Purpose: The present studied was performed in order to investigate the drug resistance of different non-lactose fermenting gram negative bacteria from clinical isolates. The bacteria were morphologically characterized...Purpose: The present studied was performed in order to investigate the drug resistance of different non-lactose fermenting gram negative bacteria from clinical isolates. The bacteria were morphologically characterized through culturing and gram staining techniques were used for the identification of different bacterial strains. Methods: A total of 324 samples were collected from patients, after they were diagnosed by physicians at different hospitals at district Peshawar. Samples were morphologically identified by blood agar, MacConkey agar and Eosine Methylene Blue, identified by gram staining techniques. Modified Kirby-Bauer Disc diffusion method was used to test the in-vitro susceptibility of the identified isolates to different antibiotics. Results: The non-lactose fermenting gram negative bacteria were isolated from samples of blood (33.30%), pus/ wound (33.30%), urine (23.30%) and from ascetic/pleural fluids (10.20%). The study revealed that Pseudomonas aeroginosa showed high resistance against Gentamicin (74%) and Aztreonam (74%), followed by Ciprofloxacin (59.20%) and Amikacin (33.30). Tazocin was active as low resistance (18.50%) is shown. More resistance was seen in Morganella morganii against Aztreonam (77.7%) followed by Gentamicin (62.90%), Ciprofloxacin (40.70%). Tazocin show low resistance (3.70%). Multidrug resistant Proteus mirabillis was highly resistance to Gentamicin (66.60%), followed by Aztreonam (62.90%), Amikacin (55.50%), Ciprofloxacin (40.20%) and low resistance to Tazocin was (22.20%). Salmonella typhi demonstrated high resistance against Amikacin (62.90%), followed by Aztreonam (48.10%), Tazocin (40.70%). Gentamicin showed low resistance (29.60%), and hence it is more active against S. typhi. Conclusions: It can be concluded from the present study that different species of non-lactose fermenting gram negative bacteria have shown a different resistivity pattern. This study is a gate way for better and suitable management strategy for the infections caused by non-Lactose fermenting bacteria in the sampling region.展开更多
[Objective] The aim of this study was to explore the effects of substrates before and after fermenting treatment on the growth,development and cut flower quality of lily.[Method] Oriental lily cultivar 'Siberia' was...[Objective] The aim of this study was to explore the effects of substrates before and after fermenting treatment on the growth,development and cut flower quality of lily.[Method] Oriental lily cultivar 'Siberia' was taken as material to study the effect of using fermentative and unfermented agricultural waste as substrates on the growth,development and cut flower quality of lily.And the physical and chemical properties of substrates before and after fermenting treatment were studied.[Result] The full decomposition of agricultural waste would greatly improve the physical and chemical properties of substrates,such as the fermentative substrates changed to stabilization,the ratio of carbon nitrogen had dropped drastically,the total porosity was increase,the ratio of gas and water was better,and the nutrition elements was increased.Moreover,it could significantly increased the plant height,stem diameter,leaf number,leaf area,leaf fresh weight and so on,as well as expanded the lily roots and significantly improved the rate of cut flower and cut flower quality.[Conclusion] This study had provided theoretically basis for the cultivation of cut lily.展开更多
Purpose: We studied the drug resistance of different microbes from clinical isolates. The morphological characteristics of bacteria were observed through culture characteristics and by carrying out gram staining techn...Purpose: We studied the drug resistance of different microbes from clinical isolates. The morphological characteristics of bacteria were observed through culture characteristics and by carrying out gram staining techniques while the biochemical characteristics of bacteria were carried out by biochemical test. Methods: A total of 324 samples were collected from suspected patients visiting different hospitals at district Peshawar. For morphological identification, samples of clinical isolates were analyzed by blood agar, MacConkey agar and Eosine Methylene Blue, identified by gram staining and characterized by different biochemical tests. Antibiotic Sensitivity test by Modified Kirby-Bauer Disc diffusion method was used to test the in-vitro susceptibility of the identified isolates to different antibiotics such as Ceftazidime, Ceftazidime, Ceftriaxone, Cefepime and Imipenem. Results: These resistant non-lactose fermenting gram negative bacteria were isolated from samples of pus/wound (33.30%, n = 108/324), blood (33.30%, n = 108/324), urine (23.30%, n = 75/324) and from ascetic/pleural fluids (10.20%, n = 33/324). The study revealed that the percentage of non-fermenting bacterial infection was higher in females (53%) as compared to males (47%) along with higher infection observed in the age group of 11 - 30 years. Pseudomonas aeroginosa showed high resistance against Cefepime (88.80%), followed by Cefoperazone (55.50%), Ceftazidime (48.10%), Ceftriaxone (33.30%). Imipenem was active with low resistance (7.40%). More resistance was seen in Morganella morganii against Imipenem (66.70%) followed by Cefoperazone (55.50%), Ceftriaxone (55.50%). Cefepime showed low resistance (11%). Multi-drug resistant Proteus mirabillis was highly resistance to Ceftriaxone (74.07%), followed by Cefepime (59.20%), Cefoperazone (44.40%) and low resistance for Imipenem (25.90%). Salmonella typhi demonstrated high resistance against Imipenem (74.07%), followed by Ceftriaxone (40.70%), Ceftazidime (37.03%). Cefepime showed low resistance (3.70%), hence it is more active against S. typhi. Conclusions: The different species of non-lactose fermenting gram negative bacteria have shown a different resistivity pattern in the present study. Therefore identification of non-lactose fermenting gram negative bacteria and looking after their resistivity/susceptibility pattern are important for suitable management of the infections caused by them.展开更多
The present study was conducted to determine the pro-biotic properties in vitro of the lactic acid bacteria isolated from spontaneously fermenting kunu-zaki. Kunu-zaki was processed using composite, non composite, ger...The present study was conducted to determine the pro-biotic properties in vitro of the lactic acid bacteria isolated from spontaneously fermenting kunu-zaki. Kunu-zaki was processed using composite, non composite, germinated and ungerminated Digitaria exilis (Fonio), Sorghum bicolor (Sorghum) and Pennisetum americanum (Millet) cereals. A total of 150 LAB isolates were obtained from all the fermenting slurries. These 150 LAB isolates were screened for their ability to grow at pH 3.0, resistance against bile salt and ability to inhibit reference test pathogens. Out of these 150 LAB isolates;21 exhibited good probiotic properties. All the 21 isolates were further identified to specie and subspecies level using standard API50CHL system with all 21 showing good survival (P < 0.05) in a pH 3.0 buffered medium and subsequent resistance to 0.3% bile. The LAB isolates which survived these conditions consisted of 18 Lactobacillus species, 2 Pediococcus species and 1 Lactococcus specie. These LAB species were further examined for antimicrobial activity against the growth of reference pathogens Staphylococcus aureus 25923, Escherichia coli 25922, Pseudomonas aeruginosa 27853 and Enterococcus faecalis 29212. All 21 LAB species exhibited good inhibition of all test reference pathogens except Lactobacillus fructivorans, Lactococcus lactis sp lactis and L. fermentum which however, showed no zone of inhibition against the growth of E. faecalis. Kunu-zaki made from composite un-germinated Sorghum bicolor (Sorghum) and Pennisetum americanum (Millet) cereal grains contained the highest percentage (52%) of LAB species which showed good probiotic criteria in vitro. Non composite ungerminated cereals accounted for 33% of the total probiotic LAB isolates whilst the germinated non composite and composite cereals recorded the lowest percentage (10%) and (5%) of probiotic LAB respectively. The results of this research study showed that the LAB species isolated from wild fermentation of kunu-zaki beverage fulfilled the criteria for in vitro screening of probiotic characteristics. These LAB species possed potential for further use as probiotic in human preparations and suggested the use of kunu-zaki made from ungerminated composite sorghum and millet grains as a natural probiotic drink.展开更多
