Coordination bonds are relatively unstable compared to covalent bonds,and common carbon-based absorbing material precursors are bonded in the form of coordination bonds.In this work,we have introduced ferrocene units ...Coordination bonds are relatively unstable compared to covalent bonds,and common carbon-based absorbing material precursors are bonded in the form of coordination bonds.In this work,we have introduced ferrocene units into conjugated microporous polymers(CMP)in one step by Suzuki reaction.By adjusting the proportion of ferrocene units,a series of magnetic Fe-C nanocomposites(Fe-P-XC)derived from conjugated ferrocene polymers without heteroatom doping(N,S,P,etc.)were formed.The Fe-P-2C composite has good absorption properties with minimum reflection loss at 4.4 GHz(-58.66 dB)and effective absorption bandwidth(EAB)of 6.28 GHz at 2.4 mm(11.72-18 GHz).Compared with the precursor materials formed by coordination bonds,the present work reveals the electromagnetic wave absorption mechanism of carbon-based materials without heteroatom doping through a simple and effective strategy.展开更多
基金supported by the National Natural Science Foundation of China(No.11975124)the Fundamental Research Funds for the Central universities(Nos.30920041102 and 30920041103)the Open Fund of Key Laboratory of Materials Preparation and Protection for Harsh Environment(Nanjing University of Aeronautics and Astronautics),Ministry of Industry and Information Technology(No.56XCA22042).
文摘Coordination bonds are relatively unstable compared to covalent bonds,and common carbon-based absorbing material precursors are bonded in the form of coordination bonds.In this work,we have introduced ferrocene units into conjugated microporous polymers(CMP)in one step by Suzuki reaction.By adjusting the proportion of ferrocene units,a series of magnetic Fe-C nanocomposites(Fe-P-XC)derived from conjugated ferrocene polymers without heteroatom doping(N,S,P,etc.)were formed.The Fe-P-2C composite has good absorption properties with minimum reflection loss at 4.4 GHz(-58.66 dB)and effective absorption bandwidth(EAB)of 6.28 GHz at 2.4 mm(11.72-18 GHz).Compared with the precursor materials formed by coordination bonds,the present work reveals the electromagnetic wave absorption mechanism of carbon-based materials without heteroatom doping through a simple and effective strategy.