Achieving a sustainable cropping system requires the efficient use of resources,particularly nitrogen(N).Nitrogen fertiliser is applied in most irrigated cotton fields to maximise yield potential,but plant fertiliser ...Achieving a sustainable cropping system requires the efficient use of resources,particularly nitrogen(N).Nitrogen fertiliser is applied in most irrigated cotton fields to maximise yield potential,but plant fertiliser recovery can be low.Identifying the crucial pathways of fertiliser remobilisation internally within cotton plants will lead to greater awareness of the plants’ability to match the N demands of the developing fruiting matter.This study investigated the fate of N fertiliser when applied to cotton at various dates,with the goal to improve N fertiliser recovery in a modern transgenic cotton cultivar.15N-labelled urea(10 atom%)was applied at multiple times and harvested at four key cotton growth stages(first square,early bolls,cut-out and maturity).Remobilised N was determined as the difference in the proportion of N fertiliser in individual plant components against the fertiliser utilised by the whole plant.The application of fertiliser N at first square resulted in 23%greater fertiliser N recovery at plant maturity compared to fertiliser N applied 100%pre-plant(P<0.001).The improvement was in-part due to higher N derived from the fertiliser(Ndff%)in the cotton seed(3%).Conversely,the Ndff%was higher in the stem(4%)and petioles(1%)when the fertiliser was applied pre-plant.In total,73%of plant N was remobilised to another plant organ,predominantly the seed(67%).Applying N fertiliser post-planting improved N recovery and lint yield compared to applying all fertiliser pre-plant.展开更多
In order to reduce the waste of resources and environmental pollution caused by excessive application of chemical fertilizers, improve the utilization rate of fertilizers, and promote the large-scale and high-quality ...In order to reduce the waste of resources and environmental pollution caused by excessive application of chemical fertilizers, improve the utilization rate of fertilizers, and promote the large-scale and high-quality development of the Chinese rose industry. In this experiment, corn stover biochar, phosphoric acid modified biochar and organic fertilizer were used as test materials, and the effects of mixed application of modified biochar and organic fertilizer on the growth and development of Chinese rose as well as soil physicochemical properties were investigated by using the method of pot planting test. The results showed that modified biochar with organic fertilizer had the most significant effect on the enhancement of soil pH, organic matter content and soil carbon-to-nitrogen ratio. After 120 d of planting, modified biochar with organic fertilizer had the most significant effect on the enhancement of plant height and crown width of Chinese rose;both organic fertilizer and modified biochar with organic fertilizer significantly increased the chlorophyll content of Chinese rose. The number of flowers and the number of branches were the highest in the modified biochar with organic fertilizer treatment. In conclusion, the application of modified biochar with organic fertilizer can better improve the soil pH, and increase the soil organic matter content and carbon-to-nitrogen ratio to change the biological traits of Chinese rose. The results of this study provide a theoretical basis for the reduction of chemical fertilizers and the resource utilization of agricultural wastes and guarantee the sustainable development of the cut flower industry.展开更多
Modern agricultural practices involve the extensive use of chemical fertilisers to increase productivity. However less than half of the applied chemical fertiliser nitrogen is used by the target crops, and much of the...Modern agricultural practices involve the extensive use of chemical fertilisers to increase productivity. However less than half of the applied chemical fertiliser nitrogen is used by the target crops, and much of the remaining pollutes air and waterways. Farming systems that sustain productivity while reducing the negative effect on the environment are crucially needed. One avenue is to use plant growth promoting rhizobacteria (PGPR) as bio-fertiliser to reduce the dependency on chemical fertiliser. The potential of PGPR to improve the efficiency of the combination of organic and chemical fertilisers has recently been proposed. Here, we demonstrate that this combination benefits sugarcane grown in field conditions.展开更多
Utilization of biochar at high application rates can increase soil C and crop yields, decrease greenhouse gas emissions and reduce nutrient run-off from soils. However, the high application rate of 10 t ha-1 may not r...Utilization of biochar at high application rates can increase soil C and crop yields, decrease greenhouse gas emissions and reduce nutrient run-off from soils. However, the high application rate of 10 t ha-1 may not return a profit to the farmer due to the high cost of biochar. In this study biochar was modified through pre-treating the biomass and post-treating with phosphoric acid, minerals and different chemical fertilisers to study the effects of two new enhanced biochar fertilisers on the yield and quality of green pepper in a field experiment with 5 fertilisation treatments and 3 replications. The two new biochar fertilisers significantly (P 〈 0.05) increased the yield of green pepper (11.33-11.47 t ha-l), compared with the conventional chemical fertiliser (9.72 t ha-l). The biochar fertiliser treatments improved the vitamin C content of green pepper from 236.99 to 278.28 mg kg-1, and also significantly (P 〈 0.05) reduced the nitrate content from 132.32 to 101.92 mg kg-1, compared with chemical fertiliser. This study indicated that, compared to the use of conventional chemical fertiliser, all of the biochar fertiliser treatments could significantly improve the yield and quality of green pepper.展开更多
Anaerobic digestion is a process that is widely used for the treatment of organic wastes. The digestate can be used as a soil amendment or crop fertiliser. The aims of our work were to evaluate 1) the physicochemical ...Anaerobic digestion is a process that is widely used for the treatment of organic wastes. The digestate can be used as a soil amendment or crop fertiliser. The aims of our work were to evaluate 1) the physicochemical composition and pathogen content in a digestate from poultry manure, according to international regulations, and 2) the effect of its soil application on the major chemical and biological soil properties and on the growth of Lactuca sativa. The experiment consisted of two groups of pots(with and without crop). Treatments applied to each group were as follows: low and high doses of digestate and inorganic fertiliser, and no application(control)(low dose: 70 kg nitrogen(N) ha^(-1) and 21 kg phosphorus(P) ha^(-1); high dose: 210 kg N ha^(-1) and 63 kg P ha^(-1)). Soil samples were taken 7 and 34 d(harvest) after treatment applications. Heavy metal and pathogen contents in the digestate were below the upper limit values. Despite the high pH and electrical conductivity values of the digestate, both soil parameters presented acceptable values for crop growth. Although there were no initial increases in total inorganic N and available P in soil with digestate application, an increase in the fresh weight of crop was observed with the high dose application. This is probably associated with the slow nutrient release from the digestate during the development of the crop. Changes in the microbial community were temporary and occurred at the initial sampling stage of the experiment.展开更多
