读 下载PDF
Effects of Copper-based Nutritional Foliar Fertilizers on Photosynthetic Characteristics,Yield and Disease Control Efficiency of Cotton 被引量:1
18
作者 Qiang MA Wei WANG +5 位作者 Hongjie LI Xiangjun WANG Zishuang LI Tongkai ZHAO Xianhe ZHENG Yanxiao TAN 《Agricultural Biotechnology》 CAS 2019年第1期140-149,共10页
[Objectives] The effects of copper-based nutrient foliar fertilizer on photosynthetic characteristics,yield,accumulation and distribution of trace elements in various organs,disease prevention effect and soil enzyme a... [Objectives] The effects of copper-based nutrient foliar fertilizer on photosynthetic characteristics,yield,accumulation and distribution of trace elements in various organs,disease prevention effect and soil enzyme activity were studied,so as to provide a theoretical basis for the application of foliar fertilizers in cotton production. [Methods]Through two years of field experiments,six treatments were set in total,namely spraying water( CK),traditional Bordeaux mixture( BDM),Kocide 2000( KCD),copper-based nutrient foliar fertilizer( CF),iron-copper-based nutrient foliar fertilizer( CFFe),and zinc-boron-copper-based nutrient foliar fertilizer( CFZnB). Randomized block arrangement was adopted. Chlorophyll content in leaves was measured at each growth stage of the cotton. Photosynthetic characteristics of leaves were measured at the peak bolling stage. Plants were sampled at initial boll opening stage. The whole plant was divided into root,stem,leaf and cotton boll parts,in which the total copper,total zinc,total iron contents and accumulations were determined. Soil samples were collected from each plot,followed by the determination of soil enzyme activity. Disease index was investigated at bud,flowering and boll-forming and boll opening stage. [Results]( 1) Spraying CFFe,CFZnB,CF and KCD could significantly improve chlorophyll content of cotton leaves,and the CFFe treatment had the highest increase up to13. 30%,followed by the CFZnB treatment,which was 11. 40% higher than the CK; and photosynthetic rate,stomata conductance and transpiration rate could be improved significantly,and the CFFe treatment showed the highest photosynthetic rate,which increased by 26. 35% compared with the CK,followed by the CFZnB treatment,which increased by 17. 96% compared with CK; and intercellular CO2 concentration was significantly reduced.( 2) Spraying BDM,KCD,CF,CFFe and CFZnB can significantly increase total copper content and accumulation in various cotton organs( except the total copper content in the stem part of the CFZnB treatment; the CFZnB and CFFe treatments can significantly increase total zinc content and accumulation in various cotton organs; and spraying CFFe,CFZnB and CF can significantly increase total iron content and accumulation in various cotton organs( except the total iron content in the stem part of the CF treatment).( 3)Spraying CFFe,CFZnB,CF,KCD and BDM greatly reduced the disease index at flowering and boll-forming and boll opening stages.( 4) The CFZnB and CFFe treatments had the highest soil urease activity,which was 7. 14% higher than that of the CK,but the difference from the CK was not significant; the catalase activity of each treatment was significantly higher than that of the BDM treatment; and the sucrase activity of each treatment was significantly higher than that of the CK.( 5) Spraying CFFe,CFZnB,CF and KCD significantly improved lint yield of cotton,and the CFZnB treatment showed the highest yield increase up to 12. 34%,followed by the CFFe treatment,with an increase in the range of 8. 77%-10. 20%. [Conclusions]Copper-based nutrient foliar fertilizers have dual functions of disease control and prevention and plant nutrition and health care,and not only can significantly increase cotton yield,but also has certain disease prevention effect.It is recommended to use copper-based nutrient foliar fertilizers. 展开更多
关键词 COPPER-BASED nutrient FOLIAR fertilizer COTTON PHOTOSYNTHETIC characteristics YIELD Disease index Trace elements Soil enzyme activity
在线阅读 下载PDF
Regulation and decision system of water, fertilizer and salt in salinized farmland based on WebGIS
19
作者 ZHU Chang-da GAO Ming-xiu +1 位作者 ZHANG Zhi YAO Yu 《Ecological Economy》 2018年第3期162-173,共12页
