A pot culture experiment was carried out in a glasshouse to compare the physiology and growth of sweet corn plants (Zea mays L. cv. Honey Bantam) grown under organic and chemical fertilizations with or without microbi...A pot culture experiment was carried out in a glasshouse to compare the physiology and growth of sweet corn plants (Zea mays L. cv. Honey Bantam) grown under organic and chemical fertilizations with or without microbial inoculation (MI). The organic fertilizer used was fermented mainly using rice bran and oil mill sludge, and the MI was a liquid product containing many beneficial microbes such as lactic acid bacteria, yeast, photosynthetic bacteria and actinomycetes. The application amounts of the organic fertilizer and chemical fertilizers were based on the same rate of nitrogen, phosphorus and potassium. Sweet corn plants fertilized with organic materials inoculated with beneficial microbes grew better than those without inoculation. There were no significant differences in physiology and growth of the sweet corn plants between treatments of chemical fertilizers with and without MI. Among the organic fertilization treatments, only the sweet corn plants with organic fertilizer and MI applied 4 weeks before sowing had similar photosynthetic capacityj total dry matter yield and ear yield to those with chemical fertilizers. Sweet corn plants in other organic fertilization treatments were weaker in physiology and growth than those in chemical fertilization treatments. There was no significant variance among chemical fertilization treatments at different time. It is concluded from this research that this organic fertilizer would be more effective if it was inoculated with the beneficial microbes. Early application of the organic fertilizer with beneficial microbes before sowing was recommended to make the nutrients available before the rapid growth at the early stage and obtain a yield similar to or higher than that with chemical fertilizations.展开更多
The improvement of soil productivity depends on a rational input of water and nutrients, optimal field management, and the increase of basic soil productivity(BSP). In this study, BSP is defined as the productive ca...The improvement of soil productivity depends on a rational input of water and nutrients, optimal field management, and the increase of basic soil productivity(BSP). In this study, BSP is defined as the productive capacity of a farmland soil with its own physical and chemical properties for a specific crop season under local field management. Based on 19-yr data of the long-term agronomic experiments(1989–2008) on a fluvo-aquic soil in Zhengzhou, Henan Province, China, the decision support system for agrotechnology transfer(DSSAT ver. 4.0) crop growth model was used to simulate yields by BSP of winter wheat(Triticum aestivium L.) and summer maize(Zea mays L.) to examine the relationship between BSP and soil organic carbon(SOC) under long-term fertilization. Five treatments were included:(1) no fertilization(control),(2) nitrogen, phosphorus and potassium fertilizers(NPK),(3) NPK plus manure(NPKM),(4) 1.5 times of NPKM(1.5NPKM), and(5) NPK plus straw(NPKS). After 19 yr of treatments, the SOC stock increased 16.7, 44.2, 69.9, and 25.2% under the NPK, NPKM, 1.5NPKM, and NPKS, respectively, compared to the initial value. Among various nutrient factors affecting contribution percentage of BSP to winter wheat and summer maize, SOC was a major affecting factor for BSP in the fluvo-aquic soil. There were significant positive correlations between SOC stock and yields by BSP of winter wheat and summer maize(P〈0.01), and yields by BSP of winter wheat and summer maize increased 154 and 132 kg ha^(–1) when SOC stock increased 1 t C ha^(–1). Thus, increased SOC accumulation is a crucial way for increasing BSP in fluvo-aquic soil. The manure or straw combined application with chemical fertilizers significantly enhanced BSP compared to the application of chemical fertilizers alone.展开更多
Effects of organic fertilizers and effective microbes on leaf water retention of sweet corn (Zea mays L. cv.Honey-Bantam) were studied. Sweet corns were grown with organic or chemical fertilizers with or without effec...Effects of organic fertilizers and effective microbes on leaf water retention of sweet corn (Zea mays L. cv.Honey-Bantam) were studied. Sweet corns were grown with organic or chemical fertilizers with or without effective microbes (EM). A water retention curve was obtained by drying the excised leaves under a light of 500 μmol (m2·s)-1. The curve shows two distinct phases. The initial steep slope indicates the water loss speed by stomatal transpiration (Est) and the gentle slope of the second phase indicates water loss speed by cuticular transpiration (Ecu). Both Est and Ecu were lower for leaves of plants grown with organic materials than for those with chemical fertilizers. Addition of EM to both organic and chemical fertilizers decreased Est but showed no effect on Ecu. The water retention ability of the excised leaves was proportional to photosynthetic maintenance ability under soil water deficit conditions as well as the solute concentration in leaves. The results suggested that organic fertilization and EM application increased water stress resistance both under in situ conditions and in excised leaves of sweet corn plants.展开更多
Kiwifruit yield and quality and soil nutrients were investigated in a kiwifruit orchard after long-term fertilization to understand the relationship between kiwifruit growth and soil nutrition.Seven fertilization trea...Kiwifruit yield and quality and soil nutrients were investigated in a kiwifruit orchard after long-term fertilization to understand the relationship between kiwifruit growth and soil nutrition.Seven fertilization treatments with three replications were applied in a continuous four-year period,including no fertilizer(CK);phosphorus(P)and potassium(K)fertilizers(PK);N and K fertilizers(NK);N and P fertilizers(NP);N,P and K fertilizers(NPK);1.5 times of N,P and K fertilizers(1.5NPK);and chemical fertilizers plus swine manure(NPKM).Fertilization increased kiwifruit yield at the rate of 450 kg N/hm^(2),225 kg P2O5/hm^(2),300 kg K2O/hm^(2).The average yield decreased in a descending order for NPKM(44.6 t/hm^(2)),1.5NPK(42.6 t/hm^(2)),NPK(42.0 t/hm^(2)),NK(38.0 t/hm^(2)),NP(36.7 t/hm^(2)),PK(36.4 t/hm^(2))and CK(34.1 t/hm^(2)).The sugar to acid ratio(S:A)was the highest(10.9)in 2012,and the soluble sugar increased by 15.7%after four-year NPKM fertilization.The NPKM fertilization also significantly increased the vitamin C,soluble solid and firmness.The soil organic carbon contents at 0-20 cm,20-40 cm and 40-60 cm in depth under the NPKM treatment were 27%,29%and 139%higher than that of the CK treatment,respectively.The available N contents at 0-20 cm,20-40 cm and 40-60 cm in depth in the 1.5NPK treatment were 180%,114%and 133%higher than that in the CK treatment,respectively.Balanced fertilization with N,P,K and organic manure is important to soil fertility,which may increase yield and improve quality in field-grown kiwifruit orchard.展开更多
Agricultural practices significantly contribute to greenhouse gas(GHG)emissions,necessitating cleaner production technologies to reduce environmental pressure and achieve sustainable maize production.Plastic film mulc...Agricultural practices significantly contribute to greenhouse gas(GHG)emissions,necessitating cleaner production technologies to reduce environmental pressure and achieve sustainable maize production.Plastic film mulching is commonly used in the Loess Plateau region.Incorporating slow-release fertilizers as a replacement for urea within this practice can reduce nitrogen losses and enhance crop productivity.Combining these techniques represents a novel agricultural approach in semi-arid areas.However,the impact of this integration on soil carbon storage(SOCS),carbon footprint(CF),and economic benefits has received limited research attention.Therefore,we conducted an eight-year study(2015-2022)in the semi-arid northwestern region to quantify the effects of four treatments[urea supplied without plastic film mulching(CK-U),slow-release fertilizer supplied without plastic film mulching(CK-S),urea supplied with plastic film mulching(PM-U),and slow-release fertilizer supplied with plastic film mulching(PM-S)]on soil fertility,economic and environmental benefits.The results revealed that nitrogen fertilizer was the primary contributor to total GHG emissions(≥71.97%).Compared to other treatments,PM-S increased average grain yield by 12.01%-37.89%,water use efficiency by 9.19%-23.33%,nitrogen accumulation by 27.07%-66.19%,and net return by 6.21%-29.57%.Furthermore,PM-S decreased CF by 12.87%-44.31%and CF per net return by 14.25%-41.16%.After eight years,PM-S increased SOCS(0-40 cm)by 2.46%,while PM-U decreased it by 7.09%.These findings highlight the positive effects of PM-S on surface soil fertility,economic gains,and environmental benefits in spring maize production on the Loess Plateau,underscoring its potential for widespread adoption and application.展开更多
Both straw incorporation and irrigation practices affect biological nitrogen(N)fixation(BNF),but it is still unclear how straw incorporation impacts BNF under continuous(CFI)or intermittent(IFI)flooding irrigation in ...Both straw incorporation and irrigation practices affect biological nitrogen(N)fixation(BNF),but it is still unclear how straw incorporation impacts BNF under continuous(CFI)or intermittent(IFI)flooding irrigation in a rice cropping system.A15N2-labeling chamber system was placed in a rice field to evaluate BNF with straw incorporation under CFI or IFI for 90 d.The nif H(gene encoding the nitrogenase reductase subunit)DNA and c DNA in soil were amplified using real-time quantitative polymerase chain reaction,and high-throughput sequencing was applied to the nif H gene.The total fixed N in the straw incorporation treatment was 14.3 kg ha^(-1)under CFI,being 116%higher than that under IFI(6.62 kg ha^(-1)).Straw incorporation and CFI showed significant interactive effects on the total fixed N and abundances of nif H DNA and c DNA.The increase in BNF was mainly due to the increase in the abundances of heterotrophic diazotrophs such as Desulfovibrio,Azonexus,and Azotobacter.These results indicated that straw incorporation stimulated BNF under CFI relative to IFI,which might ultimately lead to a rapid enhancement of soil fertility.展开更多
