Poly(vinylidene-trifluoroethylene) [P(VDF-TrFE)] copolymer films generally demonstrate limited compatibility with organic semiconductors. The material is frequently compromised by exposure to organic semiconductor sol...Poly(vinylidene-trifluoroethylene) [P(VDF-TrFE)] copolymer films generally demonstrate limited compatibility with organic semiconductors. The material is frequently compromised by exposure to organic semiconductor solutions and other fabrication processes utilized in the production of organic ferroelectric transistors. In this study, an organic ferroelectric field effect transistor(OFeFET) with the 6,13-Bis(triisopropylsilylethynyl) pentacene(TIPS-pentacene) channel is fabricated, in which the aluminum oxide(Al_(2)O_(3)) interlayer is used to improve compatibility. The device displays polymorphic memory and synaptic plasticity of long-term potentiation and depression. Furthermore, an artificial neural network constructed using our devices is simulated to succeed in recognizing the MNIST handwritten digit database with a high accuracy of 92.8%. This research offers a viable approach to enhance the compatibility of the organic ferroelectric polymer P(VDF-TrFE) with organic semiconductors.展开更多
Ferroelectric materials are promising candidates for ultraviolet photodetectors due to their ferroelectric effect.In this work,a BaTiO_(3)/p-GaN/Au hybrid heterojunction-Schottky self-driven ultraviolet photodetector ...Ferroelectric materials are promising candidates for ultraviolet photodetectors due to their ferroelectric effect.In this work,a BaTiO_(3)/p-GaN/Au hybrid heterojunction-Schottky self-driven ultraviolet photodetector was fabricated with excellent bipolar photoresponse property.At 0 V bias,the direction of the photocurrent can be switched by flipping the depolarization field of BaTiO_(3),which allows the performance of photodetectors to be controlled by the ferroelectric effect.Meanwhile,a relatively large responsivity and a fast response speed can be also observed.In particular,when the depolarization field of BaTiO_(3) is in the same direction of the built-in electric field of the Au/p-GaN Schottky junction(up polarized state),the photodetector exhibits a high responsivity of 18 mA/W at 360 nm,and a fast response speed of<40 ms at 0 V.These findings pave a new way for the preparation of high-performance photodetectors with bipolar photocurrents.展开更多
In this article,we review recently achieved Kerr effect progress in novel liquid crystal(LC) material:vertically aligned deformed helix ferroelectric liquid crystal(VADHFLC).With an increasing applied electric fi...In this article,we review recently achieved Kerr effect progress in novel liquid crystal(LC) material:vertically aligned deformed helix ferroelectric liquid crystal(VADHFLC).With an increasing applied electric field,the induced inplane birefringence of LCs shows quadratic nonlinearity.The theoretical calculations and experimental details are illustrated.With an enhanced Kerr constant to 130 nm/V2,this VADHFLC cell can achieve a 2π modulation by a small efficient electric field with a fast response around 100 μs and thus can be employed in both display and photonics devices.展开更多
The multiple ferroelectric polarization tuned by external electric field could be used to simulate the biological synaptic weight. Ferroelectric synaptic devices have two advantages compared with other reported ones: ...The multiple ferroelectric polarization tuned by external electric field could be used to simulate the biological synaptic weight. Ferroelectric synaptic devices have two advantages compared with other reported ones: One is that the intrinsic switching of ferroelectric domains without invoking of defect migration as in resistive oxides, contributes reliable performance in these ferroelectric synapses. Another tremendous advantage is the extremely low energy consumption because the ferroelectric polarization is manipulated by electric field which eliminates the Joule heating by current as in magnetic and phase change memories. Ferroelectric synapses have potential for the construction of low-energy and effective brain-like intelligent networks. Here we summarize recent pioneering work of ferroelectric synapses involving the structure of ferroelectric tunnel junctions (FTJs), ferroelectric diodes (FDs), and ferroelectric field effect transistors (FeFETs), respectively, and shed light on future work needed to accelerate their application for efficient neural network.展开更多
The electronic properties of TiO2-terminated BaTiO3(001) surface subjected to biaxial strain have been studied using first-principles calculations based on density functional theory. The Ti ions are always inward s...The electronic properties of TiO2-terminated BaTiO3(001) surface subjected to biaxial strain have been studied using first-principles calculations based on density functional theory. The Ti ions are always inward shifted either at compressive or tension strains, while the inward shift of the Ba ions occurs only for high compressive strain, implying an enhanced electric dipole moment in the case of high compressive strain. In particular, an insulator–metal transition is predicted at a compressive biaxial strain of 0.0475. These changes present a very interesting possibility for engineering the electronic properties of ferroelectric BaTiO3(001) surface.展开更多