Heavy metal pollution in karst mountainous area of Guizhou has spread due to the long-term exploitation of mineral resources and the improper disposal of environmentally hazardous waste. Heavy metals are characterised...Heavy metal pollution in karst mountainous area of Guizhou has spread due to the long-term exploitation of mineral resources and the improper disposal of environmentally hazardous waste. Heavy metals are characterised by non-degradation, strong toxicity, and constant accumulation, posing a grave threat to karst mountain fragile soil ecosystem. To reduce the harm caused by heavy metal pollution and damage to agricultural products, research was undertaken on the basis of previous work by simulating pot experiments on pak choi cabbage(Brassica rapa chinensis)planted in Cd-contaminated soil: different amounts of organic mineral fertilisers(OMF) compared with chemical fertiliser(CF) were used and by detecting the amount of heavy metal in the mature vegetable, a better fertilisation strategy was developed. The results showed that the Cd content in vegetables grown with CF was 23.70 mg/kg,while that of vegetables grown with OMF and bacterial inoculant was the lowest at 15.13 mg/kg. This suggests that the use of OMF and microbes in karst areas not only promotes plant growth but also hinders plant absorption of heavy metal ions in the soil. In addition, through the collection of pot leachate, the detection of water chemistrycharacteristics, and the calculation of the calcite saturation index, it was found that the OMF method also induces certain carbon sink effects. The results provide a new way in which rationalise the use of OMFs in karst areas to alleviate soil heavy metal pollution and increase soil carbon sequestration.展开更多
Fifty years of sustained investment in research and development has left the Australian cotton industry well placed to manage nitrogen(N) fertiliser. The average production in the Australian cotton industry today is...Fifty years of sustained investment in research and development has left the Australian cotton industry well placed to manage nitrogen(N) fertiliser. The average production in the Australian cotton industry today is greater than two tonnes of lint per hectare due to improved plant genetics and crop management. However, this average yield is well below the yield that would be expected from the amount of N fertiliser used. It is clear from the recent studies that across all growing regions, conversion of fertiliser N into lint is not uniformly occurring at application rates greater than 200-240 kg·hm;of N. This indicates that factors other than N availability are limiting yield, and that the observed nitrogen fertiliser use efficiency(NFUE) values may be caused by subsoil constraints such as sodicity and compaction. There is a need to investigate the impact of subsoil constraints on yield and NFUE.Gains in NFUE will be made through improved N fertiliser application timing, better targeting the amount of fertiliser applied for the expected yield, and improved soil N management. There is also a need to improve the ability and confidence of growers to estimate the contribution of soil N mineralisation to the crop N budget. Many Australian studies including data that could theoretically be collated in a meta-analysis suggest relative NFUE values as a function of irrigation technique; however, with the extensive list of uncontrolled variables and few studies using non-furrow irrigation, this would be a poor substitute for a single field-based study directly measuring their efficacies. In irrigated cotton, a re-examination of optimal NFUE is due because of the availability of new varieties and the potential management and long-term soil resilience implications of the continued removal of mineralised soil N suggested by high NFUE values. NFUE critical limits still need to be derived for dryland systems.展开更多
Changes in phosphorus (P) fractions in a P deficient allophanic soil under P. radiata seedlings grown with broom (Cytisus scoparius L.) and ryegrass (Lolium multiflorum) in pots were studied 14 months after the ...Changes in phosphorus (P) fractions in a P deficient allophanic soil under P. radiata seedlings grown with broom (Cytisus scoparius L.) and ryegrass (Lolium multiflorum) in pots were studied 14 months after the application of triple superphosphate at the rates of 0, 50, and 100 pg.g^-1, to determine the fate of fertiliser-derived P in the rhizosphere soils. Application of P fertiliser increased NaOH-Pi, NaOH-Po, and H2SO4-Pi concentrations in the soil, but decreased the residual-P concentration. The resin-Pi concentration, which is ex- tremely low in this soil (1 to μgg^-1 ), remained the same. The majority of the added fertiliser P was however recovered in the NaOH-Pi fraction (40%-49%). This is due to the high P fixation in this soil (92%). The second highest P recovery was in NaOH-Po fraction (7%-19%). Under P deficient condition or addition at the rate of 0 μg.g^-6, the NaOH-Pi concentration in the radiata rhizosphere soil was lower than that in the bulk soil and broom and grass rhizosphere soils. This may be due to higher oxalate production by the roots and mycorrhiza under P deficient conditions which released some &the P fixed to the soils in the rhizosphere, which needs to be tested in future studies.展开更多
Changes in phosphorus (P) fractions in a P deficient allophanic soil under P. radiata seedlings grown with broom (Cytisus scoparius L.) and ryegrass (Lolium multiflorum) in pots were studied 14 months after the applic...Changes in phosphorus (P) fractions in a P deficient allophanic soil under P. radiata seedlings grown with broom (Cytisus scoparius L.) and ryegrass (Lolium multiflorum) in pots were studied 14 months after the application of triple superphosphate at the rates of 0, 50, and 100 μg·g-1, to determine the fate of fertiliser-derived P in the rhizosphere soils. Application of P fertiliser increased NaOH-Pi, NaOH-Po, and H2SO4-Pi concentrations in the soil, but decreased the residual-P concentration. The resin-Pi concentration, which is extremely low in this soil (1 to 3 μg·g-1 ), remained the same. The majority of the added fertiliser P was however recovered in the NaOH-Pi fraction (40%?49%). This is due to the high P fixation in this soil (92%). The second highest P recovery was in NaOH-Po fraction (7%?19%). Under P deficient condition or addition at the rate of 0 μg·g-1, the NaOH-Pi concentration in the radiata rhizosphere soil was lower than that in the bulk soil and broom and grass rhizosphere soils. This may be due to higher oxalate production by the roots and mycorrhiza under P deficient conditions which released some of the P fixed to the soils in the rhizosphere, which needs to be tested in future studies.展开更多
Raw and treated “nejayote” were assessed as foliar and edaphic fertilisers for native blue maize (Zea mays L.) crops in the municipality of Amozoc de Mota, Puebla, Mexico, during the 2015 agricultural cycle. Treated...Raw and treated “nejayote” were assessed as foliar and edaphic fertilisers for native blue maize (Zea mays L.) crops in the municipality of Amozoc de Mota, Puebla, Mexico, during the 2015 agricultural cycle. Treated nejayote refers to raw nejayote subjected to a coagulation-flocculation process. Two states of nejayote were established (raw and treated nejayote) with different physicochemical properties. Foliar bio-fertilisers were prepared from raw and treated nejayote and mixed with organic matter (OM) to promote a fermentation process. The foliar treatments used were: BNC5, BNC15, BNC30 (raw nejayote-based bio-fertiliser at 5%, 15%, and 30%), BNCQ5, and NCQ30 (nejayote treated by chemical coagulation at 5% and 30%), with BT as a control (traditional bio-fertiliser). The edaphic treatments used were: NC50, NC75, and NC100 (raw nejayote at 50%, 75%, 100%), with AP as a control (drinking water), thus giving rise to 10 treatments in terms of content of raw or treated nejayote. Foliar and edaphic field treatments applied to native blue maize crops were statistically assessed using the following response variables: plant height, stem diameter, number of leaves, and grain yield. The experiment was laid out in a randomised complete block design (RCBD) with five replications of each treatment. The results obtained showed, that foliar or edaphic application at the different stages of development did not produce statistically significant differences, at P ≤ 0.05, in terms of response variables. The most significant effects occurred at the early stage of plant development and were mainly reflected in the stem diameter with foliar treatment NCQ30 and in the number of leaves with foliar treatment BNC5. At the final stage of crop development, the highest yield (0.639 ± 0.121 t·ha<sup>-1</sup>) was obtained with treatment BNC5, which produced a statistically significant difference (b) in relation to the rest of the foliar and edaphic treatments (Tukey P ≤ 0.05).展开更多