Despite of the fact that knowledge management has become the focus of current literature and management practice, the core process of knowledge has. not been identified. After comparing the pl:ocess of knowledge move...Despite of the fact that knowledge management has become the focus of current literature and management practice, the core process of knowledge has. not been identified. After comparing the pl:ocess of knowledge movement and that of fermenting, we put forward a new model-knowledge fermenting model. In this paper, we thoroughly analyze the element of knowledge fermenting model, and show how knowledge increase is realized through that model.展开更多
Despite of the fact that knowledge sharing has become the focus of current literature and management practice, the core process of knowledge sharing has not been identified. What are the main barriers and incentives f...Despite of the fact that knowledge sharing has become the focus of current literature and management practice, the core process of knowledge sharing has not been identified. What are the main barriers and incentives for people to share their knowledge, what is the internal mechanism of knowledge sharing, and how people evaluate the benefit coming from knowledge sharing are the core areas in knowledge management. In this paper, we reexamine the knowledge sharing based on knowledge convening and fermenting model. After comparing the process of knowledge movement with that of biotic fermenting, several important attributes that knowledge owns are discovered, they are existence of origination, inheritance and variation, the need of assembly for knowledge evolution and medium for knowledge assemblage. Furthermore, the authors put forward a new model--knowledge convening and fermenting model and in this way consider knowledge sharing as a process of knowledge fermenting. The authors thoroughly analyze the biotic attributes of knowledge, the elements of knowledge share fermenting model, and typical knowledge share fermenting.展开更多
The effects of different microbes on fermenting feed for sea cucumber (Apostichopus japonicus) were compared to select the optimal fermentation strain in this study. Saccharomgces cerevisae, Candida utilis, Bacillus...The effects of different microbes on fermenting feed for sea cucumber (Apostichopus japonicus) were compared to select the optimal fermentation strain in this study. Saccharomgces cerevisae, Candida utilis, Bacillus subtilis and Geotrichum candidum were independently added into the experimental compound feed, while only saline was mixed with the control feed. The fermentation treatments were inoculated with 10% seed solution under the condition of 25 ~C and 70% water content, which lasted for 5 days to elucidate the optimal microbe strain for fermenting effect. Physicochemical indexes and sensorial characteristics were measured per day during the fermentation. The indexes included dry matter recovery (DMR), crude protein (CP), the percentage of amino acid nitrogen to total nitrogen (AA-N/tN), the percentage of ammonia nitrogen to total nitrogen (NH3-N/tN), and the ratio of fermentation strains and vibrios to the total microbes, color, smell and viscosity. The results showed that DMR, CP and AA-N/tN of the S. cerevisae group reached the highest level on day 3, but the ratio of fermentation strain was second to C. utilis group. In addition, its NH3-N/tN and the ratio of vibrios were maintained at low levels, and the sensory evaluation score including smell, color and viscosity was the highest in S. cerevisae group on day 3. Therefore, S. cerevisae could be the optimal strain for the feed fermentation for sea cucumber. This research developed a new production method of fermentation feed for sea cucumber.展开更多
The Kingdom of Saudi Arabia produces over one million metric tons annually, which returns a 20% of wasted dates annually. Lactic acid and its derivatives are widely used in food, pharmaceutical and textile industries....The Kingdom of Saudi Arabia produces over one million metric tons annually, which returns a 20% of wasted dates annually. Lactic acid and its derivatives are widely used in food, pharmaceutical and textile industries. There has been an increase in lactic acid production because it is used as a raw material to produce polylactic acid, a polymer that is used as a special medical and environmental friendly biodegradable plastic. This study aimed to use wasted dates to produce lactic acid by single culture Lactobacillus casei (ATCC 393), Lactobacillus acidophilus (CICC 6088) and the mixed culture using batch fermentation. The investigation results showed that the maximum concentration of lactic acid for ATCC 393, CICC 6088 and the mixed culture are 87, 84 and 84 g/l respectively. For single CICC 6088 and the mixed culture, the total percentage of glucose and fructose utilized was found to be 100%;76%, respectively, whereas in the case of the single culture ATCC 393, the total percentage of glucose and fructose were 100% and 72%, respectively. With regard to lactic acid concentration, and sugar consumption, the results revealed that the single culture ATCC 393 produced the optimum lactic acid of 87 g/l for 48 hr with initial sugar concentration of 90 g/l.展开更多
BACKGROUND:Breast hyperplasia is a common benign breast disease mainly caused by endocrine disorders,manifested as abnormal hyperplasia of breast tissue.In recent years,traditional Chinese medicine compounds and probi...BACKGROUND:Breast hyperplasia is a common benign breast disease mainly caused by endocrine disorders,manifested as abnormal hyperplasia of breast tissue.In recent years,traditional Chinese medicine compounds and probiotics have shown good potential in regulating the endocrine system and improving the intestinal microecology,providing new ideas for the treatment of breast hyperplasia.OBJECTIVE:To explore the effects and mechanisms of traditional Chinese medicine compounds and fermented probiotic compounds on breast hyperplasia in mice,providing new theoretical and experimental bases for the clinical treatment and prevention of breast hyperplasia.METHODS:(1)Network pharmacology tools were used to predict the anti-breast-hyperplasia activity of Herba Gueldenstaedtiae(Euphorbia humifusa),as well as its potential targets and signaling pathways.The databases included:TCMSP,OMIM,GeneCards database,UniProt website,Venny2.1.0 website,Metascape,HERB website,and STRING database,all of which are open-access databases.Network pharmacology can predict and screen key information such as the targets corresponding to the active ingredients of traditional Chinese medicine,disease targets,and action pathways through network analysis and computer-system analysis.Therefore,it has been increasingly widely used in the research of traditional Chinese medicine.(2)A breast hyperplasia model was induced in mice by injecting estrogen and progesterone.Mice in the normal blank group were injected intraperitoneally with normal saline every day.Mice in the model group and drugadministration groups were injected intraperitoneally with estradiol benzoate injection at a concentration of 0.5 mg/kg every day for 25 days.From the 26th day,the injection of estradiol benzoate injection was stopped.Mice in the normal blank group were injected intramuscularly with normal saline every day,and mice in the model group and drug-administration groups were injected intramuscularly with progesterone injection at a concentration of 5 mg/kg for 5 days.After the model was established,each group was given drugs respectively.The normal blank group and the model group were gavaged with 0.2 mL/d of normal saline;the positive blank group(Xiaozheng Pill group)was gavaged with an aqueous solution of Xiaozheng Pill at 0.9 mg/g;the low-,medium-and high-dose groups of Compound Herba Gueldenstaedtiae were gavaged with an aqueous solution of the compound medicine at 0.75,1.5,and 3.0 mg/(g·d)respectively;the low-,medium-and high-dose groups of traditional Chinese medicine-bacteria fermentation were gavaged with an aqueous solution of the compound medicine at 0.75,1.5,and 3.0 mg/(g·d)respectively.The administration was continuous for 30 days.RESULTS AND CONCLUSION:(1)The results of network pharmacology research showed that the Compound Herba Gueldenstaedtiae(Euphorbia humifusa)contained 46 active ingredients,which were related to 1213 potential targets.After comparison with 588 known breast-hyperplasia targets,it was speculated that 50 of these targets might be related to the direct effect of the compound on breast hyperplasia.