Terrestrial ecosystems heavily depend on vegetation,which responds to carbon dioxide(CO_(2))fertilization in hot and humid regions.The subtropical humid karst region is a hot and humid region;whether and to what exten...Terrestrial ecosystems heavily depend on vegetation,which responds to carbon dioxide(CO_(2))fertilization in hot and humid regions.The subtropical humid karst region is a hot and humid region;whether and to what extent CO_(2)fertilization affects vegetation changes in such regions remains unclear.In this study,we investigated the degree to which CO_(2)fertilization influences vegetation changes,along with their spatial and temporal differences,in the subtropical humid karst region using time-lag effect analysis,a random forest model,and multiple regression analysis.Results showed that CO_(2)fertilization plays an important role in vegetation changes,exhibiting clear spatial variations across different geomorphological zones,with its degree of influence ranging mainly between 11%and 25%.The highest contribution of CO_(2)fertilization was observed in the karst basin and non-karstic region,whereas the lowest contribution was found in the karst plateau region.Previous studies have primarily attributed vegetation changes in subtropical humid karst region to ecological engineering,leading to an overestimation of its contribution to these changes.The findings of this study enhance the understanding of the mechanism of vegetation changes in humid karst region and provide theoretical and practical insights for ecological and environmental protection in these regions.展开更多
Whilst phosphorus(P)in soil is considered to be abundant,the portion available for plant uptake constitutes less than 1%of the overall P present.To enhance crop productivity,the utilization of mineral P fertilizers ha...Whilst phosphorus(P)in soil is considered to be abundant,the portion available for plant uptake constitutes less than 1%of the overall P present.To enhance crop productivity,the utilization of mineral P fertilizers has become pervasive in agriculture.Nonetheless,the escalating prices of chemical fertilizers,coupled with new European regulations prohibiting the use of P fertilizers containing cadmium,have highlighted the urgency to identify environmentally friendly products and practices for P fertilization in agricultural soils.This comprehensive review delves into the current landscape of P fertilization from agricultural,political,and economic standpoints.We recognize the potential of microbes in mobilizing P,but emphasize the necessity for more robust research to establish their effectiveness in promoting plant P uptake under real-world conditions.Additionally,we explore the role of agricultural conservation practices,such as optimal tillage,diversified cropping systems,and increased organic carbon input,in conserving P.Furthermore,this review contemplates forthcoming innovations in research.These innovations encompass the development of enhanced formulations for biofertilizers and the undertaking of more comprehensive studies within the realm of conservation agriculture.All these endeavors collectively hold the potential to augment P accessibility to plants in a sustainable manner,thereby advancing agricultural sustainability and productivity.展开更多
Organic material combined with inorganic fertilizer has been shown to greatly improve crop yield and maintain soil fertility globally. However, it remains unclear if crop yield and soil fertility can be sustained in t...Organic material combined with inorganic fertilizer has been shown to greatly improve crop yield and maintain soil fertility globally. However, it remains unclear if crop yield and soil fertility can be sustained in the long term under the combined application of organic and inorganic fertilizers. Three long-term field trials were conducted to investigate the effects of organic amendments on the grain sustainable yield index(SYI), soil fertility index(SFI)and nutrient balance in maize–wheat cropping systems of central and southern China during 1991–2019. Five treatments were included in the trials: 1) no fertilization(control);2) balanced mineral fertilization(NPK);3) NPK plus manure(NPKM);4) high dose of NPK plus manure(1.5NPKM);and 5) NPK plus crop straw(NPKS). Over time, the grain yields of wheat and maize showed an increasing trend in all four fertilization treatments at the Yangling(YL) and Zhengzhou(ZZ) locations, while they declined at Qiyang(QY). The grain yield in the NPKM and 1.5NPKM treatments gradually exceeded that of the NPK and NPKS treatments at the QY site. The largest SYI was recorded in the NPKM treatment across the three sites, suggesting that inorganic fertilizer combined with manure can effectively improve crop yield sustainability. Higher SYI values were recorded at the YL and ZZ sites than at the QY site, possibly because the soil was more acid at QY. The key factors affecting grain yield were soil available phosphorus(AP) and available potassium(AK) at the YL and ZZ sites, and pH and AP at the QY site.All fertilization treatments resulted in soil N and P surpluses at the three sites, but soil K surpluses were recorded only at the QY site. The SFI was greater in the 1.5NPKM, NPKM and NPKS treatments than in the NPK treatment by 13.3–40.0 and 16.4–63.6% at the YL and ZZ sites, respectively, and was significantly higher in the NPKM and 1.5NPKM treatments than in the NPK and NPKS treatments at the QY site. A significant, positive linear relationship was found between SFI and crop yield, and SYI and nutrient balance, indicating that grain yield and its sustainability significantly increased with increasing soil fertility. The apparent N, P and K balances positively affected SFI.This study suggests that the appropriate amount of manure mixed with mineral NPK fertilizer is beneficial to the development of sustainable agriculture, which effectively increases the crop yield and yield sustainability by improving soil fertility.展开更多
Both soil organic carbon (SOC) and iron (Fe) oxide content, among other factors, drive the formation and stability of soil aggregates.However, the mechanism of these drivers in greenhouse soil fertilized with organic ...Both soil organic carbon (SOC) and iron (Fe) oxide content, among other factors, drive the formation and stability of soil aggregates.However, the mechanism of these drivers in greenhouse soil fertilized with organic fertilizer is not well understood.In a 3-year field experiment, we aimed to investigate the factors which drive the stability of soil aggregates in greenhouse soil.To explore the impact of organic fertilizer on soil aggregates, we established four treatments:no fertilization (CK);inorganic fertilizer (CF);organic fertilizer (OF);and combined application of inorganic and organic fertilizers(COF).The application of organic fertilizer significantly enhanced the stability of aggregates, that is it enhanced the mean weight diameter, geometric mean diameter and aggregate content (%) of>0.25 mm aggregate fractions.OF and COF treatments increased the concentration of SOC, especially the aliphatic-C, aromatic-C and polysaccharide-C components of SOC, particularly in>0.25 mm aggregates.Organic fertilizer application significantly increased the content of free Fe(Fed), reactive Fe (Feo), and non-crystalline Fe in both bulk soil and aggregates.Furthermore, non-crystalline Fe showed a positive correlation with SOC content in both bulk soil and aggregates.Both non-crystalline Fe and SOC were significantly positively correlated with>2 mm mean weight diameter.Overall, we believe that the increase of SOC, aromatic-C, and non-crystal ine Fe concentrations in soil after the application of organic fertilizer is the reason for improving soil aggregate stability.展开更多
A four-year field experiment was conducted with two cultivars and four N rate to investigate the spatiotemporal characteristics of leaf senescence in maize after silking and its response to N fertilizer rates on them,...A four-year field experiment was conducted with two cultivars and four N rate to investigate the spatiotemporal characteristics of leaf senescence in maize after silking and its response to N fertilizer rates on them,as well as to reveal the differences in post-silking chlorophyll degradation between low-N-tolerant cultivars.The results showed that the order of leaf senescence after silking in maize was lower leaf>upper leaf>ear leaf,leaf tip>middle>base.Increasing N fertilizer down-regulated the expression of ZmCLH2 and ZmPPH in the leaves at 10-30 d after silking,reducing CLH and PPH activities,thereby delaying the leaf senescence.These effects were more prominent in low-N-sensitive cultivar Xianyu 508(XY508)than in low-N-tolerant cultivar Zhenghong 311(ZH311),especially in the lower leaves and leaf tip.Under low N condition,leaf yellowing and chlorophyll degradation occurred later and slower in ZH311 than in XY508.This resulted in a higher post-silking dry matter accumulation and grain yield in ZH311,which may be one of the important physiological bases of low nitrogen tolerant cultivars.Future research should focus on developing low-N-tolerant maize cultivars with slower leaf senescence near the ear after silking.展开更多
Phosphorus(P)poses a global challenge to the environment and human health due to its natural association with heavy metals.Sustainable use of P is crucial to ensure food security for future generations.An analysis of ...Phosphorus(P)poses a global challenge to the environment and human health due to its natural association with heavy metals.Sustainable use of P is crucial to ensure food security for future generations.An analysis of the 150 phosphate fertilizers stored at the Institute for Crop and Soil Science in Germany has been conducted,supplemented by previously published data.The elements Cd,Bi,U,Cr,Zn,Tl,As,B,Sb,Ni,and Se are found in higher concentrations in sedimentary derived phosphates compared to igneous derived phosphates.Mineral fertilizers contain more than ten times the amount of U,Cd,B,and As compared to farmyard manure.Principal component analyses(PCA)indicate that U,Cd,Be,and Cr are primarily present in sedimentary derived phosphates and their concentrations are 2 to 10 times higher than those in igneous derived phosphates.Regarding heavy metal contamination,over 1000 potential combinations were identified;36% of these were significant but weak(>0.1).It is estimated that approximately 707 t of uranium enter farmland annually through the application of mineral phosphate fertilizers in European countries.This contribution addresses environmental issues related to the utilization of rock phosphate as well as alternative production methods for cleaner and safer phosphate fertilizers while presenting a roadmap with measures for mitigation.展开更多