Humic acid(HA)prevents phosphorus(P)fixation and promotes P absorption by plants,thereby effectively increasing the efficiency of phosphate fertiliser utilisation.Although nano-sized HA(NHA)might exhibit superior effe...Humic acid(HA)prevents phosphorus(P)fixation and promotes P absorption by plants,thereby effectively increasing the efficiency of phosphate fertiliser utilisation.Although nano-sized HA(NHA)might exhibit superior effects compared to conventional-sized HA(CHA),evidence is limited.Therefore,we investigated the effects of CHA and NHA applied with conventional phosphate fertiliser(CHA+CP and NHA+CP,respectively)on chilli pepper biomass,P uptake,and root morphology,as well as soil available P content,and evaluated CHA,NHA,and their residues in the soil for differences in specific surface area,functional groups,molecular weight distribution,and surface elemental compositions in a 40-d pot cultivation experiment.Results showed that the CHA+CP and NHA+CP treatments significantly increased pepper biomass and P uptake by 15.2%–24.7%and 37.9%–49.0%,respectively,compared to the conventional phosphate fertiliser applied alone(CP)treatment(P<0.05),with NHA exhibiting a greater effect than CHA.This was primarily related to NHA's stronger ability to reduce P fixation than that of CHA.Soil available P content significantly increased by 5.8%and 3.8%in the NHA+CP treatment compared with CHA+CP on days 22 and 40 of cultivation,respectively(P<0.05).Nano-sized HA contained more small-molecule components and carboxyl groups than CHA,which can more stimulate root elongation and thus promote root P uptake.Furthermore,fertiliser-derived P gradually entered the structure of CHA or NHA during cultivation.The presence of more plant-available forms(e.g.,H2PO_(4)^(2-)and HPO_(4)^(2-))in NHA compared to CHA also contributed to better regulation of phosphate fertiliser efficacy.In conclusion,NHA is superior to CHA in improving phosphate fertiliser efficiency,making it a potential alternative material for the development of high-efficiency phosphate fertilisers.This presents an excellent opportunity to minimise P resource waste.展开更多
How a Tanzanian entrepreneur turned lessons from China into a sustainable farming solution back home At the National Agricultural Exhibition in Tanzania’s Dodoma Region in August 2024,one product stood out among hund...How a Tanzanian entrepreneur turned lessons from China into a sustainable farming solution back home At the National Agricultural Exhibition in Tanzania’s Dodoma Region in August 2024,one product stood out among hundreds:bio-genic fertiliser.Visitors,including farmers,researchers and government o"cials,were intrigued by its promise.展开更多
The combined application of mineral fertilizer and biochar significantly improves the passivation of heavy metal-contaminated soil,surpassing the effects of individual application.This study has reinforced the validat...The combined application of mineral fertilizer and biochar significantly improves the passivation of heavy metal-contaminated soil,surpassing the effects of individual application.This study has reinforced the validation of their passivation competence as soil remediation agents by examining the multifaceted role of potassium-silicon-calcium mineral fertilizer combined with rice husk-based biochar generated at different pyrolysis temperatures.The soil leaching column experiment,conducted based on the adsorption experiments,has facilitated our scrutiny of the passivation impacts of cadmium(Cd)and lead(Pb)when introducing different proportions of mineral fertilizers and biochar into the soil.These results indicate that biochar’s adsorption efficiency for Cd and Pb is significantly improved at escalated pyrolytic temperature conditions in a single solution.The biochar generated at 700℃(C700)renders adsorption effectiveness of approximately 84.24%for Cd and 99.74%for Pb.Biochar conspicuously registers superior adsorption efficiency towards Pb relative to Cd.The mineral fertilizer,which achieves an adsorption efficiency of 97.76%for Cd,is identified as the main adsorbent for Cd,although its competence is slightly lower compared to C700 for Pb adsorption.Within a complex solution,biochar and mineral fertilizer show reduced Cd and Pb adsorption levels compared to single solutions.There is a keen competition for adsorption surfaces witnessed between Cd and Pb,with Pb’s distribution coefficient(Kd)notably outpacing that of Cd.The isothermal adsorption analyses depict that the mineral fertilizer follows the Langmuir model for Cd adsorption,while C700 conveys the Freundlich model for Pb adsorption.The soil leaching column experiment’s results signify that the composite passivation agents significantly outperform the individual passivation agents in efficiency.The combined application of biochar and mineral fertilizer minimizes the cumulative leaching of Cd and Pb,with the optimal soil remedy proportion for heavy metal contamination being 7∶3.In practical application,mindful consideration should be accorded to the deployment ratios of different passivation agents.展开更多
To decrease the eutrophication caused by nitrogen(N)and phosphorus(P)in water,magnesium-modified corn stalk biochar(MgB)was prepared under the synergistic impact of the multi-pyrolysis temperatures and Mg^(2+)contents...To decrease the eutrophication caused by nitrogen(N)and phosphorus(P)in water,magnesium-modified corn stalk biochar(MgB)was prepared under the synergistic impact of the multi-pyrolysis temperatures and Mg^(2+)contents for the co-adsorption of ammonium(NH_(4)^(+)-N)and phosphate(PO_(4)^(3−)).The co-adsorption mechanism,slow-release performance and plant application of MgB were systematically studied.The results showed that pyrolysis temperatures(350-650℃)and Mg^(2+)(0-3.6 g/L)contents not only altered the physicochemical properties of biochar,but also significantly affected the adsorption efficacy of MgB.The adsorption of NH_(4)^(+)-N and PO_(4)^(3−)was in accordance with Langmuir-Freundlich and pseudo-second-order kinetic models(Q_(max)=37.72 and 73.29 mg/g,respectively).Based on the characteristics,adsorption kinetics and isotherms results,the adsorption mechanism was determined and found to mainly involve struvite precipitation,ion exchange,and surface precipitation or electrostatic attraction.Compared with the leaching performance of chemical fertilizers(CF),after adsorption of NH_(4)^(+)-N and PO_(4)^(3−)(MgB-A),MgB had a more stable pH and lower conductivity.Leaching of NH_(4)^(+)-N and PO_(4)^(3−)by MgB-A was controlled by both the diffusion mechanism and the dissolution rate of struvite and Mg-P.The excel-lent long-term slow-release performance and abundant Mg^(2+)of MgB-A promoted the growth of Zea mays L.and Lolium perenne L.Overall,this study suggested that MgB could realize a win-win outcome of struvite biochar-based fertiliser production and wastewater treatment.展开更多
Ever since the nitrogen-fixing properties of legumes were discovered more than a century ago, scientists have dreamt of transferring the same trait to cereals. Now they might finally have succeeded. A team of scientis...Ever since the nitrogen-fixing properties of legumes were discovered more than a century ago, scientists have dreamt of transferring the same trait to cereals. Now they might finally have succeeded. A team of scientists from Britain, Australia, China and Mexico has展开更多