(2)After drug intervention,there was no significant change in the high-dose group of Compound Herba Gueldenstaedtiae compared with the normal blank group.The liver indicators of the other intervention groups all significantly decreased(P<0.05).(3)In terms of kidney and uterine indicators,the medium-dose group of Compound Herba Gueldenstaedtiae decreased significantly compared with the normal blank group(P<0.05).In terms of the uterine index,the model group increased significantly compared with the normal blank group(P<0.01).(4)After 1-month drug treatment,the number of lobules and acini in the breast tissue of the Xiaozheng Pill group,the low,medium,and high-dose group of Compound Herba Gueldenstaedtiae,the low,medium,and highdose groups of traditional Chinese medicine-bacteria fermentation decreased,and the duct openings narrowed.With the increase of drug dose,diffuse hyperplasia of breast tissue was significantly improved.(5)The ELISA results showed that compared with the model group,the estrogen level was lower in the medium-dose group of traditional Chinese medicine-bacteria fermentation after the intervention(P<0.05).In addition,the follicle-stimulating hormone level in the low-dose group of Compound Herba Gueldenstaedtiae was lower than that of the model group(P<0.05).(6)The intervention in the mouse model led to changes in the abundance of short chain fatty acids and intestinal flora in all groups.To conclude,the Compound Herba Gueldenstaedtiae and its probiotic fermentation products significantly improved mammary gland hyperplasia in mice by regulating hormone levels,improving the structure of the gut microbiota,and increasing the content of shortchain fatty acids,providing new ideas and potential sources of drugs for the treatment of breast hyperplasia.展开更多
This study aims to amend nitrite-free fermented sausage texture already produced in our laboratory using microencapsulation of fermenting probiotic bacteria Lactobacillus plantarum PTCC1896 and Lactobacillus fermentum...This study aims to amend nitrite-free fermented sausage texture already produced in our laboratory using microencapsulation of fermenting probiotic bacteria Lactobacillus plantarum PTCC1896 and Lactobacillus fermentum PTCC1744 (CNF treatment) and taking place physical, chemical, and microbial analyzes in comparison with cooked fermented sausages containing 120 ppm nitrite and aforementioned microencapsulated bacteria (CN treatment) and uncooked fermented sausages containing 120 ppm sodium nitrite and free bacteria (N treatment). Different percentages of sodium alginate, inulin and maltodextrin were used to evaluate the viability of bacteria. Combination of sodium alginate 1%, inulin 3% and maltodextrin 3% (w/v each) for L. plantarum PTCC1896 and sodium alginate 1%, inulin 5%, and maltodextrin 10% (w/v each) for L. fermentum PTCC1744 showed the most protective effects. The results of colorimetry showed that the mentioned bacteria could produce the desired red color of the sausage. The moisture content of cooked samples was significantly different from N treatment (p < 0.05). The pH of all treatments was within the desired range of microbial stability. The texture and microbial evaluation results showed that cooked treatments have better texture properties and lower microbial load during storage (p < 0.05). Considering the effects of cooking on the texture of sausage, the appropriate survival of microencapsulated bacteria and comparing the analyzes of the three treatments, the absence of nitrite and replacing it with the mentioned bacteria had no adverse effects and brought desirable results. Therefore, it is possible to produce nitrite-free probiotic fermented sausage with suitable organoleptic properties by cooking fermented sausage.展开更多
To investigate the in vitro digestion and fermentation properties of soybean oligosaccharides(SBOS)extracted from defatted soybean meal,the changes in monosaccharide composition and molecular mass were analyzed.Subseq...To investigate the in vitro digestion and fermentation properties of soybean oligosaccharides(SBOS)extracted from defatted soybean meal,the changes in monosaccharide composition and molecular mass were analyzed.Subsequently,the effect of SBOS on microbial community structure and metabolites was studied by 16S rRNA gene sequencing and untargeted metabolomics based on liquid chromatography-mass spectrometry.Results showed that SBOS was not easily enzymolyzed during simulated digestion and could reach the large intestine through the digestive system.The significant decrease in the molecular mass of SBOS after in vitro fermentation indicated its utilization by the gut microbiota,which increased the contents of short-chain fatty acids and lactic acid,thereby reducing the pH of the fermentation broth.Moreover,the core community was found to consist of Blautia,Lactobacillaceae,and Pediococcus.SBOS up-regulated beneficial differential metabolites such as myo-inositol,lactose,and glucose,which were closely related to galactose,amino sugar,and nucleotide sugar metabolism.This study will provide a reference for exploring the relationship between the gut microbiota and the metabolites of SBOS,and provide a basis for the development and application of SBOS as an ingredient for functional products.展开更多
Greenhouse gas(GHG)production during ensiling not only causes the nutrient losses of silage but also promotes climate warming.However,there is little information on the production of GHG and strategies for mitigating ...Greenhouse gas(GHG)production during ensiling not only causes the nutrient losses of silage but also promotes climate warming.However,there is little information on the production of GHG and strategies for mitigating GHG emissions during ensiling.This work aimed to study the gas production characteristics and techniques for reducing gas emissions during ensiling.Oats and triticale,with Lactiplantibacillus plantarum(LP)or corn meal(CM)addition,were ensiled.The cumulative gas volume rapidly increased and reached to the peak within the first 9 d of ensiling for both forage crops.The highest cumulative gas volume of triticale silage was twice as much as that of oats silage.Triticale silage produced lower carbon dioxide(CO_(2))concentration,higher methane(CH_(4))and nitrous oxide(N_(2)O)concentrations than oats silage within the 28 d of ensiling.Adding LP or CM significantly improved the fermentation quality and decreased the gas volume and GHG concentrations of 2 silages on d 56(except CH_(4)of triticale).At the early stage of ensiling,more Enterobacter,Lactococcus and Leuconostoc related to gas production were observed,and adding LP increased the abundance of Lactobacillus and decreased the abundance of bacteria like Kosakonia,Pantoea,Enterobacter and Lactococcus positively correlated with gas volume,CO_(2)and N_(2)O concentrations.These results suggest that gas formation during ensiling mainly occurs in the first 9 d.Adding LP or CM can significantly improve the fermentation quality and decrease the gas volume.This would benefit to reducing GHG emissions in silage production.展开更多