BACKGROUND Ovarian hyperstimulation syndrome(OHSS)is a life-threatening complication that can occur in the luteal phase or early pregnancy after controlled ovarian stimulation.This case report highlights a unique mani...BACKGROUND Ovarian hyperstimulation syndrome(OHSS)is a life-threatening complication that can occur in the luteal phase or early pregnancy after controlled ovarian stimulation.This case report highlights a unique manifestation of OHSS involving pleural effusion(PE)in a patient without identifiable risk factors.CASE SUMMARY A 39-year-old woman who underwent controlled ovarian hyperstimulation for an in vitro fertilization(IVF)cycle experienced dyspnea on the eleventh day of post oocyte retrieval.The diagnosis was severe OHSS with a unique manifestation of PE without ascites.Clinical management involved fluid balance and treatment with albumin,furosemide,thromboembolic prophylaxis,and thoracentesis.A continued drainage of the pleural cavity was performed.The patient had a favo-rable outcome,and a dichorionic diamniotic gestation passed without incident.CONCLUSION OHSS and its potential complications can include respiratory distress and PE,as well as thromboembolic disorders.展开更多
【Objectives】Si and microbial application could relieve the crop replanting problems(CRPs).We further studied the change of key microorganisms that are related to the beneficial effects,aiming at provide reference fo...【Objectives】Si and microbial application could relieve the crop replanting problems(CRPs).We further studied the change of key microorganisms that are related to the beneficial effects,aiming at provide reference for the manufacture and application of both microbial agents and Si fertilizer in food lily production.【Methods】A field experiment was conducted over a three-year period,from March 2019 to March 2022.The experimental field had been continuously cultivated with lily for 9 years.Three treatments were established:silicon fertilizer(SF),microbial agents(“Special 8^(TM)”,MF),and combined application of silicon fertilizer and microbial agents(SMF).A control group with blank soil(CK)was also included.At seedling stage of Lanzhou lilies in 2020 and 2021,the shoot and bulb dry weight,and the plant height and stem diameter of Lanzhou lilies were investigated for calculation of seedling index.In July 2020,20 plants were selected in each plot,and root zone soils were sampled at a depth of 20 cm,10 cm away from the roots,and then mixed to form a composite sample.The soil available Si and organic matter content were analyzed,and the fungal community structure and some specific microbial groups in soils were determined with high-throughput sequencing of ITS.【Results】All the three treatments significantly enhanced the lily plant growth and the seedling index,compared to CK.Besides,SF and MF treatments increased the relative abundances(RA)and diversity of fungal communities,and altered the community structures.The RA of some specific groups were found to be significantly correlated with the seedling index and/or soil available Si.Of them,the RA of the genera Fusarium,Dactylonectria,Humicola,Stilbella,and the species Humicola_grisea showed a positive correlation,while that of the genera Mortierella,Stilbella,Holtermanniella,and the species Mortierella_fatshederae showed a negative correlation with seedling index.The genera Fusarium,Stilbella,the species Humicola_grisea,and Dactylonectria_estremocensis showed a positive correlation,while the genura Stilbella,and the species Mortierella fatshederae showed a negative correlation with available Si content.In the co-occurence network of top twenty fungal genera and top sixteen bacterial genera(RA>0.2%),Holtermanniella was the only genus that interacted with the bacteria and negatively correlated with bacterial genus Blastococcus.Holtermanniella was also the most densely connected genera,followed by the genus Fusarium,Didymella and Humicola.In addition,the genus Holtermanniella was the key species connecting fungal and bacterial community in soil.Fungal functional prediction revealed that SF,MF and SMF treatments decreased plant pathogens guilds and increased the beneficial guilds Ectomycorrhizal,plant saprophyte,leaf saprophyte,and arbuscular mycorrhizal compared to CK.【Conclusions】Combined application of silicon fertilizer and microbial agents can alleviate continuous replanting problems of Lanzhou lilies through restoring the fungal community diversity,and promoting plant residue depredation,thus reducing soil born disease incidence.The beneficial genus Humicola and its one species H.grisea acts as bioconversion,and the genus Acremonium acts as plant pathogen inhibitor.展开更多
Rice (Oryza sativa) is becoming a staplefood in many regions of DR-Congo. However, its production is still limited to the North Eastern part of the country and grain yield is low. A study was carried out in the city o...Rice (Oryza sativa) is becoming a staplefood in many regions of DR-Congo. However, its production is still limited to the North Eastern part of the country and grain yield is low. A study was carried out in the city of Mbujimayi located in the Central part of the DR-Congo to assess the effects of organic and inorganic fertilizers on morpho-agronomic characteristics of O. sativa. The trial was conducted during the 2021 agricultural season A using a completely randomized design with three replicates. The six treatments studied consisted of application of T. diversifolia biomass at a dose of 2 kg/4m2 (BFT − 2 kg), 4 kg/4 m2 (BFT − 4 kg), inorganic fertilizer consisting with NPK17-17-17 + Urea (46% N) at a combined dose of 80 g/4 m2 (NP), 1/2 of the combination (BFT − 2 kg + NP) and finally 1/2 of the combination (BFT − 4 kg + NP). The untreated plots were used as controls. Plants treated with 1/2 combination (BFT − 4 kg + NP), BFT – 4 kg, and NP showed similar height (100.93 cm, 99.03 cm, and 98.63 cm, respectively) that were significantly higher than control and other treatments [1/2 (BFT – 2 kg + NP, BFT – 2 kg] For agronomic characteristics, days to 50% flowering varied between 73.00 and 74 days with an average of 74 days. The control and BFT – 4 kg showed significantly shorter panicles compared to other treatments. For yield components, 1/2 (BFT – 4 kg + NP) and the NP treatments generated a higher weight of 1000 grains. For yield per hectare, 1/2 (BFT − 4 kg + NP) induced significantly different levels of production than the control and other treatments, including 1/2 (BFT – 2 kg + NP), BFT – 4 kg + NP, BFT – 2 kg, BFT – 4 kg. The correlation coefficients between agronomic traits revealed that with the exception of the length of particle and the abortion rates, all the yield components (panicles per plant, seeds per panicle, weight of 1000 grains, and grail yield per plot) were strongly correlated with grain yield per hectare.展开更多
Backgroud Before fertilization,spermatozoa undergo a crucial maturation step called capacitation,which is a unique event regulates the sperm’s ability for successful fertilization.The capacitation process takes place...Backgroud Before fertilization,spermatozoa undergo a crucial maturation step called capacitation,which is a unique event regulates the sperm’s ability for successful fertilization.The capacitation process takes place as the spermatozoa pass through the female reproductive tract(FRT).Dihydrolipoamide dehydrogenase(DLD)protein is a post-pyruvate metabolic enzyme,exhibiting reactive oxygen species(ROS)production which causes capacitation.Additionally,other vital functions of DLD in buffalo spermatozoa are hyperactivation and acrosome reaction.DLD produces the optimum amount of ROS required to induce capacitation process in FRT.Depending on physiological or patho-physiological conditions,DLD can either enhance or attenuate the production of reactive oxygen species(ROS).Aim of this study was to investigate whether changes in the production of ROS in sperm cells can impact their ability to fertilize by triggering the capacitation and acrosome reaction.Results In this study,abundance of DLD protein was quantified between high(n=5)and low fertile bull(n=5)sper-matozoa.It was found that compared to high-fertile(HF)bulls,low-fertile(LF)bulls exhibited significantly(P<0.05)higher DLD abundances.Herein,we optimised the MICA concentration to inhibit DLD function,spermatozoa were treated with MICA in time(0,1,2,3,4,and 5 h)and concentrations(1,2.5,5,and 10 mmol/L)dependent manner.Maximum DLD inhibition was found to be at 4 h in 10 mmol/L MICA concentration,which was used for further exper-imentation in HF and LF.Based on DLD inhibition it was seen that LF bull spermatozoa exhibited significantly(P<0.05)higher ROS production and acrosome reaction in comparison to the HF bull spermatozoa.The kinematic parameters of the spermatozoa such as percent total motility,velocity parameters(VCL,VSL,and VAP)and other parameters(BCF,STR,and LIN)were also decreased in MICA treated spermatozoa in comparison to the control(capacitated)spermatozoa.Conclusions The present study provides an initial evidence explaining the buffalo bull spermatozoa with higher DLD abundance undergo early capacitation,which subsequently reduces their capacity to fertilize.展开更多