With major signal analytical elements situated away from the measurement environment,extended gate(EG)ion-sensitive fieldeffect transistors(ISFETs)offer prospects for whole chip circuit design and system integration o...With major signal analytical elements situated away from the measurement environment,extended gate(EG)ion-sensitive fieldeffect transistors(ISFETs)offer prospects for whole chip circuit design and system integration of chemical sensors.In this work,a highly sensitive and power-efficient ISFET was proposed based on a metal-ferroelectric-insulator gate stack with negative capacitance–induced super-steep subthreshold swing and ferroelectric memory function.Along with a remotely connected EG electrode,the architecture facilitates diverse sensing functions for future establishment of smart biochemical sensor platforms.展开更多
Our feet are often subjected to moist and warm environments,which can promote the growth of harmful bacteria and the development of severe infection in wounds located in the foot.As a result,there is a need for new an...Our feet are often subjected to moist and warm environments,which can promote the growth of harmful bacteria and the development of severe infection in wounds located in the foot.As a result,there is a need for new and innovative strategies to safely sterilize feet,when shoes are worn,to prevent any potential foot-related diseases.In this paper,we have produced a non-destructive,biocompatible and convenient-to-use insole by embedding a BaTiO_(3)(BT)ferroel ectric material into a conventional polydimethylsilane(PDMS)insole material to exploit a ferroelectric catalytic effect to promote the antibacterial and healing of infected wounds via the ferroelectric charges generated during walking.The formation of reactive oxygen species generated through a ferroelectric catalytic effect in the PDMS-BT composite is shown to increase the oxidative stress on bacteria and decrease both the activity of bacteria and the rate of formation of bacterial biofilms.In addition,the ferroelectric field generated by the PDMS-BT insole can enhance the level of transforming growth factor-beta and CD31 by influencing the endogenous electric field of a wound,thereby promoting the proliferation,differentiation of fibroblasts and angiogenesis.This work therefore provides a new route for antimicrobial and tissue reconstruction by integrating a ferroelectric biomaterial into a shoe insole,with significant potential for health-related applications.展开更多
基金supported by the National Key Research and Development program of China (Nos. 2024YFA1410700 and 2021YFA1200700)the National Natural Science Foundation of China (Nos. T2222025, 62174053, 62474065 and 52372120)+3 种基金the Natural Science Foundation of Chongqing (CSTB2024NSCQ-JQX0005)the Shanghai Science and Technology Innovation Action Plan (Nos. 24QA2702300 and 24YF2710400)the National Postdoctoral Program (GZB20240225)the Fundamental Research Funds for the Central Universities。
文摘Poly(vinylidene-trifluoroethylene) [P(VDF-TrFE)] copolymer films generally demonstrate limited compatibility with organic semiconductors. The material is frequently compromised by exposure to organic semiconductor solutions and other fabrication processes utilized in the production of organic ferroelectric transistors. In this study, an organic ferroelectric field effect transistor(OFeFET) with the 6,13-Bis(triisopropylsilylethynyl) pentacene(TIPS-pentacene) channel is fabricated, in which the aluminum oxide(Al_(2)O_(3)) interlayer is used to improve compatibility. The device displays polymorphic memory and synaptic plasticity of long-term potentiation and depression. Furthermore, an artificial neural network constructed using our devices is simulated to succeed in recognizing the MNIST handwritten digit database with a high accuracy of 92.8%. This research offers a viable approach to enhance the compatibility of the organic ferroelectric polymer P(VDF-TrFE) with organic semiconductors.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.62074148,61875194,11727902,12204474,12304111,and 12304112)the Youth Innovation Promotion Association,Chinese Academy of Sciences (Grant No.2020225)+1 种基金Jilin Province Science Fund (Grant Nos.20220101053JC and 20210101145JC)Jilin Province Young and Middle-Aged Science and Technology Innovation Leaders and Team Project (Grant No.20220508153RC)。
文摘Ferroelectric materials are promising candidates for ultraviolet photodetectors due to their ferroelectric effect.In this work,a BaTiO_(3)/p-GaN/Au hybrid heterojunction-Schottky self-driven ultraviolet photodetector was fabricated with excellent bipolar photoresponse property.At 0 V bias,the direction of the photocurrent can be switched by flipping the depolarization field of BaTiO_(3),which allows the performance of photodetectors to be controlled by the ferroelectric effect.Meanwhile,a relatively large responsivity and a fast response speed can be also observed.In particular,when the depolarization field of BaTiO_(3) is in the same direction of the built-in electric field of the Au/p-GaN Schottky junction(up polarized state),the photodetector exhibits a high responsivity of 18 mA/W at 360 nm,and a fast response speed of<40 ms at 0 V.These findings pave a new way for the preparation of high-performance photodetectors with bipolar photocurrents.