Background There is a growing focus on using various plant-derived agricultural by-products to increase the benefits of pig farming,but these feedstuffs are fibrous in nature.This study investigated the relationship b...Background There is a growing focus on using various plant-derived agricultural by-products to increase the benefits of pig farming,but these feedstuffs are fibrous in nature.This study investigated the relationship between dietary fiber physicochemical properties and feedstuff fermentation characteristics and their effects on nutrient utilization,energy metabolism,and gut microbiota in growing pigs.Methods Thirty-six growing barrows(47.2±1.5 kg)were randomly allotted to 6 dietary treatments with 2 apparent viscosity levels and 3β-glucan-to-arabinoxylan ratios.In the experiment,nutrient utilization,energy metabolism,fecal microbial community,and production and absorption of short-chain fatty acid(SCFA)of pigs were investigated.In vitro digestion and fermentation models were used to compare the fermentation characteristics of feedstuffs and ileal digesta in the pig’s hindgut.Results The production dynamics of SCFA and dry matter corrected gas production of different feedstuffs during in vitro fermentation were different and closely related to the physical properties and chemical structure of the fiber.In animal experiments,increasing the dietary apparent viscosity and theβ-glucan-to-arabinoxylan ratios both increased the apparent ileal digestibility(AID),apparent total tract digestibility(ATTD),and hindgut digestibility of fiber components while decreasing the AID and ATTD of dry matter and organic matter(P<0.05).In addition,increasing dietary apparent viscosity andβ-glucan-to-arabinoxylan ratios both increased gas exchange,heat production,and protein oxidation,and decreased energy deposition(P<0.05).The dietary apparent viscosity andβ-glucanto-arabinoxylan ratios had linear interaction effects on the digestible energy,metabolizable energy,retained energy(RE),and net energy(NE)of the diets(P<0.05).At the same time,the increase of dietary apparent viscosity andβ-glucan-to-arabinoxylan ratios both increased SCFA production and absorption(P<0.05).Increasing the dietary apparent viscosity andβ-glucan-to-arabinoxylan ratios increased the diversity and abundance of bacteria(P<0.05)and the relative abundance of beneficial bacteria.Furthermore,increasing the dietaryβ-glucan-to-arabinoxylan ratios led to a linear increase in SCFA production during the in vitro fermentation of ileal digesta(P<0.001).Finally,the prediction equations for RE and NE were established.Conclusion Dietary fiber physicochemical properties alter dietary fermentation patterns and regulate nutrient utilization,energy metabolism,and pig gut microbiota composition and metabolites.展开更多
As a major contributor to methane production in agriculture,there is a need for a suitable methane inhibitor to reduce ruminant methane emissions and minimize the impact on the climate.This work aimed to explore the i...As a major contributor to methane production in agriculture,there is a need for a suitable methane inhibitor to reduce ruminant methane emissions and minimize the impact on the climate.This work aimed to explore the influence of cordycepin on rumen fermentation,gas production,microbiome and their metabolites.A total of 0.00,0.08,0.16,0.32,and 0.64 g L^(–1)cordycepin were added into fermentation bottles containing 2 g total mixed ration for in vitro ruminal fermentation,and then the gas produced and fermentation parameters were measured for each bottle.Samples from the 0 and 0.64 g L^(–1)cordycepin addition were selected for 16S rRNA gene sequencing and metabolome analysis.The result of this experiment indicated that the addition of cordycepin could linearly increase the concentration of total volatile fatty acid,ammonia nitrogen,the proportion of propionate,valerate,and isovalerate,and linearly reduce ruminal pH and methane,carbon dioxide,hydrogen and total gas production,as well as the methane proportion,carbon dioxide proportion and proportion of butyrate.In addition,there was a quadratic relationship between hydrogen and cordycepin addition.At the same time,the relative abundance of Succiniclasticum,Prevotella,Rikenellaceae_RC9_gut_group,NK4A214_group,Christensenellaceae_R_(7)_group,unclassified_F082,Veillonellaceae_UCG_001,Dasytricha,Ophryoscolex,Isotricha,unclassified_Eukaryota,Methanobrevibacter,and Piromyces decreased significantly after adding the maximum dose of cordycepin.In contrast,the relative abundance of Succinivibrio,unclassified_Succinivibrionaceae,Prevotellaceae_UCG_001,unclassified_Lachnospiraceae,Lachnospira,Succinivibrionaceae_UCG_002,Pseudobutyrivibrio,Entodinium,Polyplastron,unclassified_Methanomethylophilaceae,Methanosphaera,and Candidatus_Methanomethylophilus increased significantly.Metabolic pathways such as biosynthesis of unsaturated fatty acids and purine metabolism and metabolites such as arachidonic acid,adenine,and 2′-deoxyguanosine were also affected by the addition of cordycepin.Based on this,we conclude that cordycepin is an effective methane emission inhibitor that can change the rumen metabolites and fermentation parameters by influencing the rumen microbiome,thus regulating rumen methane production.This experiment may provide a potential theoretical reference for developing Cordyceps byproduct or additives containing cordycepin as methane inhibitors.展开更多
In this work, Staphylococcus epidermidis (S. epidermidis) was used to prepare the fermentation broths with antioxidant activity. Through the optimization of the carbon source, three kinds of S. epidermidis fermentatio...In this work, Staphylococcus epidermidis (S. epidermidis) was used to prepare the fermentation broths with antioxidant activity. Through the optimization of the carbon source, three kinds of S. epidermidis fermentation broth were obtained and designated as SFB, Gly-SFB, and Glu-SFB, which were cultivated in beef protein medium and the beef protein medium supplemented with glycerol or glucose, respectively. The differences in antioxidant efficacy of SFB, Gly-SFB and Glu-SFB were investigated by evaluating intracellular ROS fluorescence intensity, SOD enzyme activity and MDA concentration. Gly-SFB and Glu-SFB exhibited a greater capacity to eliminate ROS as compared to that of SFB. The intracellular SOD enzyme activity increased as the concentrations of SFB and Gly-SFB increased. Nevertheless, the intracellular SOD enzyme activity was the highest after the treatment with Glu-SFB at the low concentrations. The intracellular MDA content reached a lower value after the treatment with Gly-SFB and Glu-SFB at lower concentrations, which was opposite to the case after the treatment with SFB. WB indicated that the S. epidermidis fermentation broth regulated the expression of relevant proteins in the Nrf2-Keap1 signaling pathway to exhibit the antioxidant effects. This indicates that the S. epidermidis fermentation broth promotes the expression of relevant proteins in the Nrf2-Keap1 signaling pathway, consequently, antioxidant benefits were exerted. The fermentation broth that were prepared by incorporating glycerol or glucose into the culture medium can augment their antioxidant activity.展开更多
Erythromycin fermentation residue(EFR)represents a typical hazardous waste produced by the microbial pharmaceutical industry.Although electrolysis is promising for EFR disposal,its microbial threats remain unclear.Her...Erythromycin fermentation residue(EFR)represents a typical hazardous waste produced by the microbial pharmaceutical industry.Although electrolysis is promising for EFR disposal,its microbial threats remain unclear.Herein,metagenomics was coupled with the random forest technique to decipher the antibiotic resistance patterns of electrochemically treated EFR.Results showed that 95.75%of erythromycin could be removed in 2 hr.Electrolysis temporarily influenced EFRmicrobiota,where the relative abundances of Proteobacteria and Actinobacteria increased,while those of Fusobacteria,Firmicutes,and Bacteroidetes decreased.A total of 505 antibiotic resistance gene(ARG)subtypes encoding resistance to 21 antibiotic types and 150 mobile genetic elements(MGEs),mainly including plasmid(72)and transposase(52)were assembled in EFR.Significant linear regression models were identified among microbial richness,ARG subtypes,and MGE numbers(r^(2)=0.50-0.81,p<0.001).Physicochemical factors of EFR(Total nitrogen,total organic carbon,protein,and humus)regulated ARG and MGE assembly(%IncMSE value=5.14-14.85).The core ARG,MGE,and microbe sets(93.08%-99.85%)successfully explained 89.71%-92.92%of total ARG and MGE abundances.Specifically,gene aph(3 )-I,transposase tnpA,and Mycolicibacterium were the primary drivers of the resistance dissemination system.This study also proposes efficient resistance mitigation measures,and provides recommendations for future management of antibiotic fermentation residue.展开更多