Using phosphorus(P)fertilizers has historically increased agricultural productivity,yet the highly dissipative nature of phosphate rock and the low effciency due to soil fxation and runoff raise sustainability concern...Using phosphorus(P)fertilizers has historically increased agricultural productivity,yet the highly dissipative nature of phosphate rock and the low effciency due to soil fxation and runoff raise sustainability concerns.Algae fertilizers have emerged as a promising eco-friendly alternative.However,the potential of algae fertilizers for providing sustained P availability and their impacts on plant growth,soil microbes,and nutrient cycling remains to be explored.In this study,we developed a polyphosphate-enriched algae fertilizer(PEA)and conducted comparative experiments with chemical P fertilizers(CP)through soil and solution cultures,as well as crop growth trials.Soil cultivation experiments showed that PEA released twice as much labile P as initially available in the soil,and it functioned as a slow-release P source.In contrast,soils treated with CP initially exhibited high levels of labile P,which was gradually converted to stable forms,but it dropped to 30%of the labile P level in PEA after three months.Further tests revealed that the slow release of P from PEA was linked to increased microbial activity,and the microbial biomass P(MBP)content was about eight times higher than in soils treated with CP after three months,resulting in a 75%decline in the microbial biomass carbon(MBC)to MBP ratio.Microbial diversity analysis showed that algae fertilizers could recruit more benefcial microbes than CP,like phosphorus-solubilizing bacteria,plant growth-promoting bacteria,and stress-resistant bacteria.Crop pot experiments,along with amplicon and metagenomic analysis of tomato root-associated microbes,revealed that algae fertilizers including PEA promoted plant growth comparable to CP,and enhanced soil P cycling and overall nutrient dynamics.These data showed that algae fertilizers,especially PEA,can stabilize soil P fertility and stimulate plant growth through their slow P release and the recruitment of benefcial microbes.Our study highlights the potential of PEA to foster sustainable agriculture by mitigating the P scarcity and soil P loss associated with chemical fertilizers and improving plant growth and soil health.展开更多
Citrus is an important commercial crop in Uganda, especially the Eastern region. However, in spite of the increasing regional demand, citrus productivity is still low, attributed to pest and diseases, soil moisture st...Citrus is an important commercial crop in Uganda, especially the Eastern region. However, in spite of the increasing regional demand, citrus productivity is still low, attributed to pest and diseases, soil moisture stress, and low soil fertility, among others. Efforts to improve soil fertility are limited by inadequate supply of organic fertilizers due to competing demands. In addition, there is inadequate information on inorganic fertilizer requirements for citrus production in Uganda. The objective of this study was to develop optimum fertilizer recommendations for citrus production for Eastern Uganda. The study was conducted in Teso region, Eastern Uganda. Fertilizer (NPK, 17:17:17) was randomly applied to Hamlin, Valencia and Washington varieties with fertilizer and variety factorially arranged for each farm and citrus age range, replicated three times. Fertilizer rates were 0, 139, 278 and 556 kg NPK/ha for the 4 - 7-year old trees, and 0, 278, 556 and 1111 kg NPK/ha for the mature (8 years and above) trees. For a given variety, each fertilizer rate was applied onto three representative trees per farmer, six farmers per district. Results showed that yields and net profits were highest for variety Hamlin, and nearly the same for varieties Washington and Valencia. Fertilizer application increased fruit yield and profits for both the 4 to 7-year and 8 and above-year-old trees, with highest yield and profitability values observed at 556 kg NPK/ha. These results suggest applying 556 kg NPK/ha to citrus per year as an optimum fertilizer rate for citrus production in Teso region. The fertilizer should be applied in smaller splits of 800, 600, and 600 grams per tree, applied in April, June, and August.展开更多
BACKGROUND Acupuncture,an ancient practice,is gaining recognition as a complementary and alternative medicine,especially in assisted reproductive technology.It plays a crucial role in enhancing embryo transfer success...BACKGROUND Acupuncture,an ancient practice,is gaining recognition as a complementary and alternative medicine,especially in assisted reproductive technology.It plays a crucial role in enhancing embryo transfer success rates.Research indicates that acupuncture can improve blood flow,increase endometrial receptivity regulate pressure,and affect neuroendocrine activities in the ovaries and uterus during embryo implantation,therefore improving pregnancy outcomes.AIM To highlight recent developments related to acupuncture's influence on embryo transfer and elucidating the precise mechanisms by which acupuncture influences embryo transfer.METHODS We searched database including PubMed,Cochrane Library up to September 2024 for relevant studies and patents to evaluate the effects of acupuncture on women undergoing in vitro fertilization(IVF).The experimental design included an intervention group using needling,and a control group consisting of no needling or sham needling.The main outcome is clinical pregnancy rate(CPR),while secondary includes live birth rate(LBR)and biochemical pregnancy rate(BPR).We examined the influence of adjunctive needling on pregnancy outcomes by analyzing variations in the main outcomes.RESULTS A total of 145 randomized controlled trials involving 27748 participants were analyzed.Data revealed that the overall CPR was significantly elevated in all acupuncture cohorts compared to the control group[relative risk(RR):1.21,95%CI:1.07-1.38,P=0.01].In contrast,the aggregated LBR did not exhibit a corresponding increase,and notable statistical heterogeneity was observed among the studies.Acupuncture-assisted frozen-thawed embryo transfer enhanced the BPR(RR:1.51,95%CI:1.21-1.89,P=0.03)and improved endometrial morphology(RR:1.41,95%CI:1.13-1.75,P=0.01).Furthermore,IVF outcomes were significantly superior in the acupuncture group when acupuncture was administered during controlled ovarian hyperstimulation(RR:1.71,95%CI:1.08-2.13,95%CI:1.08-4.21,P=0.03).CONCLUSION We find that acupuncture positively influences pregnancy rates in women receiving IVF treatment.Nonetheless,there are no established guidelines for optimal acupuncture protocols.Considering the methodological limitations identified in current research,there is a need for larger,methodologically rigorous studies.展开更多
As a paddy—upland rotation system, tobacco—rice rotation hastypical characteristics in the formation and evolution of soil fertility duringthe tobacco season with dry farming and rice season with water cultivation.T...As a paddy—upland rotation system, tobacco—rice rotation hastypical characteristics in the formation and evolution of soil fertility duringthe tobacco season with dry farming and rice season with water cultivation.To scientifically unveil the soil fertility formation process and grade thesoil fertility in tobacco—rice rotation areas, we collected 372 soil samplesfrom 11 tobacco stations (Haotang, Aoquan, Chengjiao, Renyi, Fangyuan,Anping, Huangsha, Taiping, Tushi, Dashiqiao, and Baimangying) in thetypical tobacco—rice rotation areas of Chenzhou and Yongzhou in SouthernHunan. The physical, chemical, and biological indicators of the soil sampleswere measured, and the tobacco and rice yields of each tobacco stationwere investigated. Machine learning was employed to screen the keyindicators influencing the tobacco yield, and a comprehensive numericalanalysis method combining principal component analysis and discriminantanalysis were adopted to cluster the sampling points, analyze their fertilityformation processes, and grade the soil fertility. The results showed thatclay content, available phosphorus, plow layer depth, slit-to-clay ratio, totalnitrogen, basal respiration, and organic carbon were identified as seven keyindicators influencing the tobacco yield. The results of the comprehensivenumerical analysis predicted two main processes involved in the formationof soil fertility in tobacco—rice rotation areas. One was the soil maturationprocess related to soil carbon and nitrogen cycling, and the other was theprocess of changes in soil physical properties such as clay content and slitto-clay ratio. According to the established soil fertility grading methodfor tobacco—rice rotation areas, the soil fertility of 11 tobacco stationswas graded. The results showed that the soil fertility was high in Haotang,Aoquan, Renyi, and Dashiqiao, medium in Huangsha and Tushi, and low inAnping, Baimangying, and Taiping. The tobacco and rice yields confirmedthat this grading standard can be effectively applied to the grading of soilfertility in the tobacco—rice rotation areas in Southern Hunan and canprovide a scientific basis for soil management in tobacco—rice rotation.展开更多
文摘A pot culture experiment was carried out in a glasshouse to compare the physiology and growth of sweet corn plants (Zea mays L. cv. Honey Bantam) grown under organic and chemical fertilizations with or without microbial inoculation (MI). The organic fertilizer used was fermented mainly using rice bran and oil mill sludge, and the MI was a liquid product containing many beneficial microbes such as lactic acid bacteria, yeast, photosynthetic bacteria and actinomycetes. The application amounts of the organic fertilizer and chemical fertilizers were based on the same rate of nitrogen, phosphorus and potassium. Sweet corn plants fertilized with organic materials inoculated with beneficial microbes grew better than those without inoculation. There were no significant differences in physiology and growth of the sweet corn plants between treatments of chemical fertilizers with and without MI. Among the organic fertilization treatments, only the sweet corn plants with organic fertilizer and MI applied 4 weeks before sowing had similar photosynthetic capacityj total dry matter yield and ear yield to those with chemical fertilizers. Sweet corn plants in other organic fertilization treatments were weaker in physiology and growth than those in chemical fertilization treatments. There was no significant variance among chemical fertilization treatments at different time. It is concluded from this research that this organic fertilizer would be more effective if it was inoculated with the beneficial microbes. Early application of the organic fertilizer with beneficial microbes before sowing was recommended to make the nutrients available before the rapid growth at the early stage and obtain a yield similar to or higher than that with chemical fertilizations.