In the recent past,much nanotechnology research has been done in an effort to increase agricultural productivity.The Green Revolution led to the careless use of pesticides and artificial fertilizers,which reduced soil ...In the recent past,much nanotechnology research has been done in an effort to increase agricultural productivity.The Green Revolution led to the careless use of pesticides and artificial fertilizers,which reduced soil biodiversity and led to the development of disease and insect resistance.This article highlights the worldwide development and status of precision agriculture.Precision agriculture utilizes technologies and principles to manage spatial and temporal variability in agricultural production to improve crop performance and environmental quality.In precision agriculture(PA),information technology(IT)is used to make sure that crops and soil receive exactly what they require for optimal productivity and health.Precision farming includes the use of hardware i.e.,a global positioning system(GPS)and geographic information system(GIS),different software of GIS,and traditional knowledge of agriculture management practices.The benefits of precision agriculture can be seen in both the economic and environmental aspects of agricultural production.Only nanoparticles or nanochips can transport materials to plants in a nanoparticle-mediated manner and create sophisticated biosensors for precision farming.Conventional fertilizers,insecticides,and herbicides can be nano encapsulated to provide exact doses to plants through a gradual,continuous release of nutrients and agrochemicals.The main topics included in this article are the variability of natural resources,variability management;administrative districts;the impact of precision farming technologies on farm profitability and the environment;innovations in sensors,controls,and remote sensing,information management;trends in global application and acceptance of precision farming technologies;potential and possibilities of technology along with challenges in agricultural modernization.Modern equipment and procedures based on nanotechnology have the ability to solve many of the issues in conventional agriculture and might transform this industry.There are many challenges in the implementation of smart agriculture equipment and approaches in thefield as this technique uses both hardware and software.The cost of labour for managing IoT devices and the cost-of-service registration are included in the system operational cost.Additionally,there are operating costs related to the use of energy,maintenance,and communication between IoT devices,gateways,and cloud servers.In this review,nanotechnology is explored as a potential tool in precision agriculture,as well as the advantages of nanoparticles in agriculture,such as the use of fertilizers.By using precision agriculture,the food production chain can be monitored and quality and quantity can be managed effectively.展开更多
A high crop yield with the minimum possible cost to the environment is generally desirable.However,the complicated relationships among crop production,nitrogen(N) use efficiency and environmental impacts must be clear...A high crop yield with the minimum possible cost to the environment is generally desirable.However,the complicated relationships among crop production,nitrogen(N) use efficiency and environmental impacts must be clearly assessed.We conducted a series of on-farm N application rate experiments to establish the linkage between crop yield and N_2 O emissions in the Guanzhong Plain in Northwest China.We also examined crop yield,partial factor productivity of applied N(PFPN) and reactive N(Nr) losses through a survey of 1 529 and 1 497 smallholder farms that grow wheat and maize,respectively,in the region.The optimum N rates were 175 and 214 kg ha^(-1) for winter wheat and summer maize,respectively,thereby achieving the yields of 6 799 and 7 518 kg ha^(-1),correspondingly,with low N_2 O emissions based on on-farm N rate experiments.Among the smallholder farms,the average N application rates were 215 and 294 kg ha^(-1) season^(-1),thus producing 6 490 and 6 220 kg ha^(-1) of wheat and maize,respectively.The corresponding PFPN values for the two crops were 36.8 and 21.2 kg N kg^(-1),and the total N_2 O emissions were 1.50 and 3.88 kg ha^(-1),respectively.High N balance,large Nr losses and elevated N_2 O emissions could be explained by the overdoses of N application and low grain yields under the current farming practice.The crop yields,N application rates,PFPN and total N_2 O for wheat and maize were 18 and 24% higher,42 and 37% less,75 and 116% higher,and 42 and 47% less,correspondingly,in the high-yield and high-PFPN group than in the average smallholder farms.In conclusion,closing the PFPN gap between the current average and the value for the high-yield and high-PFPN group would increase crop production and reduce Nr losses or the total N_2 O emissions for the investigated cropping system in Northwest China.展开更多
A 2-year field experiment was conducted to assess the effect of applied zinc(Zn) on the seed yield of pea(Pisum sativum L.) and to determine the internal Zn requirement of pea with emphasis on the seed and leaves as i...A 2-year field experiment was conducted to assess the effect of applied zinc(Zn) on the seed yield of pea(Pisum sativum L.) and to determine the internal Zn requirement of pea with emphasis on the seed and leaves as index tissues.The experiment was carried out at two different locations(Talagang,Chakwal district and National Agricultural Research Centre(NARC),Islamabad) in the Potohar Plateau,Pakistan by growing three pea cultivars(Green feast,Climax,and Meteor).The soils were fertilized with 0,2,4,8,and 16 kg Zn ha^(-1) along with recommended basal fertilization of nitrogen(N),phosphorus(P),potassium(K),and boron(B).Zinc application increased seed yield significantly for all the three cultivars.Maximum increase in the pea seed yield(2-year mean) was21%and 15%for Green feast,28%and 21%for Climax,and 34%and 26%for Meteor at Talagang and NARC,respectively.In all cultivars,Zn concentrations in leaves and seed increased to varying extents as a result of Zn application.Fertiliser Zn requirement for near-maximum seed yield varied from 3.2 to 5.3 kg ha^(-1) for different cultivars.Zinc concentrations of leaves and seeds appeared to be a good indicator of soil Zn availability.The critical Zn concentration range sufficient for 95%maximum yield(internal Zn requirement)was 42-53 mg kg^(-1) in the pea leaves and 45-60 mg kg^(-1) in the seeds of the three pea cultivars studied.展开更多
A study was carried out to test the effects of three rates of TSP (triple superphosphate) (0, 50, and 100 mg·kg^-1 P) on growth of broom with and without radiata pine seedlings and to determine the relationsh...A study was carried out to test the effects of three rates of TSP (triple superphosphate) (0, 50, and 100 mg·kg^-1 P) on growth of broom with and without radiata pine seedlings and to determine the relationships between P concentrations in the broom shoot and dry matter yields with soil plant-available P (Bray-2 P). A bulk sample of soil was collected from Kaweka forest at soil depth of 0-10 cm, in New Zealand on March 11, 2001. The forest area was not supplied with fertiliser at least 30 years. The results show that TSP application increased P avail- ability in the soil. The P availability concentration in soil of broom with radiata pine seedlings was higher than that in soil of broom alone. Bray-2 P concentrations had a significant logarithmic relationship with Pcon- centrations of broom shoot and an exponential relationship with dry matter weight of whole broom plant.展开更多
Biosolids were applied with urea to produce a granulated organo-mineral fertiliser (OMF) for application by farm fertiliser equipment to a range of agricultural crops. The recommended rates of nitrogen, phosphate and ...Biosolids were applied with urea to produce a granulated organo-mineral fertiliser (OMF) for application by farm fertiliser equipment to a range of agricultural crops. The recommended rates of nitrogen, phosphate and potash were calculated for the test crops using “The Fertiliser Manual”, which assesses the nutrient requirement based on previous cropping, rainfall and soil index. The OMF produced similar crop yields compared to ammonium nitrate fertiliser when applied as a top-dressing to winter wheat, forage maize and grass cut for silage in the cropping years 2010 to 2014. In 2012 the grain yield of spring barley top-dressed with OMF was significantly lower than the conventional fertiliser treatment, due to dry conditions following application. For this reason it is recommended that OMF is incorporated into the seedbed for spring sown crops and The Safe Sludge Matrix guidelines followed. The experimental work presented shows that OMF can be used in sustainable crop production systems as a source of nitrogen and phosphorus for a range of agricultural crops.展开更多
基金funded by the Australian Government,Department of Agriculture,Fisheries and Forestry,and the Cotton Research and Development Corporation through the More Profit from Nitrogen project.