Objective:When the skin is exposed to external stimuli such as ultraviolet radiation,it can lead to dryness and sensitivity,highlighting the importance of skincare.Maintaining skin homeostasis for healthy complexion r...Objective:When the skin is exposed to external stimuli such as ultraviolet radiation,it can lead to dryness and sensitivity,highlighting the importance of skincare.Maintaining skin homeostasis for healthy complexion requires not only controlling the inflammatory response,but also protecting the skin barrier.The study aimed to explore the potential of fermented oats(FO)as an innovative ingredient in skin care products,focusing on its capacity to alleviate inflammation and repair the skin barrier.Methods:The present study aimed to characterize the active composition and skin care effects of FO,which underwent enzymatic hydrolysis followed by fermentation with Saccharomyces cerevisiae.To evaluate the antiinflammatory properties of FO,we performed experiments to inhibit TNF-α/TNFR1 binding,nitric oxide(NO)release in RAW264.7 macrophage cells and neutrophil aggregation in zebrafish embryos.Additionally,the study evaluated the secretion of inflammatory factors,skin barrier function and moisturizing effects using a UVBirradiated skin model as a surrogate for photodamaged skin.Results:This study reveals that the fermentation process involving Saccharomyces cerevisiae significantly enhances amino acids and their derivatives in FO.Specifically,β-glucan,total protein,and flavonoids in FO increased by 14.78%,39.13%,and 600%,respectively.FO achieved a 79.87%inhibition rate of TNF-α/TNFR1 binding.It also reduced lipopolysaccharide(LPS)-induced NO release in RAW264.7 cells and inhibited neutrophil recruitment in zebrafish embryos.In a capsaicin(CAP)-stimulated skin model,3.5%FO suppressed TRPV1 expression.In a UVB-irradiated 3D skin model,FO decreased the secretion of pro-inflammatory cytokines(IL-1α,IL-6,COX2,NF-κB)and significantly upregulated loricrin(128.57%),filaggrin(336.36%),transglutaminase 1(70.97%),and caspase-14(217.65%).Additionally,FO enhanced moisturizing efficacy by increasing skin moisture content and AQP3 levels.Conclusion:As a novel fermentation ingredient,FO inhibits the expression of inflammatory factors,improves skin tissue morphology,and enhances hydration,achieving multi-faceted soothing and repairing effects.These findings suggest that Saccharomyces cerevisiae-fermented oat extracts hold promise as an innovative ingredient with anti-inflammatory and skin-protective benefits.展开更多
[Objectives]To explore the effects of fermentation process on the content and functions of flavonoids in Gardenia jasminoides.[Methods]G.jasminoides was fermented by microorganisms,and the fermentation process of tota...[Objectives]To explore the effects of fermentation process on the content and functions of flavonoids in Gardenia jasminoides.[Methods]G.jasminoides was fermented by microorganisms,and the fermentation process of total flavonoids from G.jasminoides was optimized,and the antioxidant activity and hyaluronidase inhibitory activity of the fermentation broth were tested.[Results]The best strain for fermentation of total flavonoids in G.jasminoides was Bacillus subtilis.The optimum fermentation conditions were as follows:the solid-liquid ratio was 1:30,the inoculation amount was 2%,and the fermentation time was 24 h.Under these fermentation conditions,the content of total flavonoids in G.jasminoides reached 36.90 mg/g,which was 45.22%higher than that of the control group without microbial fermentation,and it had good DPPH free radical and hydroxyl free radical scavenging ability,and the inhibition ability of hyaluronidase after fermentation was also improved.[Conclusions]This study provides a technical reference for the comprehensive application of G.jasminoides.展开更多
Accurate fault root cause diagnosis is essential for ensuring stable industrial production. Traditional methods, which typically rely on the entire time series and overlook critical local features, can lead to biased ...Accurate fault root cause diagnosis is essential for ensuring stable industrial production. Traditional methods, which typically rely on the entire time series and overlook critical local features, can lead to biased inferences about causal relationships, thus hindering the accurate identification of root cause variables. This study proposed a shapelet-based state evolution graph for fault root cause diagnosis (SEG-RCD), which enables causal inference through the analysis of the important local features. First, the regularized autoencoder and fault contribution plot are used to identify the fault onset time and candidate root cause variables, respectively. Then, the most representative shapelets were extracted to construct a state evolution graph. Finally, the propagation path was extracted based on fault unit shapelets to pinpoint the fault root cause variable. The SEG-RCD can reduce the interference of noncausal information, enhancing the accuracy and interpretability of fault root cause diagnosis. The superiority of the proposed SEG-RCD was verified through experiments on a simulated penicillin fermentation process and an actual one.展开更多
文摘Purpose: The present studied was performed in order to investigate the drug resistance of different non-lactose fermenting gram negative bacteria from clinical isolates. The bacteria were morphologically characterized through culturing and gram staining techniques were used for the identification of different bacterial strains. Methods: A total of 324 samples were collected from patients, after they were diagnosed by physicians at different hospitals at district Peshawar. Samples were morphologically identified by blood agar, MacConkey agar and Eosine Methylene Blue, identified by gram staining techniques. Modified Kirby-Bauer Disc diffusion method was used to test the in-vitro susceptibility of the identified isolates to different antibiotics. Results: The non-lactose fermenting gram negative bacteria were isolated from samples of blood (33.30%), pus/ wound (33.30%), urine (23.30%) and from ascetic/pleural fluids (10.20%). The study revealed that Pseudomonas aeroginosa showed high resistance against Gentamicin (74%) and Aztreonam (74%), followed by Ciprofloxacin (59.20%) and Amikacin (33.30). Tazocin was active as low resistance (18.50%) is shown. More resistance was seen in Morganella morganii against Aztreonam (77.7%) followed by Gentamicin (62.90%), Ciprofloxacin (40.70%). Tazocin show low resistance (3.70%). Multidrug resistant Proteus mirabillis was highly resistance to Gentamicin (66.60%), followed by Aztreonam (62.90%), Amikacin (55.50%), Ciprofloxacin (40.20%) and low resistance to Tazocin was (22.20%). Salmonella typhi demonstrated high resistance against Amikacin (62.90%), followed by Aztreonam (48.10%), Tazocin (40.70%). Gentamicin showed low resistance (29.60%), and hence it is more active against S. typhi. Conclusions: It can be concluded from the present study that different species of non-lactose fermenting gram negative bacteria have shown a different resistivity pattern. This study is a gate way for better and suitable management strategy for the infections caused by non-Lactose fermenting bacteria in the sampling region.
基金Supported by "12th Five-Year" National Science and Technology Suppot Project(2011BAD12B02)Beijing Finance Bureau Support Project~~
文摘[Objective] The aim of this study was to explore the effects of substrates before and after fermenting treatment on the growth,development and cut flower quality of lily.[Method] Oriental lily cultivar 'Siberia' was taken as material to study the effect of using fermentative and unfermented agricultural waste as substrates on the growth,development and cut flower quality of lily.And the physical and chemical properties of substrates before and after fermenting treatment were studied.[Result] The full decomposition of agricultural waste would greatly improve the physical and chemical properties of substrates,such as the fermentative substrates changed to stabilization,the ratio of carbon nitrogen had dropped drastically,the total porosity was increase,the ratio of gas and water was better,and the nutrition elements was increased.Moreover,it could significantly increased the plant height,stem diameter,leaf number,leaf area,leaf fresh weight and so on,as well as expanded the lily roots and significantly improved the rate of cut flower and cut flower quality.[Conclusion] This study had provided theoretically basis for the cultivation of cut lily.