基金The funding for the State Key Laboratory on Advanced Displays and Optoelectronics Technologies
文摘In this article,we review recently achieved Kerr effect progress in novel liquid crystal(LC) material:vertically aligned deformed helix ferroelectric liquid crystal(VADHFLC).With an increasing applied electric field,the induced inplane birefringence of LCs shows quadratic nonlinearity.The theoretical calculations and experimental details are illustrated.With an enhanced Kerr constant to 130 nm/V2,this VADHFLC cell can achieve a 2π modulation by a small efficient electric field with a fast response around 100 μs and thus can be employed in both display and photonics devices.
基金Project supported by the National Natural Science Foundation of China(Grant No.61804055)"Chenguang Program"supported by Shanghai Education Development Foundation and Shanghai Municipal Education Commission,China(Grant No.17CG24)Shanghai Science and Technology Innovation Action Plan,China(Grant No.19JC1416700).
文摘The multiple ferroelectric polarization tuned by external electric field could be used to simulate the biological synaptic weight. Ferroelectric synaptic devices have two advantages compared with other reported ones: One is that the intrinsic switching of ferroelectric domains without invoking of defect migration as in resistive oxides, contributes reliable performance in these ferroelectric synapses. Another tremendous advantage is the extremely low energy consumption because the ferroelectric polarization is manipulated by electric field which eliminates the Joule heating by current as in magnetic and phase change memories. Ferroelectric synapses have potential for the construction of low-energy and effective brain-like intelligent networks. Here we summarize recent pioneering work of ferroelectric synapses involving the structure of ferroelectric tunnel junctions (FTJs), ferroelectric diodes (FDs), and ferroelectric field effect transistors (FeFETs), respectively, and shed light on future work needed to accelerate their application for efficient neural network.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.1574091,51272078,and 51431006)the Natural Science Foundation of Guangdong Province of China(Grant No.2015A030313375)+1 种基金the Science and Technology Planning Project of Guangdong Province of China(Grant No.2015B090927006)the Program for International Innovation Cooperation Platform of Guangzhou City,China(Grant No.2014J4500016)
文摘The electronic properties of TiO2-terminated BaTiO3(001) surface subjected to biaxial strain have been studied using first-principles calculations based on density functional theory. The Ti ions are always inward shifted either at compressive or tension strains, while the inward shift of the Ba ions occurs only for high compressive strain, implying an enhanced electric dipole moment in the case of high compressive strain. In particular, an insulator–metal transition is predicted at a compressive biaxial strain of 0.0475. These changes present a very interesting possibility for engineering the electronic properties of ferroelectric BaTiO3(001) surface.
基金the National Natural Science Foundation of China No.52073160the National Key Research and Development Program of China No.2020YFF01014706+1 种基金Beijing Municipal Science and Technology Commission(Z211100002421012)Key Laboratory of Advanced Materials(MOE).
文摘With major signal analytical elements situated away from the measurement environment,extended gate(EG)ion-sensitive fieldeffect transistors(ISFETs)offer prospects for whole chip circuit design and system integration of chemical sensors.In this work,a highly sensitive and power-efficient ISFET was proposed based on a metal-ferroelectric-insulator gate stack with negative capacitance–induced super-steep subthreshold swing and ferroelectric memory function.Along with a remotely connected EG electrode,the architecture facilitates diverse sensing functions for future establishment of smart biochemical sensor platforms.
基金National Natural Science Foundation of China,Grant/Award Numbers:52172265,5230130435Scientific research project of Hunan Provincial Department of Education,Grant/Award Number:21B0009+2 种基金Hunan Excellent Youth Science Foundation,Grant/Award Number:2022JJ20067State Key Laboratory of Powder Metallurgy,Central South University,Changsha,Chinathe Hong Kong Polytechnic University,Grant/Award Number:1-W34B。
文摘Our feet are often subjected to moist and warm environments,which can promote the growth of harmful bacteria and the development of severe infection in wounds located in the foot.As a result,there is a need for new and innovative strategies to safely sterilize feet,when shoes are worn,to prevent any potential foot-related diseases.In this paper,we have produced a non-destructive,biocompatible and convenient-to-use insole by embedding a BaTiO_(3)(BT)ferroel ectric material into a conventional polydimethylsilane(PDMS)insole material to exploit a ferroelectric catalytic effect to promote the antibacterial and healing of infected wounds via the ferroelectric charges generated during walking.The formation of reactive oxygen species generated through a ferroelectric catalytic effect in the PDMS-BT composite is shown to increase the oxidative stress on bacteria and decrease both the activity of bacteria and the rate of formation of bacterial biofilms.In addition,the ferroelectric field generated by the PDMS-BT insole can enhance the level of transforming growth factor-beta and CD31 by influencing the endogenous electric field of a wound,thereby promoting the proliferation,differentiation of fibroblasts and angiogenesis.This work therefore provides a new route for antimicrobial and tissue reconstruction by integrating a ferroelectric biomaterial into a shoe insole,with significant potential for health-related applications.