文摘Achieving a sustainable cropping system requires the efficient use of resources,particularly nitrogen(N).Nitrogen fertiliser is applied in most irrigated cotton fields to maximise yield potential,but plant fertiliser recovery can be low.Identifying the crucial pathways of fertiliser remobilisation internally within cotton plants will lead to greater awareness of the plants’ability to match the N demands of the developing fruiting matter.This study investigated the fate of N fertiliser when applied to cotton at various dates,with the goal to improve N fertiliser recovery in a modern transgenic cotton cultivar.15N-labelled urea(10 atom%)was applied at multiple times and harvested at four key cotton growth stages(first square,early bolls,cut-out and maturity).Remobilised N was determined as the difference in the proportion of N fertiliser in individual plant components against the fertiliser utilised by the whole plant.The application of fertiliser N at first square resulted in 23%greater fertiliser N recovery at plant maturity compared to fertiliser N applied 100%pre-plant(P<0.001).The improvement was in-part due to higher N derived from the fertiliser(Ndff%)in the cotton seed(3%).Conversely,the Ndff%was higher in the stem(4%)and petioles(1%)when the fertiliser was applied pre-plant.In total,73%of plant N was remobilised to another plant organ,predominantly the seed(67%).Applying N fertiliser post-planting improved N recovery and lint yield compared to applying all fertiliser pre-plant.
文摘In order to reduce the waste of resources and environmental pollution caused by excessive application of chemical fertilizers, improve the utilization rate of fertilizers, and promote the large-scale and high-quality development of the Chinese rose industry. In this experiment, corn stover biochar, phosphoric acid modified biochar and organic fertilizer were used as test materials, and the effects of mixed application of modified biochar and organic fertilizer on the growth and development of Chinese rose as well as soil physicochemical properties were investigated by using the method of pot planting test. The results showed that modified biochar with organic fertilizer had the most significant effect on the enhancement of soil pH, organic matter content and soil carbon-to-nitrogen ratio. After 120 d of planting, modified biochar with organic fertilizer had the most significant effect on the enhancement of plant height and crown width of Chinese rose;both organic fertilizer and modified biochar with organic fertilizer significantly increased the chlorophyll content of Chinese rose. The number of flowers and the number of branches were the highest in the modified biochar with organic fertilizer treatment. In conclusion, the application of modified biochar with organic fertilizer can better improve the soil pH, and increase the soil organic matter content and carbon-to-nitrogen ratio to change the biological traits of Chinese rose. The results of this study provide a theoretical basis for the reduction of chemical fertilizers and the resource utilization of agricultural wastes and guarantee the sustainable development of the cut flower industry.
文摘Modern agricultural practices involve the extensive use of chemical fertilisers to increase productivity. However less than half of the applied chemical fertiliser nitrogen is used by the target crops, and much of the remaining pollutes air and waterways. Farming systems that sustain productivity while reducing the negative effect on the environment are crucially needed. One avenue is to use plant growth promoting rhizobacteria (PGPR) as bio-fertiliser to reduce the dependency on chemical fertiliser. The potential of PGPR to improve the efficiency of the combination of organic and chemical fertilisers has recently been proposed. Here, we demonstrate that this combination benefits sugarcane grown in field conditions.
基金financially supported by the Ministry of Science and Technology of China (Nos.2013GB23600666 and 2013BAD11B00)funded by the Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization,China+1 种基金supported by the grant of the Australian Research Council (No.LP120200418)Renewed Carbon Pty Ltd.,Australia and the project of DAFF Carbon Farming Futures-Filling the Research Gap,Australia (No.RG134978)
文摘Utilization of biochar at high application rates can increase soil C and crop yields, decrease greenhouse gas emissions and reduce nutrient run-off from soils. However, the high application rate of 10 t ha-1 may not return a profit to the farmer due to the high cost of biochar. In this study biochar was modified through pre-treating the biomass and post-treating with phosphoric acid, minerals and different chemical fertilisers to study the effects of two new enhanced biochar fertilisers on the yield and quality of green pepper in a field experiment with 5 fertilisation treatments and 3 replications. The two new biochar fertilisers significantly (P 〈 0.05) increased the yield of green pepper (11.33-11.47 t ha-l), compared with the conventional chemical fertiliser (9.72 t ha-l). The biochar fertiliser treatments improved the vitamin C content of green pepper from 236.99 to 278.28 mg kg-1, and also significantly (P 〈 0.05) reduced the nitrate content from 132.32 to 101.92 mg kg-1, compared with chemical fertiliser. This study indicated that, compared to the use of conventional chemical fertiliser, all of the biochar fertiliser treatments could significantly improve the yield and quality of green pepper.
文摘Anaerobic digestion is a process that is widely used for the treatment of organic wastes. The digestate can be used as a soil amendment or crop fertiliser. The aims of our work were to evaluate 1) the physicochemical composition and pathogen content in a digestate from poultry manure, according to international regulations, and 2) the effect of its soil application on the major chemical and biological soil properties and on the growth of Lactuca sativa. The experiment consisted of two groups of pots(with and without crop). Treatments applied to each group were as follows: low and high doses of digestate and inorganic fertiliser, and no application(control)(low dose: 70 kg nitrogen(N) ha^(-1) and 21 kg phosphorus(P) ha^(-1); high dose: 210 kg N ha^(-1) and 63 kg P ha^(-1)). Soil samples were taken 7 and 34 d(harvest) after treatment applications. Heavy metal and pathogen contents in the digestate were below the upper limit values. Despite the high pH and electrical conductivity values of the digestate, both soil parameters presented acceptable values for crop growth. Although there were no initial increases in total inorganic N and available P in soil with digestate application, an increase in the fresh weight of crop was observed with the high dose application. This is probably associated with the slow nutrient release from the digestate during the development of the crop. Changes in the microbial community were temporary and occurred at the initial sampling stage of the experiment.