基金supported by the National Basic Research Program of China(973 Program,2011CB100501)the Key Technologies R&D Program of China during the 12th Five-Year Plan period(2015BAD22B03)+1 种基金the National High-Tech R&D Program of China(2013AA102901)the Special Fund for Agro-scientific Research in the Public Interest,China(201203077)
文摘The improvement of soil productivity depends on a rational input of water and nutrients, optimal field management, and the increase of basic soil productivity(BSP). In this study, BSP is defined as the productive capacity of a farmland soil with its own physical and chemical properties for a specific crop season under local field management. Based on 19-yr data of the long-term agronomic experiments(1989–2008) on a fluvo-aquic soil in Zhengzhou, Henan Province, China, the decision support system for agrotechnology transfer(DSSAT ver. 4.0) crop growth model was used to simulate yields by BSP of winter wheat(Triticum aestivium L.) and summer maize(Zea mays L.) to examine the relationship between BSP and soil organic carbon(SOC) under long-term fertilization. Five treatments were included:(1) no fertilization(control),(2) nitrogen, phosphorus and potassium fertilizers(NPK),(3) NPK plus manure(NPKM),(4) 1.5 times of NPKM(1.5NPKM), and(5) NPK plus straw(NPKS). After 19 yr of treatments, the SOC stock increased 16.7, 44.2, 69.9, and 25.2% under the NPK, NPKM, 1.5NPKM, and NPKS, respectively, compared to the initial value. Among various nutrient factors affecting contribution percentage of BSP to winter wheat and summer maize, SOC was a major affecting factor for BSP in the fluvo-aquic soil. There were significant positive correlations between SOC stock and yields by BSP of winter wheat and summer maize(P〈0.01), and yields by BSP of winter wheat and summer maize increased 154 and 132 kg ha^(–1) when SOC stock increased 1 t C ha^(–1). Thus, increased SOC accumulation is a crucial way for increasing BSP in fluvo-aquic soil. The manure or straw combined application with chemical fertilizers significantly enhanced BSP compared to the application of chemical fertilizers alone.
文摘Effects of organic fertilizers and effective microbes on leaf water retention of sweet corn (Zea mays L. cv.Honey-Bantam) were studied. Sweet corns were grown with organic or chemical fertilizers with or without effective microbes (EM). A water retention curve was obtained by drying the excised leaves under a light of 500 μmol (m2·s)-1. The curve shows two distinct phases. The initial steep slope indicates the water loss speed by stomatal transpiration (Est) and the gentle slope of the second phase indicates water loss speed by cuticular transpiration (Ecu). Both Est and Ecu were lower for leaves of plants grown with organic materials than for those with chemical fertilizers. Addition of EM to both organic and chemical fertilizers decreased Est but showed no effect on Ecu. The water retention ability of the excised leaves was proportional to photosynthetic maintenance ability under soil water deficit conditions as well as the solute concentration in leaves. The results suggested that organic fertilization and EM application increased water stress resistance both under in situ conditions and in excised leaves of sweet corn plants.
基金IPNI(International Plant Nutrition Institute),2011collaborative technology innovation in Shaanxi Province(QBXT-Z(P)-15-5)Key Laboratory for Agricultural Environment,Ministry of Agriculture Open Foundation(2015)。
文摘Kiwifruit yield and quality and soil nutrients were investigated in a kiwifruit orchard after long-term fertilization to understand the relationship between kiwifruit growth and soil nutrition.Seven fertilization treatments with three replications were applied in a continuous four-year period,including no fertilizer(CK);phosphorus(P)and potassium(K)fertilizers(PK);N and K fertilizers(NK);N and P fertilizers(NP);N,P and K fertilizers(NPK);1.5 times of N,P and K fertilizers(1.5NPK);and chemical fertilizers plus swine manure(NPKM).Fertilization increased kiwifruit yield at the rate of 450 kg N/hm^(2),225 kg P2O5/hm^(2),300 kg K2O/hm^(2).The average yield decreased in a descending order for NPKM(44.6 t/hm^(2)),1.5NPK(42.6 t/hm^(2)),NPK(42.0 t/hm^(2)),NK(38.0 t/hm^(2)),NP(36.7 t/hm^(2)),PK(36.4 t/hm^(2))and CK(34.1 t/hm^(2)).The sugar to acid ratio(S:A)was the highest(10.9)in 2012,and the soluble sugar increased by 15.7%after four-year NPKM fertilization.The NPKM fertilization also significantly increased the vitamin C,soluble solid and firmness.The soil organic carbon contents at 0-20 cm,20-40 cm and 40-60 cm in depth under the NPKM treatment were 27%,29%and 139%higher than that of the CK treatment,respectively.The available N contents at 0-20 cm,20-40 cm and 40-60 cm in depth in the 1.5NPK treatment were 180%,114%and 133%higher than that in the CK treatment,respectively.Balanced fertilization with N,P,K and organic manure is important to soil fertility,which may increase yield and improve quality in field-grown kiwifruit orchard.
基金supported by the National Natural Science Foundation of China(No.32071980)the Key Projects of Shaanxi Agricultural Collaborative Innovation and Extension Alliance(No.LMZD202201)+1 种基金the Key R&D Project in Shaanxi Province(No.2021LLRH-07)Shaanxi Natural Scientific Basic Research Program project(No.2022JQ-157).
文摘Agricultural practices significantly contribute to greenhouse gas(GHG)emissions,necessitating cleaner production technologies to reduce environmental pressure and achieve sustainable maize production.Plastic film mulching is commonly used in the Loess Plateau region.Incorporating slow-release fertilizers as a replacement for urea within this practice can reduce nitrogen losses and enhance crop productivity.Combining these techniques represents a novel agricultural approach in semi-arid areas.However,the impact of this integration on soil carbon storage(SOCS),carbon footprint(CF),and economic benefits has received limited research attention.Therefore,we conducted an eight-year study(2015-2022)in the semi-arid northwestern region to quantify the effects of four treatments[urea supplied without plastic film mulching(CK-U),slow-release fertilizer supplied without plastic film mulching(CK-S),urea supplied with plastic film mulching(PM-U),and slow-release fertilizer supplied with plastic film mulching(PM-S)]on soil fertility,economic and environmental benefits.The results revealed that nitrogen fertilizer was the primary contributor to total GHG emissions(≥71.97%).Compared to other treatments,PM-S increased average grain yield by 12.01%-37.89%,water use efficiency by 9.19%-23.33%,nitrogen accumulation by 27.07%-66.19%,and net return by 6.21%-29.57%.Furthermore,PM-S decreased CF by 12.87%-44.31%and CF per net return by 14.25%-41.16%.After eight years,PM-S increased SOCS(0-40 cm)by 2.46%,while PM-U decreased it by 7.09%.These findings highlight the positive effects of PM-S on surface soil fertility,economic gains,and environmental benefits in spring maize production on the Loess Plateau,underscoring its potential for widespread adoption and application.