文摘Purpose: We studied the drug resistance of different microbes from clinical isolates. The morphological characteristics of bacteria were observed through culture characteristics and by carrying out gram staining techniques while the biochemical characteristics of bacteria were carried out by biochemical test. Methods: A total of 324 samples were collected from suspected patients visiting different hospitals at district Peshawar. For morphological identification, samples of clinical isolates were analyzed by blood agar, MacConkey agar and Eosine Methylene Blue, identified by gram staining and characterized by different biochemical tests. Antibiotic Sensitivity test by Modified Kirby-Bauer Disc diffusion method was used to test the in-vitro susceptibility of the identified isolates to different antibiotics such as Ceftazidime, Ceftazidime, Ceftriaxone, Cefepime and Imipenem. Results: These resistant non-lactose fermenting gram negative bacteria were isolated from samples of pus/wound (33.30%, n = 108/324), blood (33.30%, n = 108/324), urine (23.30%, n = 75/324) and from ascetic/pleural fluids (10.20%, n = 33/324). The study revealed that the percentage of non-fermenting bacterial infection was higher in females (53%) as compared to males (47%) along with higher infection observed in the age group of 11 - 30 years. Pseudomonas aeroginosa showed high resistance against Cefepime (88.80%), followed by Cefoperazone (55.50%), Ceftazidime (48.10%), Ceftriaxone (33.30%). Imipenem was active with low resistance (7.40%). More resistance was seen in Morganella morganii against Imipenem (66.70%) followed by Cefoperazone (55.50%), Ceftriaxone (55.50%). Cefepime showed low resistance (11%). Multi-drug resistant Proteus mirabillis was highly resistance to Ceftriaxone (74.07%), followed by Cefepime (59.20%), Cefoperazone (44.40%) and low resistance for Imipenem (25.90%). Salmonella typhi demonstrated high resistance against Imipenem (74.07%), followed by Ceftriaxone (40.70%), Ceftazidime (37.03%). Cefepime showed low resistance (3.70%), hence it is more active against S. typhi. Conclusions: The different species of non-lactose fermenting gram negative bacteria have shown a different resistivity pattern in the present study. Therefore identification of non-lactose fermenting gram negative bacteria and looking after their resistivity/susceptibility pattern are important for suitable management of the infections caused by them.
文摘The present study was conducted to determine the pro-biotic properties in vitro of the lactic acid bacteria isolated from spontaneously fermenting kunu-zaki. Kunu-zaki was processed using composite, non composite, germinated and ungerminated Digitaria exilis (Fonio), Sorghum bicolor (Sorghum) and Pennisetum americanum (Millet) cereals. A total of 150 LAB isolates were obtained from all the fermenting slurries. These 150 LAB isolates were screened for their ability to grow at pH 3.0, resistance against bile salt and ability to inhibit reference test pathogens. Out of these 150 LAB isolates;21 exhibited good probiotic properties. All the 21 isolates were further identified to specie and subspecies level using standard API50CHL system with all 21 showing good survival (P < 0.05) in a pH 3.0 buffered medium and subsequent resistance to 0.3% bile. The LAB isolates which survived these conditions consisted of 18 Lactobacillus species, 2 Pediococcus species and 1 Lactococcus specie. These LAB species were further examined for antimicrobial activity against the growth of reference pathogens Staphylococcus aureus 25923, Escherichia coli 25922, Pseudomonas aeruginosa 27853 and Enterococcus faecalis 29212. All 21 LAB species exhibited good inhibition of all test reference pathogens except Lactobacillus fructivorans, Lactococcus lactis sp lactis and L. fermentum which however, showed no zone of inhibition against the growth of E. faecalis. Kunu-zaki made from composite un-germinated Sorghum bicolor (Sorghum) and Pennisetum americanum (Millet) cereal grains contained the highest percentage (52%) of LAB species which showed good probiotic criteria in vitro. Non composite ungerminated cereals accounted for 33% of the total probiotic LAB isolates whilst the germinated non composite and composite cereals recorded the lowest percentage (10%) and (5%) of probiotic LAB respectively. The results of this research study showed that the LAB species isolated from wild fermentation of kunu-zaki beverage fulfilled the criteria for in vitro screening of probiotic characteristics. These LAB species possed potential for further use as probiotic in human preparations and suggested the use of kunu-zaki made from ungerminated composite sorghum and millet grains as a natural probiotic drink.
基金This paper is sponsored by National Nature Science Foundation of China(NSFC).
文摘Despite of the fact that knowledge management has become the focus of current literature and management practice, the core process of knowledge has. not been identified. After comparing the pl:ocess of knowledge movement and that of fermenting, we put forward a new model-knowledge fermenting model. In this paper, we thoroughly analyze the element of knowledge fermenting model, and show how knowledge increase is realized through that model.
基金This research has been sponsored by National Natural Science Foundation of China (NSFC) (No.70272044) and Ph. D Research Fund (No, 20030056014).
文摘Despite of the fact that knowledge sharing has become the focus of current literature and management practice, the core process of knowledge sharing has not been identified. What are the main barriers and incentives for people to share their knowledge, what is the internal mechanism of knowledge sharing, and how people evaluate the benefit coming from knowledge sharing are the core areas in knowledge management. In this paper, we reexamine the knowledge sharing based on knowledge convening and fermenting model. After comparing the process of knowledge movement with that of biotic fermenting, several important attributes that knowledge owns are discovered, they are existence of origination, inheritance and variation, the need of assembly for knowledge evolution and medium for knowledge assemblage. Furthermore, the authors put forward a new model--knowledge convening and fermenting model and in this way consider knowledge sharing as a process of knowledge fermenting. The authors thoroughly analyze the biotic attributes of knowledge, the elements of knowledge share fermenting model, and typical knowledge share fermenting.
基金financially supported by the National High Technology Research and Development Program,China(2012AA10A412)the National Natural Science Foundation of China(No.31202016)+2 种基金the National Key Technology R&D Program(2012BAD17B03)Agriculture Seed Improvement Project of Shandong Province,Special Funds for Technology R&D Program in Research Institutes(2011EG134219)Strategic Emerg-ing Industry Cultivation Project of Qingdao(13-4-1-65-hy)
文摘The effects of different microbes on fermenting feed for sea cucumber (Apostichopus japonicus) were compared to select the optimal fermentation strain in this study. Saccharomgces cerevisae, Candida utilis, Bacillus subtilis and Geotrichum candidum were independently added into the experimental compound feed, while only saline was mixed with the control feed. The fermentation treatments were inoculated with 10% seed solution under the condition of 25 ~C and 70% water content, which lasted for 5 days to elucidate the optimal microbe strain for fermenting effect. Physicochemical indexes and sensorial characteristics were measured per day during the fermentation. The indexes included dry matter recovery (DMR), crude protein (CP), the percentage of amino acid nitrogen to total nitrogen (AA-N/tN), the percentage of ammonia nitrogen to total nitrogen (NH3-N/tN), and the ratio of fermentation strains and vibrios to the total microbes, color, smell and viscosity. The results showed that DMR, CP and AA-N/tN of the S. cerevisae group reached the highest level on day 3, but the ratio of fermentation strain was second to C. utilis group. In addition, its NH3-N/tN and the ratio of vibrios were maintained at low levels, and the sensory evaluation score including smell, color and viscosity was the highest in S. cerevisae group on day 3. Therefore, S. cerevisae could be the optimal strain for the feed fermentation for sea cucumber. This research developed a new production method of fermentation feed for sea cucumber.