基金funded by National Natural Science Foundation of China(41373078)National Major Scientific Research Program(2013CB956702)Key Project of Natural Science Research in Colleges and Universities in Jiangsu Province(Grant No.16KJA180003)
文摘Heavy metal pollution in karst mountainous area of Guizhou has spread due to the long-term exploitation of mineral resources and the improper disposal of environmentally hazardous waste. Heavy metals are characterised by non-degradation, strong toxicity, and constant accumulation, posing a grave threat to karst mountain fragile soil ecosystem. To reduce the harm caused by heavy metal pollution and damage to agricultural products, research was undertaken on the basis of previous work by simulating pot experiments on pak choi cabbage(Brassica rapa chinensis)planted in Cd-contaminated soil: different amounts of organic mineral fertilisers(OMF) compared with chemical fertiliser(CF) were used and by detecting the amount of heavy metal in the mature vegetable, a better fertilisation strategy was developed. The results showed that the Cd content in vegetables grown with CF was 23.70 mg/kg,while that of vegetables grown with OMF and bacterial inoculant was the lowest at 15.13 mg/kg. This suggests that the use of OMF and microbes in karst areas not only promotes plant growth but also hinders plant absorption of heavy metal ions in the soil. In addition, through the collection of pot leachate, the detection of water chemistrycharacteristics, and the calculation of the calcite saturation index, it was found that the OMF method also induces certain carbon sink effects. The results provide a new way in which rationalise the use of OMFs in karst areas to alleviate soil heavy metal pollution and increase soil carbon sequestration.
基金funded by the Australian Government Department of Agriculture and Water Resourcesthe Cotton Research and Development Corporation's Rural Research and Development for Profit Project "More profit from nitrogen:enhancing the nutrient use efficiency of intensive cropping and pasture systems"funded by the Cotton Research and Development Corporation's PhD scholarship
文摘Fifty years of sustained investment in research and development has left the Australian cotton industry well placed to manage nitrogen(N) fertiliser. The average production in the Australian cotton industry today is greater than two tonnes of lint per hectare due to improved plant genetics and crop management. However, this average yield is well below the yield that would be expected from the amount of N fertiliser used. It is clear from the recent studies that across all growing regions, conversion of fertiliser N into lint is not uniformly occurring at application rates greater than 200-240 kg·hm;of N. This indicates that factors other than N availability are limiting yield, and that the observed nitrogen fertiliser use efficiency(NFUE) values may be caused by subsoil constraints such as sodicity and compaction. There is a need to investigate the impact of subsoil constraints on yield and NFUE.Gains in NFUE will be made through improved N fertiliser application timing, better targeting the amount of fertiliser applied for the expected yield, and improved soil N management. There is also a need to improve the ability and confidence of growers to estimate the contribution of soil N mineralisation to the crop N budget. Many Australian studies including data that could theoretically be collated in a meta-analysis suggest relative NFUE values as a function of irrigation technique; however, with the extensive list of uncontrolled variables and few studies using non-furrow irrigation, this would be a poor substitute for a single field-based study directly measuring their efficacies. In irrigated cotton, a re-examination of optimal NFUE is due because of the availability of new varieties and the potential management and long-term soil resilience implications of the continued removal of mineralised soil N suggested by high NFUE values. NFUE critical limits still need to be derived for dryland systems.
文摘Changes in phosphorus (P) fractions in a P deficient allophanic soil under P. radiata seedlings grown with broom (Cytisus scoparius L.) and ryegrass (Lolium multiflorum) in pots were studied 14 months after the application of triple superphosphate at the rates of 0, 50, and 100 pg.g^-1, to determine the fate of fertiliser-derived P in the rhizosphere soils. Application of P fertiliser increased NaOH-Pi, NaOH-Po, and H2SO4-Pi concentrations in the soil, but decreased the residual-P concentration. The resin-Pi concentration, which is ex- tremely low in this soil (1 to μgg^-1 ), remained the same. The majority of the added fertiliser P was however recovered in the NaOH-Pi fraction (40%-49%). This is due to the high P fixation in this soil (92%). The second highest P recovery was in NaOH-Po fraction (7%-19%). Under P deficient condition or addition at the rate of 0 μg.g^-6, the NaOH-Pi concentration in the radiata rhizosphere soil was lower than that in the bulk soil and broom and grass rhizosphere soils. This may be due to higher oxalate production by the roots and mycorrhiza under P deficient conditions which released some &the P fixed to the soils in the rhizosphere, which needs to be tested in future studies.
基金supported by Centre for Sustainable Forest Management at Forest Research Institute, New Zealand
文摘Changes in phosphorus (P) fractions in a P deficient allophanic soil under P. radiata seedlings grown with broom (Cytisus scoparius L.) and ryegrass (Lolium multiflorum) in pots were studied 14 months after the application of triple superphosphate at the rates of 0, 50, and 100 μg·g-1, to determine the fate of fertiliser-derived P in the rhizosphere soils. Application of P fertiliser increased NaOH-Pi, NaOH-Po, and H2SO4-Pi concentrations in the soil, but decreased the residual-P concentration. The resin-Pi concentration, which is extremely low in this soil (1 to 3 μg·g-1 ), remained the same. The majority of the added fertiliser P was however recovered in the NaOH-Pi fraction (40%?49%). This is due to the high P fixation in this soil (92%). The second highest P recovery was in NaOH-Po fraction (7%?19%). Under P deficient condition or addition at the rate of 0 μg·g-1, the NaOH-Pi concentration in the radiata rhizosphere soil was lower than that in the bulk soil and broom and grass rhizosphere soils. This may be due to higher oxalate production by the roots and mycorrhiza under P deficient conditions which released some of the P fixed to the soils in the rhizosphere, which needs to be tested in future studies.
文摘Raw and treated “nejayote” were assessed as foliar and edaphic fertilisers for native blue maize (Zea mays L.) crops in the municipality of Amozoc de Mota, Puebla, Mexico, during the 2015 agricultural cycle. Treated nejayote refers to raw nejayote subjected to a coagulation-flocculation process. Two states of nejayote were established (raw and treated nejayote) with different physicochemical properties. Foliar bio-fertilisers were prepared from raw and treated nejayote and mixed with organic matter (OM) to promote a fermentation process. The foliar treatments used were: BNC5, BNC15, BNC30 (raw nejayote-based bio-fertiliser at 5%, 15%, and 30%), BNCQ5, and NCQ30 (nejayote treated by chemical coagulation at 5% and 30%), with BT as a control (traditional bio-fertiliser). The edaphic treatments used were: NC50, NC75, and NC100 (raw nejayote at 50%, 75%, 100%), with AP as a control (drinking water), thus giving rise to 10 treatments in terms of content of raw or treated nejayote. Foliar and edaphic field treatments applied to native blue maize crops were statistically assessed using the following response variables: plant height, stem diameter, number of leaves, and grain yield. The experiment was laid out in a randomised complete block design (RCBD) with five replications of each treatment. The results obtained showed, that foliar or edaphic application at the different stages of development did not produce statistically significant differences, at P ≤ 0.05, in terms of response variables. The most significant effects occurred at the early stage of plant development and were mainly reflected in the stem diameter with foliar treatment NCQ30 and in the number of leaves with foliar treatment BNC5. At the final stage of crop development, the highest yield (0.639 ± 0.121 t·ha<sup>-1</sup>) was obtained with treatment BNC5, which produced a statistically significant difference (b) in relation to the rest of the foliar and edaphic treatments (Tukey P ≤ 0.05).