基金supported by the National Natural Science Foundation of China(Nos.42177333 and 31870500)the National Special Program for Key Basic Research of the Ministry of Science and Technology of China(No.2015FY110700)the Jiangsu Agriculture Science and Technology Innovation Fund,China(No.JASTIFCX(20)2003)。
文摘Both straw incorporation and irrigation practices affect biological nitrogen(N)fixation(BNF),but it is still unclear how straw incorporation impacts BNF under continuous(CFI)or intermittent(IFI)flooding irrigation in a rice cropping system.A15N2-labeling chamber system was placed in a rice field to evaluate BNF with straw incorporation under CFI or IFI for 90 d.The nif H(gene encoding the nitrogenase reductase subunit)DNA and c DNA in soil were amplified using real-time quantitative polymerase chain reaction,and high-throughput sequencing was applied to the nif H gene.The total fixed N in the straw incorporation treatment was 14.3 kg ha^(-1)under CFI,being 116%higher than that under IFI(6.62 kg ha^(-1)).Straw incorporation and CFI showed significant interactive effects on the total fixed N and abundances of nif H DNA and c DNA.The increase in BNF was mainly due to the increase in the abundances of heterotrophic diazotrophs such as Desulfovibrio,Azonexus,and Azotobacter.These results indicated that straw incorporation stimulated BNF under CFI relative to IFI,which might ultimately lead to a rapid enhancement of soil fertility.
基金National Natural Science Foundation of China,No.41761003The Karst Science Research Center of Guizhou Province,No.U1812401。
文摘Terrestrial ecosystems heavily depend on vegetation,which responds to carbon dioxide(CO_(2))fertilization in hot and humid regions.The subtropical humid karst region is a hot and humid region;whether and to what extent CO_(2)fertilization affects vegetation changes in such regions remains unclear.In this study,we investigated the degree to which CO_(2)fertilization influences vegetation changes,along with their spatial and temporal differences,in the subtropical humid karst region using time-lag effect analysis,a random forest model,and multiple regression analysis.Results showed that CO_(2)fertilization plays an important role in vegetation changes,exhibiting clear spatial variations across different geomorphological zones,with its degree of influence ranging mainly between 11%and 25%.The highest contribution of CO_(2)fertilization was observed in the karst basin and non-karstic region,whereas the lowest contribution was found in the karst plateau region.Previous studies have primarily attributed vegetation changes in subtropical humid karst region to ecological engineering,leading to an overestimation of its contribution to these changes.The findings of this study enhance the understanding of the mechanism of vegetation changes in humid karst region and provide theoretical and practical insights for ecological and environmental protection in these regions.
基金financed by the Spanish Ministry of Science and Innovation and the European Regional Development Fund(ERDF)(No.PID20211234690BI00)the European Joint Program EJP_Soil(TRACE-Soils)(No.862695)+1 种基金the Spanish Ministry of Science and Innovation(RED2018-102624TMCIN/AEI/10.13039/501100011033)the Project PREPSOIL European Union(No.101070045,HORIZON CSA)。
文摘Whilst phosphorus(P)in soil is considered to be abundant,the portion available for plant uptake constitutes less than 1%of the overall P present.To enhance crop productivity,the utilization of mineral P fertilizers has become pervasive in agriculture.Nonetheless,the escalating prices of chemical fertilizers,coupled with new European regulations prohibiting the use of P fertilizers containing cadmium,have highlighted the urgency to identify environmentally friendly products and practices for P fertilization in agricultural soils.This comprehensive review delves into the current landscape of P fertilization from agricultural,political,and economic standpoints.We recognize the potential of microbes in mobilizing P,but emphasize the necessity for more robust research to establish their effectiveness in promoting plant P uptake under real-world conditions.Additionally,we explore the role of agricultural conservation practices,such as optimal tillage,diversified cropping systems,and increased organic carbon input,in conserving P.Furthermore,this review contemplates forthcoming innovations in research.These innovations encompass the development of enhanced formulations for biofertilizers and the undertaking of more comprehensive studies within the realm of conservation agriculture.All these endeavors collectively hold the potential to augment P accessibility to plants in a sustainable manner,thereby advancing agricultural sustainability and productivity.
基金supported by the National Natural Science Foundation of China(42177341)the Natural Science Basic Research Program of Shanxi,China(202203021222138).
文摘Organic material combined with inorganic fertilizer has been shown to greatly improve crop yield and maintain soil fertility globally. However, it remains unclear if crop yield and soil fertility can be sustained in the long term under the combined application of organic and inorganic fertilizers. Three long-term field trials were conducted to investigate the effects of organic amendments on the grain sustainable yield index(SYI), soil fertility index(SFI)and nutrient balance in maize–wheat cropping systems of central and southern China during 1991–2019. Five treatments were included in the trials: 1) no fertilization(control);2) balanced mineral fertilization(NPK);3) NPK plus manure(NPKM);4) high dose of NPK plus manure(1.5NPKM);and 5) NPK plus crop straw(NPKS). Over time, the grain yields of wheat and maize showed an increasing trend in all four fertilization treatments at the Yangling(YL) and Zhengzhou(ZZ) locations, while they declined at Qiyang(QY). The grain yield in the NPKM and 1.5NPKM treatments gradually exceeded that of the NPK and NPKS treatments at the QY site. The largest SYI was recorded in the NPKM treatment across the three sites, suggesting that inorganic fertilizer combined with manure can effectively improve crop yield sustainability. Higher SYI values were recorded at the YL and ZZ sites than at the QY site, possibly because the soil was more acid at QY. The key factors affecting grain yield were soil available phosphorus(AP) and available potassium(AK) at the YL and ZZ sites, and pH and AP at the QY site.All fertilization treatments resulted in soil N and P surpluses at the three sites, but soil K surpluses were recorded only at the QY site. The SFI was greater in the 1.5NPKM, NPKM and NPKS treatments than in the NPK treatment by 13.3–40.0 and 16.4–63.6% at the YL and ZZ sites, respectively, and was significantly higher in the NPKM and 1.5NPKM treatments than in the NPK and NPKS treatments at the QY site. A significant, positive linear relationship was found between SFI and crop yield, and SYI and nutrient balance, indicating that grain yield and its sustainability significantly increased with increasing soil fertility. The apparent N, P and K balances positively affected SFI.This study suggests that the appropriate amount of manure mixed with mineral NPK fertilizer is beneficial to the development of sustainable agriculture, which effectively increases the crop yield and yield sustainability by improving soil fertility.
基金supported by the Shenyang Municipal Science and Technology Project,China(23-409-2-03)the Liaoning Provincial Department of Science and Technology Project,China(Z20230183)the Liaoning Provincial Applied Basic Research Program,China(2022JH2/101300173).
文摘Both soil organic carbon (SOC) and iron (Fe) oxide content, among other factors, drive the formation and stability of soil aggregates.However, the mechanism of these drivers in greenhouse soil fertilized with organic fertilizer is not well understood.In a 3-year field experiment, we aimed to investigate the factors which drive the stability of soil aggregates in greenhouse soil.To explore the impact of organic fertilizer on soil aggregates, we established four treatments:no fertilization (CK);inorganic fertilizer (CF);organic fertilizer (OF);and combined application of inorganic and organic fertilizers(COF).The application of organic fertilizer significantly enhanced the stability of aggregates, that is it enhanced the mean weight diameter, geometric mean diameter and aggregate content (%) of>0.25 mm aggregate fractions.OF and COF treatments increased the concentration of SOC, especially the aliphatic-C, aromatic-C and polysaccharide-C components of SOC, particularly in>0.25 mm aggregates.Organic fertilizer application significantly increased the content of free Fe(Fed), reactive Fe (Feo), and non-crystalline Fe in both bulk soil and aggregates.Furthermore, non-crystalline Fe showed a positive correlation with SOC content in both bulk soil and aggregates.Both non-crystalline Fe and SOC were significantly positively correlated with>2 mm mean weight diameter.Overall, we believe that the increase of SOC, aromatic-C, and non-crystal ine Fe concentrations in soil after the application of organic fertilizer is the reason for improving soil aggregate stability.
基金supported by the National Key Research and Development Program of China(2022YFD190160304 and 2018YFD0301206)Natural Science Foundation of Sichuan Province(2022NSFSC0013)Sichuan Provincial Maize Innovation Team Construction Project(SCCXTD-2023-02).
文摘A four-year field experiment was conducted with two cultivars and four N rate to investigate the spatiotemporal characteristics of leaf senescence in maize after silking and its response to N fertilizer rates on them,as well as to reveal the differences in post-silking chlorophyll degradation between low-N-tolerant cultivars.The results showed that the order of leaf senescence after silking in maize was lower leaf>upper leaf>ear leaf,leaf tip>middle>base.Increasing N fertilizer down-regulated the expression of ZmCLH2 and ZmPPH in the leaves at 10-30 d after silking,reducing CLH and PPH activities,thereby delaying the leaf senescence.These effects were more prominent in low-N-sensitive cultivar Xianyu 508(XY508)than in low-N-tolerant cultivar Zhenghong 311(ZH311),especially in the lower leaves and leaf tip.Under low N condition,leaf yellowing and chlorophyll degradation occurred later and slower in ZH311 than in XY508.This resulted in a higher post-silking dry matter accumulation and grain yield in ZH311,which may be one of the important physiological bases of low nitrogen tolerant cultivars.Future research should focus on developing low-N-tolerant maize cultivars with slower leaf senescence near the ear after silking.