文摘The Kingdom of Saudi Arabia produces over one million metric tons annually, which returns a 20% of wasted dates annually. Lactic acid and its derivatives are widely used in food, pharmaceutical and textile industries. There has been an increase in lactic acid production because it is used as a raw material to produce polylactic acid, a polymer that is used as a special medical and environmental friendly biodegradable plastic. This study aimed to use wasted dates to produce lactic acid by single culture Lactobacillus casei (ATCC 393), Lactobacillus acidophilus (CICC 6088) and the mixed culture using batch fermentation. The investigation results showed that the maximum concentration of lactic acid for ATCC 393, CICC 6088 and the mixed culture are 87, 84 and 84 g/l respectively. For single CICC 6088 and the mixed culture, the total percentage of glucose and fructose utilized was found to be 100%;76%, respectively, whereas in the case of the single culture ATCC 393, the total percentage of glucose and fructose were 100% and 72%, respectively. With regard to lactic acid concentration, and sugar consumption, the results revealed that the single culture ATCC 393 produced the optimum lactic acid of 87 g/l for 48 hr with initial sugar concentration of 90 g/l.
文摘BACKGROUND:Breast hyperplasia is a common benign breast disease mainly caused by endocrine disorders,manifested as abnormal hyperplasia of breast tissue.In recent years,traditional Chinese medicine compounds and probiotics have shown good potential in regulating the endocrine system and improving the intestinal microecology,providing new ideas for the treatment of breast hyperplasia.OBJECTIVE:To explore the effects and mechanisms of traditional Chinese medicine compounds and fermented probiotic compounds on breast hyperplasia in mice,providing new theoretical and experimental bases for the clinical treatment and prevention of breast hyperplasia.METHODS:(1)Network pharmacology tools were used to predict the anti-breast-hyperplasia activity of Herba Gueldenstaedtiae(Euphorbia humifusa),as well as its potential targets and signaling pathways.The databases included:TCMSP,OMIM,GeneCards database,UniProt website,Venny2.1.0 website,Metascape,HERB website,and STRING database,all of which are open-access databases.Network pharmacology can predict and screen key information such as the targets corresponding to the active ingredients of traditional Chinese medicine,disease targets,and action pathways through network analysis and computer-system analysis.Therefore,it has been increasingly widely used in the research of traditional Chinese medicine.(2)A breast hyperplasia model was induced in mice by injecting estrogen and progesterone.Mice in the normal blank group were injected intraperitoneally with normal saline every day.Mice in the model group and drugadministration groups were injected intraperitoneally with estradiol benzoate injection at a concentration of 0.5 mg/kg every day for 25 days.From the 26th day,the injection of estradiol benzoate injection was stopped.Mice in the normal blank group were injected intramuscularly with normal saline every day,and mice in the model group and drug-administration groups were injected intramuscularly with progesterone injection at a concentration of 5 mg/kg for 5 days.After the model was established,each group was given drugs respectively.The normal blank group and the model group were gavaged with 0.2 mL/d of normal saline;the positive blank group(Xiaozheng Pill group)was gavaged with an aqueous solution of Xiaozheng Pill at 0.9 mg/g;the low-,medium-and high-dose groups of Compound Herba Gueldenstaedtiae were gavaged with an aqueous solution of the compound medicine at 0.75,1.5,and 3.0 mg/(g·d)respectively;the low-,medium-and high-dose groups of traditional Chinese medicine-bacteria fermentation were gavaged with an aqueous solution of the compound medicine at 0.75,1.5,and 3.0 mg/(g·d)respectively.The administration was continuous for 30 days.RESULTS AND CONCLUSION:(1)The results of network pharmacology research showed that the Compound Herba Gueldenstaedtiae(Euphorbia humifusa)contained 46 active ingredients,which were related to 1213 potential targets.After comparison with 588 known breast-hyperplasia targets,it was speculated that 50 of these targets might be related to the direct effect of the compound on breast hyperplasia.(2)After drug intervention,there was no significant change in the high-dose group of Compound Herba Gueldenstaedtiae compared with the normal blank group.The liver indicators of the other intervention groups all significantly decreased(P<0.05).(3)In terms of kidney and uterine indicators,the medium-dose group of Compound Herba Gueldenstaedtiae decreased significantly compared with the normal blank group(P<0.05).In terms of the uterine index,the model group increased significantly compared with the normal blank group(P<0.01).(4)After 1-month drug treatment,the number of lobules and acini in the breast tissue of the Xiaozheng Pill group,the low,medium,and high-dose group of Compound Herba Gueldenstaedtiae,the low,medium,and highdose groups of traditional Chinese medicine-bacteria fermentation decreased,and the duct openings narrowed.With the increase of drug dose,diffuse hyperplasia of breast tissue was significantly improved.(5)The ELISA results showed that compared with the model group,the estrogen level was lower in the medium-dose group of traditional Chinese medicine-bacteria fermentation after the intervention(P<0.05).In addition,the follicle-stimulating hormone level in the low-dose group of Compound Herba Gueldenstaedtiae was lower than that of the model group(P<0.05).(6)The intervention in the mouse model led to changes in the abundance of short chain fatty acids and intestinal flora in all groups.To conclude,the Compound Herba Gueldenstaedtiae and its probiotic fermentation products significantly improved mammary gland hyperplasia in mice by regulating hormone levels,improving the structure of the gut microbiota,and increasing the content of shortchain fatty acids,providing new ideas and potential sources of drugs for the treatment of breast hyperplasia.
文摘This study aims to amend nitrite-free fermented sausage texture already produced in our laboratory using microencapsulation of fermenting probiotic bacteria Lactobacillus plantarum PTCC1896 and Lactobacillus fermentum PTCC1744 (CNF treatment) and taking place physical, chemical, and microbial analyzes in comparison with cooked fermented sausages containing 120 ppm nitrite and aforementioned microencapsulated bacteria (CN treatment) and uncooked fermented sausages containing 120 ppm sodium nitrite and free bacteria (N treatment). Different percentages of sodium alginate, inulin and maltodextrin were used to evaluate the viability of bacteria. Combination of sodium alginate 1%, inulin 3% and maltodextrin 3% (w/v each) for L. plantarum PTCC1896 and sodium alginate 1%, inulin 5%, and maltodextrin 10% (w/v each) for L. fermentum PTCC1744 showed the most protective effects. The results of colorimetry showed that the mentioned bacteria could produce the desired red color of the sausage. The moisture content of cooked samples was significantly different from N treatment (p < 0.05). The pH of all treatments was within the desired range of microbial stability. The texture and microbial evaluation results showed that cooked treatments have better texture properties and lower microbial load during storage (p < 0.05). Considering the effects of cooking on the texture of sausage, the appropriate survival of microencapsulated bacteria and comparing the analyzes of the three treatments, the absence of nitrite and replacing it with the mentioned bacteria had no adverse effects and brought desirable results. Therefore, it is possible to produce nitrite-free probiotic fermented sausage with suitable organoleptic properties by cooking fermented sausage.
文摘To investigate the in vitro digestion and fermentation properties of soybean oligosaccharides(SBOS)extracted from defatted soybean meal,the changes in monosaccharide composition and molecular mass were analyzed.Subsequently,the effect of SBOS on microbial community structure and metabolites was studied by 16S rRNA gene sequencing and untargeted metabolomics based on liquid chromatography-mass spectrometry.Results showed that SBOS was not easily enzymolyzed during simulated digestion and could reach the large intestine through the digestive system.The significant decrease in the molecular mass of SBOS after in vitro fermentation indicated its utilization by the gut microbiota,which increased the contents of short-chain fatty acids and lactic acid,thereby reducing the pH of the fermentation broth.Moreover,the core community was found to consist of Blautia,Lactobacillaceae,and Pediococcus.SBOS up-regulated beneficial differential metabolites such as myo-inositol,lactose,and glucose,which were closely related to galactose,amino sugar,and nucleotide sugar metabolism.This study will provide a reference for exploring the relationship between the gut microbiota and the metabolites of SBOS,and provide a basis for the development and application of SBOS as an ingredient for functional products.