基金supported by the National Key R&D Program of China during the 14th Five-Year Plan period(No.2023YFD1700205)the National Natural Science Foundation of China(No.32402678)+4 种基金the Anhui Provincial Department of Education Research Project(No.2024AH05045)the Science Foundation for Youth of Anhui Province of China(No.1908085QC139),the Major Science and Technology in Anhui Province of China(No.202103a06020012)the Science Foundation for Distinguished Youth of Anhui Province of China(No.2008085J13)the Key Project of Educational Commission of Anhui Province of China(No.2022AH050886)the Key Project of Youth Fund of Anhui Agricultural University of China(No.2018zd25).
文摘Humic acid(HA)prevents phosphorus(P)fixation and promotes P absorption by plants,thereby effectively increasing the efficiency of phosphate fertiliser utilisation.Although nano-sized HA(NHA)might exhibit superior effects compared to conventional-sized HA(CHA),evidence is limited.Therefore,we investigated the effects of CHA and NHA applied with conventional phosphate fertiliser(CHA+CP and NHA+CP,respectively)on chilli pepper biomass,P uptake,and root morphology,as well as soil available P content,and evaluated CHA,NHA,and their residues in the soil for differences in specific surface area,functional groups,molecular weight distribution,and surface elemental compositions in a 40-d pot cultivation experiment.Results showed that the CHA+CP and NHA+CP treatments significantly increased pepper biomass and P uptake by 15.2%–24.7%and 37.9%–49.0%,respectively,compared to the conventional phosphate fertiliser applied alone(CP)treatment(P<0.05),with NHA exhibiting a greater effect than CHA.This was primarily related to NHA's stronger ability to reduce P fixation than that of CHA.Soil available P content significantly increased by 5.8%and 3.8%in the NHA+CP treatment compared with CHA+CP on days 22 and 40 of cultivation,respectively(P<0.05).Nano-sized HA contained more small-molecule components and carboxyl groups than CHA,which can more stimulate root elongation and thus promote root P uptake.Furthermore,fertiliser-derived P gradually entered the structure of CHA or NHA during cultivation.The presence of more plant-available forms(e.g.,H2PO_(4)^(2-)and HPO_(4)^(2-))in NHA compared to CHA also contributed to better regulation of phosphate fertiliser efficacy.In conclusion,NHA is superior to CHA in improving phosphate fertiliser efficiency,making it a potential alternative material for the development of high-efficiency phosphate fertilisers.This presents an excellent opportunity to minimise P resource waste.
文摘How a Tanzanian entrepreneur turned lessons from China into a sustainable farming solution back home At the National Agricultural Exhibition in Tanzania’s Dodoma Region in August 2024,one product stood out among hundreds:bio-genic fertiliser.Visitors,including farmers,researchers and government o"cials,were intrigued by its promise.
基金supported by the National Natural Science Foundation of Sichuan Province(22NSFSC0191,22NSFSC3990)。
文摘The combined application of mineral fertilizer and biochar significantly improves the passivation of heavy metal-contaminated soil,surpassing the effects of individual application.This study has reinforced the validation of their passivation competence as soil remediation agents by examining the multifaceted role of potassium-silicon-calcium mineral fertilizer combined with rice husk-based biochar generated at different pyrolysis temperatures.The soil leaching column experiment,conducted based on the adsorption experiments,has facilitated our scrutiny of the passivation impacts of cadmium(Cd)and lead(Pb)when introducing different proportions of mineral fertilizers and biochar into the soil.These results indicate that biochar’s adsorption efficiency for Cd and Pb is significantly improved at escalated pyrolytic temperature conditions in a single solution.The biochar generated at 700℃(C700)renders adsorption effectiveness of approximately 84.24%for Cd and 99.74%for Pb.Biochar conspicuously registers superior adsorption efficiency towards Pb relative to Cd.The mineral fertilizer,which achieves an adsorption efficiency of 97.76%for Cd,is identified as the main adsorbent for Cd,although its competence is slightly lower compared to C700 for Pb adsorption.Within a complex solution,biochar and mineral fertilizer show reduced Cd and Pb adsorption levels compared to single solutions.There is a keen competition for adsorption surfaces witnessed between Cd and Pb,with Pb’s distribution coefficient(Kd)notably outpacing that of Cd.The isothermal adsorption analyses depict that the mineral fertilizer follows the Langmuir model for Cd adsorption,while C700 conveys the Freundlich model for Pb adsorption.The soil leaching column experiment’s results signify that the composite passivation agents significantly outperform the individual passivation agents in efficiency.The combined application of biochar and mineral fertilizer minimizes the cumulative leaching of Cd and Pb,with the optimal soil remedy proportion for heavy metal contamination being 7∶3.In practical application,mindful consideration should be accorded to the deployment ratios of different passivation agents.
基金the National Key Research and Development Project(No.2016YFC0400707)Postgraduate Research and Practice Innovation Program of Jiangsu Provence(No.KYCX17_1453).
文摘To decrease the eutrophication caused by nitrogen(N)and phosphorus(P)in water,magnesium-modified corn stalk biochar(MgB)was prepared under the synergistic impact of the multi-pyrolysis temperatures and Mg^(2+)contents for the co-adsorption of ammonium(NH_(4)^(+)-N)and phosphate(PO_(4)^(3−)).The co-adsorption mechanism,slow-release performance and plant application of MgB were systematically studied.The results showed that pyrolysis temperatures(350-650℃)and Mg^(2+)(0-3.6 g/L)contents not only altered the physicochemical properties of biochar,but also significantly affected the adsorption efficacy of MgB.The adsorption of NH_(4)^(+)-N and PO_(4)^(3−)was in accordance with Langmuir-Freundlich and pseudo-second-order kinetic models(Q_(max)=37.72 and 73.29 mg/g,respectively).Based on the characteristics,adsorption kinetics and isotherms results,the adsorption mechanism was determined and found to mainly involve struvite precipitation,ion exchange,and surface precipitation or electrostatic attraction.Compared with the leaching performance of chemical fertilizers(CF),after adsorption of NH_(4)^(+)-N and PO_(4)^(3−)(MgB-A),MgB had a more stable pH and lower conductivity.Leaching of NH_(4)^(+)-N and PO_(4)^(3−)by MgB-A was controlled by both the diffusion mechanism and the dissolution rate of struvite and Mg-P.The excel-lent long-term slow-release performance and abundant Mg^(2+)of MgB-A promoted the growth of Zea mays L.and Lolium perenne L.Overall,this study suggested that MgB could realize a win-win outcome of struvite biochar-based fertiliser production and wastewater treatment.