基金funded by the Project of Yunnan Province’s Xingdian Talents Support Program(yfgrc202437)the Project of the International Cooperation Science Program of National Natural Science Foundation of China(42361144885).
文摘Phosphorus(P)poses a global challenge to the environment and human health due to its natural association with heavy metals.Sustainable use of P is crucial to ensure food security for future generations.An analysis of the 150 phosphate fertilizers stored at the Institute for Crop and Soil Science in Germany has been conducted,supplemented by previously published data.The elements Cd,Bi,U,Cr,Zn,Tl,As,B,Sb,Ni,and Se are found in higher concentrations in sedimentary derived phosphates compared to igneous derived phosphates.Mineral fertilizers contain more than ten times the amount of U,Cd,B,and As compared to farmyard manure.Principal component analyses(PCA)indicate that U,Cd,Be,and Cr are primarily present in sedimentary derived phosphates and their concentrations are 2 to 10 times higher than those in igneous derived phosphates.Regarding heavy metal contamination,over 1000 potential combinations were identified;36% of these were significant but weak(>0.1).It is estimated that approximately 707 t of uranium enter farmland annually through the application of mineral phosphate fertilizers in European countries.This contribution addresses environmental issues related to the utilization of rock phosphate as well as alternative production methods for cleaner and safer phosphate fertilizers while presenting a roadmap with measures for mitigation.
文摘BACKGROUND Ovarian hyperstimulation syndrome(OHSS)is a life-threatening complication that can occur in the luteal phase or early pregnancy after controlled ovarian stimulation.This case report highlights a unique manifestation of OHSS involving pleural effusion(PE)in a patient without identifiable risk factors.CASE SUMMARY A 39-year-old woman who underwent controlled ovarian hyperstimulation for an in vitro fertilization(IVF)cycle experienced dyspnea on the eleventh day of post oocyte retrieval.The diagnosis was severe OHSS with a unique manifestation of PE without ascites.Clinical management involved fluid balance and treatment with albumin,furosemide,thromboembolic prophylaxis,and thoracentesis.A continued drainage of the pleural cavity was performed.The patient had a favo-rable outcome,and a dichorionic diamniotic gestation passed without incident.CONCLUSION OHSS and its potential complications can include respiratory distress and PE,as well as thromboembolic disorders.
基金Key Research project of Gansu Province of China(22YF7NA108)National Natural Science Foundation of China(31860549)+1 种基金Industry Supporting Project from Education Department of Gansu Province(2023CYZC-49)Major Science and Technology project of Gansu province(24ZDNA006)。
文摘【Objectives】Si and microbial application could relieve the crop replanting problems(CRPs).We further studied the change of key microorganisms that are related to the beneficial effects,aiming at provide reference for the manufacture and application of both microbial agents and Si fertilizer in food lily production.【Methods】A field experiment was conducted over a three-year period,from March 2019 to March 2022.The experimental field had been continuously cultivated with lily for 9 years.Three treatments were established:silicon fertilizer(SF),microbial agents(“Special 8^(TM)”,MF),and combined application of silicon fertilizer and microbial agents(SMF).A control group with blank soil(CK)was also included.At seedling stage of Lanzhou lilies in 2020 and 2021,the shoot and bulb dry weight,and the plant height and stem diameter of Lanzhou lilies were investigated for calculation of seedling index.In July 2020,20 plants were selected in each plot,and root zone soils were sampled at a depth of 20 cm,10 cm away from the roots,and then mixed to form a composite sample.The soil available Si and organic matter content were analyzed,and the fungal community structure and some specific microbial groups in soils were determined with high-throughput sequencing of ITS.【Results】All the three treatments significantly enhanced the lily plant growth and the seedling index,compared to CK.Besides,SF and MF treatments increased the relative abundances(RA)and diversity of fungal communities,and altered the community structures.The RA of some specific groups were found to be significantly correlated with the seedling index and/or soil available Si.Of them,the RA of the genera Fusarium,Dactylonectria,Humicola,Stilbella,and the species Humicola_grisea showed a positive correlation,while that of the genera Mortierella,Stilbella,Holtermanniella,and the species Mortierella_fatshederae showed a negative correlation with seedling index.The genera Fusarium,Stilbella,the species Humicola_grisea,and Dactylonectria_estremocensis showed a positive correlation,while the genura Stilbella,and the species Mortierella fatshederae showed a negative correlation with available Si content.In the co-occurence network of top twenty fungal genera and top sixteen bacterial genera(RA>0.2%),Holtermanniella was the only genus that interacted with the bacteria and negatively correlated with bacterial genus Blastococcus.Holtermanniella was also the most densely connected genera,followed by the genus Fusarium,Didymella and Humicola.In addition,the genus Holtermanniella was the key species connecting fungal and bacterial community in soil.Fungal functional prediction revealed that SF,MF and SMF treatments decreased plant pathogens guilds and increased the beneficial guilds Ectomycorrhizal,plant saprophyte,leaf saprophyte,and arbuscular mycorrhizal compared to CK.【Conclusions】Combined application of silicon fertilizer and microbial agents can alleviate continuous replanting problems of Lanzhou lilies through restoring the fungal community diversity,and promoting plant residue depredation,thus reducing soil born disease incidence.The beneficial genus Humicola and its one species H.grisea acts as bioconversion,and the genus Acremonium acts as plant pathogen inhibitor.
文摘Rice (Oryza sativa) is becoming a staplefood in many regions of DR-Congo. However, its production is still limited to the North Eastern part of the country and grain yield is low. A study was carried out in the city of Mbujimayi located in the Central part of the DR-Congo to assess the effects of organic and inorganic fertilizers on morpho-agronomic characteristics of O. sativa. The trial was conducted during the 2021 agricultural season A using a completely randomized design with three replicates. The six treatments studied consisted of application of T. diversifolia biomass at a dose of 2 kg/4m2 (BFT − 2 kg), 4 kg/4 m2 (BFT − 4 kg), inorganic fertilizer consisting with NPK17-17-17 + Urea (46% N) at a combined dose of 80 g/4 m2 (NP), 1/2 of the combination (BFT − 2 kg + NP) and finally 1/2 of the combination (BFT − 4 kg + NP). The untreated plots were used as controls. Plants treated with 1/2 combination (BFT − 4 kg + NP), BFT – 4 kg, and NP showed similar height (100.93 cm, 99.03 cm, and 98.63 cm, respectively) that were significantly higher than control and other treatments [1/2 (BFT – 2 kg + NP, BFT – 2 kg] For agronomic characteristics, days to 50% flowering varied between 73.00 and 74 days with an average of 74 days. The control and BFT – 4 kg showed significantly shorter panicles compared to other treatments. For yield components, 1/2 (BFT – 4 kg + NP) and the NP treatments generated a higher weight of 1000 grains. For yield per hectare, 1/2 (BFT − 4 kg + NP) induced significantly different levels of production than the control and other treatments, including 1/2 (BFT – 2 kg + NP), BFT – 4 kg + NP, BFT – 2 kg, BFT – 4 kg. The correlation coefficients between agronomic traits revealed that with the exception of the length of particle and the abortion rates, all the yield components (panicles per plant, seeds per panicle, weight of 1000 grains, and grail yield per plot) were strongly correlated with grain yield per hectare.
基金Bill&Melinda Gates Foundation(Grant number OPP1154401).
文摘Backgroud Before fertilization,spermatozoa undergo a crucial maturation step called capacitation,which is a unique event regulates the sperm’s ability for successful fertilization.The capacitation process takes place as the spermatozoa pass through the female reproductive tract(FRT).Dihydrolipoamide dehydrogenase(DLD)protein is a post-pyruvate metabolic enzyme,exhibiting reactive oxygen species(ROS)production which causes capacitation.Additionally,other vital functions of DLD in buffalo spermatozoa are hyperactivation and acrosome reaction.DLD produces the optimum amount of ROS required to induce capacitation process in FRT.Depending on physiological or patho-physiological conditions,DLD can either enhance or attenuate the production of reactive oxygen species(ROS).Aim of this study was to investigate whether changes in the production of ROS in sperm cells can impact their ability to fertilize by triggering the capacitation and acrosome reaction.Results In this study,abundance of DLD protein was quantified between high(n=5)and low fertile bull(n=5)sper-matozoa.It was found that compared to high-fertile(HF)bulls,low-fertile(LF)bulls exhibited significantly(P<0.05)higher DLD abundances.Herein,we optimised the MICA concentration to inhibit DLD function,spermatozoa were treated with MICA in time(0,1,2,3,4,and 5 h)and concentrations(1,2.5,5,and 10 mmol/L)dependent manner.Maximum DLD inhibition was found to be at 4 h in 10 mmol/L MICA concentration,which was used for further exper-imentation in HF and LF.Based on DLD inhibition it was seen that LF bull spermatozoa exhibited significantly(P<0.05)higher ROS production and acrosome reaction in comparison to the HF bull spermatozoa.The kinematic parameters of the spermatozoa such as percent total motility,velocity parameters(VCL,VSL,and VAP)and other parameters(BCF,STR,and LIN)were also decreased in MICA treated spermatozoa in comparison to the control(capacitated)spermatozoa.Conclusions The present study provides an initial evidence explaining the buffalo bull spermatozoa with higher DLD abundance undergo early capacitation,which subsequently reduces their capacity to fertilize.