In this paper, aiming at the problems of insufficient soil nutrients and high salt content in Wudi core demonstration area of Bohai Granary, a monitoring and management system of water, fertilizer and salt in saline-a... In this paper, aiming at the problems of insufficient soil nutrients and high salt content in Wudi core demonstration area of Bohai Granary, a monitoring and management system of water, fertilizer and salt in saline-alkaline farmland based on WebGIS was established in order to monitor and control water, fertilizer and salt. Based on the Windows.NET platform, using B/S mode of operation architecture and Visual Studio 2010 as the software development environment, the related components in ArcGIS Engine were invoked by ArcGIS API for Silverlirht, and the WEB system was developed by C# and XMAL language. Based on the principle of water, fertilizer and salt balance, a monitoring model and a regulation model for water, salt and nutrients were established. Intelligent analysis and application of farmland soil data were realized, and a precision agriculture system with data query, early warning diagnosis, monitoring and control of water, fertilizer and salt was formed. And the "water and salt homologue, water supply due to demand, adequate and multiple" irrigation scheme and the salt and alkali reduction scheme of "synergistic conditioning of agents and nutrients" and a nutrient regulation plan for "stabilizing nitrogen, increasing phosphorus, supplementing potassium at the discretion" and "quick-acting combining slow release" were put forward. Compared with the period without monitoring and control of water and salt, the effect of water saving and fertilizer saving was improved, and the yield of wheat and maize was also significantly increased. It provided guidance for local users to increase crop production and income, and greatly improved the utilization of resources and grain production. 展开更多
关键词 two development of component GIS dynamic BALANCE of water fertilizer and SALT monitoring and REGULATION model spatial interpolation analysis
原文传递
Profitability of Fertilizer Use for Citrus Production in Teso Sub-Region, Eastern Uganda
20
作者 Onesmus Semalulu Patrick Makhosi +9 位作者 Edgar Samuel Tinyiro Isaac Obongo Patricia Driciru Doreen Namamya Park Taeseon Cho Ilho Caroline Asio Bernard Opio Emannuel Ikwap John Adriko 《Agricultural Sciences》 2025年第1期215-225,共11页
Citrus is an important commercial crop in Uganda, especially the Eastern region. However, in spite of the increasing regional demand, citrus productivity is still low, attributed to pest and diseases, soil moisture st... Citrus is an important commercial crop in Uganda, especially the Eastern region. However, in spite of the increasing regional demand, citrus productivity is still low, attributed to pest and diseases, soil moisture stress, and low soil fertility, among others. Efforts to improve soil fertility are limited by inadequate supply of organic fertilizers due to competing demands. In addition, there is inadequate information on inorganic fertilizer requirements for citrus production in Uganda. The objective of this study was to develop optimum fertilizer recommendations for citrus production for Eastern Uganda. The study was conducted in Teso region, Eastern Uganda. Fertilizer (NPK, 17:17:17) was randomly applied to Hamlin, Valencia and Washington varieties with fertilizer and variety factorially arranged for each farm and citrus age range, replicated three times. Fertilizer rates were 0, 139, 278 and 556 kg NPK/ha for the 4 - 7-year old trees, and 0, 278, 556 and 1111 kg NPK/ha for the mature (8 years and above) trees. For a given variety, each fertilizer rate was applied onto three representative trees per farmer, six farmers per district. Results showed that yields and net profits were highest for variety Hamlin, and nearly the same for varieties Washington and Valencia. Fertilizer application increased fruit yield and profits for both the 4 to 7-year and 8 and above-year-old trees, with highest yield and profitability values observed at 556 kg NPK/ha. These results suggest applying 556 kg NPK/ha to citrus per year as an optimum fertilizer rate for citrus production in Teso region. The fertilizer should be applied in smaller splits of 800, 600, and 600 grams per tree, applied in April, June, and August. 展开更多
关键词 Citrus Varieties Climate-Smart Agriculture COST-EFFECTIVENESS fertilizer Recommendations Soil Fertility Management
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部