文摘Ever since the nitrogen-fixing properties of legumes were discovered more than a century ago, scientists have dreamt of transferring the same trait to cereals. Now they might finally have succeeded. A team of scientists from Britain, Australia, China and Mexico has
文摘In the recent past,much nanotechnology research has been done in an effort to increase agricultural productivity.The Green Revolution led to the careless use of pesticides and artificial fertilizers,which reduced soil biodiversity and led to the development of disease and insect resistance.This article highlights the worldwide development and status of precision agriculture.Precision agriculture utilizes technologies and principles to manage spatial and temporal variability in agricultural production to improve crop performance and environmental quality.In precision agriculture(PA),information technology(IT)is used to make sure that crops and soil receive exactly what they require for optimal productivity and health.Precision farming includes the use of hardware i.e.,a global positioning system(GPS)and geographic information system(GIS),different software of GIS,and traditional knowledge of agriculture management practices.The benefits of precision agriculture can be seen in both the economic and environmental aspects of agricultural production.Only nanoparticles or nanochips can transport materials to plants in a nanoparticle-mediated manner and create sophisticated biosensors for precision farming.Conventional fertilizers,insecticides,and herbicides can be nano encapsulated to provide exact doses to plants through a gradual,continuous release of nutrients and agrochemicals.The main topics included in this article are the variability of natural resources,variability management;administrative districts;the impact of precision farming technologies on farm profitability and the environment;innovations in sensors,controls,and remote sensing,information management;trends in global application and acceptance of precision farming technologies;potential and possibilities of technology along with challenges in agricultural modernization.Modern equipment and procedures based on nanotechnology have the ability to solve many of the issues in conventional agriculture and might transform this industry.There are many challenges in the implementation of smart agriculture equipment and approaches in thefield as this technique uses both hardware and software.The cost of labour for managing IoT devices and the cost-of-service registration are included in the system operational cost.Additionally,there are operating costs related to the use of energy,maintenance,and communication between IoT devices,gateways,and cloud servers.In this review,nanotechnology is explored as a potential tool in precision agriculture,as well as the advantages of nanoparticles in agriculture,such as the use of fertilizers.By using precision agriculture,the food production chain can be monitored and quality and quantity can be managed effectively.
基金the National Key Research and Development Program of China (2016YFD0800105)
文摘A high crop yield with the minimum possible cost to the environment is generally desirable.However,the complicated relationships among crop production,nitrogen(N) use efficiency and environmental impacts must be clearly assessed.We conducted a series of on-farm N application rate experiments to establish the linkage between crop yield and N_2 O emissions in the Guanzhong Plain in Northwest China.We also examined crop yield,partial factor productivity of applied N(PFPN) and reactive N(Nr) losses through a survey of 1 529 and 1 497 smallholder farms that grow wheat and maize,respectively,in the region.The optimum N rates were 175 and 214 kg ha^(-1) for winter wheat and summer maize,respectively,thereby achieving the yields of 6 799 and 7 518 kg ha^(-1),correspondingly,with low N_2 O emissions based on on-farm N rate experiments.Among the smallholder farms,the average N application rates were 215 and 294 kg ha^(-1) season^(-1),thus producing 6 490 and 6 220 kg ha^(-1) of wheat and maize,respectively.The corresponding PFPN values for the two crops were 36.8 and 21.2 kg N kg^(-1),and the total N_2 O emissions were 1.50 and 3.88 kg ha^(-1),respectively.High N balance,large Nr losses and elevated N_2 O emissions could be explained by the overdoses of N application and low grain yields under the current farming practice.The crop yields,N application rates,PFPN and total N_2 O for wheat and maize were 18 and 24% higher,42 and 37% less,75 and 116% higher,and 42 and 47% less,correspondingly,in the high-yield and high-PFPN group than in the average smallholder farms.In conclusion,closing the PFPN gap between the current average and the value for the high-yield and high-PFPN group would increase crop production and reduce Nr losses or the total N_2 O emissions for the investigated cropping system in Northwest China.
基金supported by the project of Micronutrient Management for Sustaining Major Cropping Systemsfunded by Ministry of Food,Agriculture and Livestock,Go-vernment of Pakistan,Islamabad
文摘A 2-year field experiment was conducted to assess the effect of applied zinc(Zn) on the seed yield of pea(Pisum sativum L.) and to determine the internal Zn requirement of pea with emphasis on the seed and leaves as index tissues.The experiment was carried out at two different locations(Talagang,Chakwal district and National Agricultural Research Centre(NARC),Islamabad) in the Potohar Plateau,Pakistan by growing three pea cultivars(Green feast,Climax,and Meteor).The soils were fertilized with 0,2,4,8,and 16 kg Zn ha^(-1) along with recommended basal fertilization of nitrogen(N),phosphorus(P),potassium(K),and boron(B).Zinc application increased seed yield significantly for all the three cultivars.Maximum increase in the pea seed yield(2-year mean) was21%and 15%for Green feast,28%and 21%for Climax,and 34%and 26%for Meteor at Talagang and NARC,respectively.In all cultivars,Zn concentrations in leaves and seed increased to varying extents as a result of Zn application.Fertiliser Zn requirement for near-maximum seed yield varied from 3.2 to 5.3 kg ha^(-1) for different cultivars.Zinc concentrations of leaves and seeds appeared to be a good indicator of soil Zn availability.The critical Zn concentration range sufficient for 95%maximum yield(internal Zn requirement)was 42-53 mg kg^(-1) in the pea leaves and 45-60 mg kg^(-1) in the seeds of the three pea cultivars studied.
基金supported by the Centre for Sustainable Forest Management at Forest Research Institute (FRI), Rotorua, New Zealand
文摘A study was carried out to test the effects of three rates of TSP (triple superphosphate) (0, 50, and 100 mg·kg^-1 P) on growth of broom with and without radiata pine seedlings and to determine the relationships between P concentrations in the broom shoot and dry matter yields with soil plant-available P (Bray-2 P). A bulk sample of soil was collected from Kaweka forest at soil depth of 0-10 cm, in New Zealand on March 11, 2001. The forest area was not supplied with fertiliser at least 30 years. The results show that TSP application increased P avail- ability in the soil. The P availability concentration in soil of broom with radiata pine seedlings was higher than that in soil of broom alone. Bray-2 P concentrations had a significant logarithmic relationship with Pcon- centrations of broom shoot and an exponential relationship with dry matter weight of whole broom plant.
文摘Biosolids were applied with urea to produce a granulated organo-mineral fertiliser (OMF) for application by farm fertiliser equipment to a range of agricultural crops. The recommended rates of nitrogen, phosphate and potash were calculated for the test crops using “The Fertiliser Manual”, which assesses the nutrient requirement based on previous cropping, rainfall and soil index. The OMF produced similar crop yields compared to ammonium nitrate fertiliser when applied as a top-dressing to winter wheat, forage maize and grass cut for silage in the cropping years 2010 to 2014. In 2012 the grain yield of spring barley top-dressed with OMF was significantly lower than the conventional fertiliser treatment, due to dry conditions following application. For this reason it is recommended that OMF is incorporated into the seedbed for spring sown crops and The Safe Sludge Matrix guidelines followed. The experimental work presented shows that OMF can be used in sustainable crop production systems as a source of nitrogen and phosphorus for a range of agricultural crops.