基金supported by the National Key Research and Development Program of China(2021YFF1000404)the National Natural Science Foundation of China(32472823 and 32102478)+1 种基金the Innovation Program of Chinese Academy of Agricultural Sciences(CAAS-CSAL-202301)the China Postdoctoral Science Foundation(2021M693447,2021M693449 and 2022T150707)。
文摘Using phosphorus(P)fertilizers has historically increased agricultural productivity,yet the highly dissipative nature of phosphate rock and the low effciency due to soil fxation and runoff raise sustainability concerns.Algae fertilizers have emerged as a promising eco-friendly alternative.However,the potential of algae fertilizers for providing sustained P availability and their impacts on plant growth,soil microbes,and nutrient cycling remains to be explored.In this study,we developed a polyphosphate-enriched algae fertilizer(PEA)and conducted comparative experiments with chemical P fertilizers(CP)through soil and solution cultures,as well as crop growth trials.Soil cultivation experiments showed that PEA released twice as much labile P as initially available in the soil,and it functioned as a slow-release P source.In contrast,soils treated with CP initially exhibited high levels of labile P,which was gradually converted to stable forms,but it dropped to 30%of the labile P level in PEA after three months.Further tests revealed that the slow release of P from PEA was linked to increased microbial activity,and the microbial biomass P(MBP)content was about eight times higher than in soils treated with CP after three months,resulting in a 75%decline in the microbial biomass carbon(MBC)to MBP ratio.Microbial diversity analysis showed that algae fertilizers could recruit more benefcial microbes than CP,like phosphorus-solubilizing bacteria,plant growth-promoting bacteria,and stress-resistant bacteria.Crop pot experiments,along with amplicon and metagenomic analysis of tomato root-associated microbes,revealed that algae fertilizers including PEA promoted plant growth comparable to CP,and enhanced soil P cycling and overall nutrient dynamics.These data showed that algae fertilizers,especially PEA,can stabilize soil P fertility and stimulate plant growth through their slow P release and the recruitment of benefcial microbes.Our study highlights the potential of PEA to foster sustainable agriculture by mitigating the P scarcity and soil P loss associated with chemical fertilizers and improving plant growth and soil health.
文摘Citrus is an important commercial crop in Uganda, especially the Eastern region. However, in spite of the increasing regional demand, citrus productivity is still low, attributed to pest and diseases, soil moisture stress, and low soil fertility, among others. Efforts to improve soil fertility are limited by inadequate supply of organic fertilizers due to competing demands. In addition, there is inadequate information on inorganic fertilizer requirements for citrus production in Uganda. The objective of this study was to develop optimum fertilizer recommendations for citrus production for Eastern Uganda. The study was conducted in Teso region, Eastern Uganda. Fertilizer (NPK, 17:17:17) was randomly applied to Hamlin, Valencia and Washington varieties with fertilizer and variety factorially arranged for each farm and citrus age range, replicated three times. Fertilizer rates were 0, 139, 278 and 556 kg NPK/ha for the 4 - 7-year old trees, and 0, 278, 556 and 1111 kg NPK/ha for the mature (8 years and above) trees. For a given variety, each fertilizer rate was applied onto three representative trees per farmer, six farmers per district. Results showed that yields and net profits were highest for variety Hamlin, and nearly the same for varieties Washington and Valencia. Fertilizer application increased fruit yield and profits for both the 4 to 7-year and 8 and above-year-old trees, with highest yield and profitability values observed at 556 kg NPK/ha. These results suggest applying 556 kg NPK/ha to citrus per year as an optimum fertilizer rate for citrus production in Teso region. The fertilizer should be applied in smaller splits of 800, 600, and 600 grams per tree, applied in April, June, and August.
基金Supported by Funding from the Jiangsu Provincial Science and Technology Plan Special Foundation,No.BE2022712The Special Research Project on The Development Plan of Traditional Chinese Medicine Technology in Jiangsu Province,No.ZT202120.
文摘BACKGROUND Acupuncture,an ancient practice,is gaining recognition as a complementary and alternative medicine,especially in assisted reproductive technology.It plays a crucial role in enhancing embryo transfer success rates.Research indicates that acupuncture can improve blood flow,increase endometrial receptivity regulate pressure,and affect neuroendocrine activities in the ovaries and uterus during embryo implantation,therefore improving pregnancy outcomes.AIM To highlight recent developments related to acupuncture's influence on embryo transfer and elucidating the precise mechanisms by which acupuncture influences embryo transfer.METHODS We searched database including PubMed,Cochrane Library up to September 2024 for relevant studies and patents to evaluate the effects of acupuncture on women undergoing in vitro fertilization(IVF).The experimental design included an intervention group using needling,and a control group consisting of no needling or sham needling.The main outcome is clinical pregnancy rate(CPR),while secondary includes live birth rate(LBR)and biochemical pregnancy rate(BPR).We examined the influence of adjunctive needling on pregnancy outcomes by analyzing variations in the main outcomes.RESULTS A total of 145 randomized controlled trials involving 27748 participants were analyzed.Data revealed that the overall CPR was significantly elevated in all acupuncture cohorts compared to the control group[relative risk(RR):1.21,95%CI:1.07-1.38,P=0.01].In contrast,the aggregated LBR did not exhibit a corresponding increase,and notable statistical heterogeneity was observed among the studies.Acupuncture-assisted frozen-thawed embryo transfer enhanced the BPR(RR:1.51,95%CI:1.21-1.89,P=0.03)and improved endometrial morphology(RR:1.41,95%CI:1.13-1.75,P=0.01).Furthermore,IVF outcomes were significantly superior in the acupuncture group when acupuncture was administered during controlled ovarian hyperstimulation(RR:1.71,95%CI:1.08-2.13,95%CI:1.08-4.21,P=0.03).CONCLUSION We find that acupuncture positively influences pregnancy rates in women receiving IVF treatment.Nonetheless,there are no established guidelines for optimal acupuncture protocols.Considering the methodological limitations identified in current research,there is a need for larger,methodologically rigorous studies.
文摘As a paddy—upland rotation system, tobacco—rice rotation hastypical characteristics in the formation and evolution of soil fertility duringthe tobacco season with dry farming and rice season with water cultivation.To scientifically unveil the soil fertility formation process and grade thesoil fertility in tobacco—rice rotation areas, we collected 372 soil samplesfrom 11 tobacco stations (Haotang, Aoquan, Chengjiao, Renyi, Fangyuan,Anping, Huangsha, Taiping, Tushi, Dashiqiao, and Baimangying) in thetypical tobacco—rice rotation areas of Chenzhou and Yongzhou in SouthernHunan. The physical, chemical, and biological indicators of the soil sampleswere measured, and the tobacco and rice yields of each tobacco stationwere investigated. Machine learning was employed to screen the keyindicators influencing the tobacco yield, and a comprehensive numericalanalysis method combining principal component analysis and discriminantanalysis were adopted to cluster the sampling points, analyze their fertilityformation processes, and grade the soil fertility. The results showed thatclay content, available phosphorus, plow layer depth, slit-to-clay ratio, totalnitrogen, basal respiration, and organic carbon were identified as seven keyindicators influencing the tobacco yield. The results of the comprehensivenumerical analysis predicted two main processes involved in the formationof soil fertility in tobacco—rice rotation areas. One was the soil maturationprocess related to soil carbon and nitrogen cycling, and the other was theprocess of changes in soil physical properties such as clay content and slitto-clay ratio. According to the established soil fertility grading methodfor tobacco—rice rotation areas, the soil fertility of 11 tobacco stationswas graded. The results showed that the soil fertility was high in Haotang,Aoquan, Renyi, and Dashiqiao, medium in Huangsha and Tushi, and low inAnping, Baimangying, and Taiping. The tobacco and rice yields confirmedthat this grading standard can be effectively applied to the grading of soilfertility in the tobacco—rice rotation areas in Southern Hunan and canprovide a scientific basis for soil management in tobacco—rice rotation.