基金supported by the National Key R&D Program of China(2022YFE0111000-2)。
文摘Greenhouse gas(GHG)production during ensiling not only causes the nutrient losses of silage but also promotes climate warming.However,there is little information on the production of GHG and strategies for mitigating GHG emissions during ensiling.This work aimed to study the gas production characteristics and techniques for reducing gas emissions during ensiling.Oats and triticale,with Lactiplantibacillus plantarum(LP)or corn meal(CM)addition,were ensiled.The cumulative gas volume rapidly increased and reached to the peak within the first 9 d of ensiling for both forage crops.The highest cumulative gas volume of triticale silage was twice as much as that of oats silage.Triticale silage produced lower carbon dioxide(CO_(2))concentration,higher methane(CH_(4))and nitrous oxide(N_(2)O)concentrations than oats silage within the 28 d of ensiling.Adding LP or CM significantly improved the fermentation quality and decreased the gas volume and GHG concentrations of 2 silages on d 56(except CH_(4)of triticale).At the early stage of ensiling,more Enterobacter,Lactococcus and Leuconostoc related to gas production were observed,and adding LP increased the abundance of Lactobacillus and decreased the abundance of bacteria like Kosakonia,Pantoea,Enterobacter and Lactococcus positively correlated with gas volume,CO_(2)and N_(2)O concentrations.These results suggest that gas formation during ensiling mainly occurs in the first 9 d.Adding LP or CM can significantly improve the fermentation quality and decrease the gas volume.This would benefit to reducing GHG emissions in silage production.
基金supported by the National Key Research and Development Program(No.2021YFD1300201)Jilin Provincial Department of Science and Technology Innovation Platform and Talent Special Project(No.20230508090RC).
文摘Background There is a growing focus on using various plant-derived agricultural by-products to increase the benefits of pig farming,but these feedstuffs are fibrous in nature.This study investigated the relationship between dietary fiber physicochemical properties and feedstuff fermentation characteristics and their effects on nutrient utilization,energy metabolism,and gut microbiota in growing pigs.Methods Thirty-six growing barrows(47.2±1.5 kg)were randomly allotted to 6 dietary treatments with 2 apparent viscosity levels and 3β-glucan-to-arabinoxylan ratios.In the experiment,nutrient utilization,energy metabolism,fecal microbial community,and production and absorption of short-chain fatty acid(SCFA)of pigs were investigated.In vitro digestion and fermentation models were used to compare the fermentation characteristics of feedstuffs and ileal digesta in the pig’s hindgut.Results The production dynamics of SCFA and dry matter corrected gas production of different feedstuffs during in vitro fermentation were different and closely related to the physical properties and chemical structure of the fiber.In animal experiments,increasing the dietary apparent viscosity and theβ-glucan-to-arabinoxylan ratios both increased the apparent ileal digestibility(AID),apparent total tract digestibility(ATTD),and hindgut digestibility of fiber components while decreasing the AID and ATTD of dry matter and organic matter(P<0.05).In addition,increasing dietary apparent viscosity andβ-glucan-to-arabinoxylan ratios both increased gas exchange,heat production,and protein oxidation,and decreased energy deposition(P<0.05).The dietary apparent viscosity andβ-glucanto-arabinoxylan ratios had linear interaction effects on the digestible energy,metabolizable energy,retained energy(RE),and net energy(NE)of the diets(P<0.05).At the same time,the increase of dietary apparent viscosity andβ-glucan-to-arabinoxylan ratios both increased SCFA production and absorption(P<0.05).Increasing the dietary apparent viscosity andβ-glucan-to-arabinoxylan ratios increased the diversity and abundance of bacteria(P<0.05)and the relative abundance of beneficial bacteria.Furthermore,increasing the dietaryβ-glucan-to-arabinoxylan ratios led to a linear increase in SCFA production during the in vitro fermentation of ileal digesta(P<0.001).Finally,the prediction equations for RE and NE were established.Conclusion Dietary fiber physicochemical properties alter dietary fermentation patterns and regulate nutrient utilization,energy metabolism,and pig gut microbiota composition and metabolites.
基金financially supported by the National Key Research and Development Program of China(2023YFD2000701)the Natural Science Foundation of Heilongjiang Province,China(YQ2023C011)+1 种基金the Key Research and Development Program of Heilongjiang Province,China(Grant no.2022ZX01A24)the Key Laboratory of Low-carbon Green Agriculture in Northeastern China,Ministry of Agriculture and Rural Affairs of China(LCGANE14)。
文摘As a major contributor to methane production in agriculture,there is a need for a suitable methane inhibitor to reduce ruminant methane emissions and minimize the impact on the climate.This work aimed to explore the influence of cordycepin on rumen fermentation,gas production,microbiome and their metabolites.A total of 0.00,0.08,0.16,0.32,and 0.64 g L^(–1)cordycepin were added into fermentation bottles containing 2 g total mixed ration for in vitro ruminal fermentation,and then the gas produced and fermentation parameters were measured for each bottle.Samples from the 0 and 0.64 g L^(–1)cordycepin addition were selected for 16S rRNA gene sequencing and metabolome analysis.The result of this experiment indicated that the addition of cordycepin could linearly increase the concentration of total volatile fatty acid,ammonia nitrogen,the proportion of propionate,valerate,and isovalerate,and linearly reduce ruminal pH and methane,carbon dioxide,hydrogen and total gas production,as well as the methane proportion,carbon dioxide proportion and proportion of butyrate.In addition,there was a quadratic relationship between hydrogen and cordycepin addition.At the same time,the relative abundance of Succiniclasticum,Prevotella,Rikenellaceae_RC9_gut_group,NK4A214_group,Christensenellaceae_R_(7)_group,unclassified_F082,Veillonellaceae_UCG_001,Dasytricha,Ophryoscolex,Isotricha,unclassified_Eukaryota,Methanobrevibacter,and Piromyces decreased significantly after adding the maximum dose of cordycepin.In contrast,the relative abundance of Succinivibrio,unclassified_Succinivibrionaceae,Prevotellaceae_UCG_001,unclassified_Lachnospiraceae,Lachnospira,Succinivibrionaceae_UCG_002,Pseudobutyrivibrio,Entodinium,Polyplastron,unclassified_Methanomethylophilaceae,Methanosphaera,and Candidatus_Methanomethylophilus increased significantly.Metabolic pathways such as biosynthesis of unsaturated fatty acids and purine metabolism and metabolites such as arachidonic acid,adenine,and 2′-deoxyguanosine were also affected by the addition of cordycepin.Based on this,we conclude that cordycepin is an effective methane emission inhibitor that can change the rumen metabolites and fermentation parameters by influencing the rumen microbiome,thus regulating rumen methane production.This experiment may provide a potential theoretical reference for developing Cordyceps byproduct or additives containing cordycepin as methane inhibitors.
文摘In this work, Staphylococcus epidermidis (S. epidermidis) was used to prepare the fermentation broths with antioxidant activity. Through the optimization of the carbon source, three kinds of S. epidermidis fermentation broth were obtained and designated as SFB, Gly-SFB, and Glu-SFB, which were cultivated in beef protein medium and the beef protein medium supplemented with glycerol or glucose, respectively. The differences in antioxidant efficacy of SFB, Gly-SFB and Glu-SFB were investigated by evaluating intracellular ROS fluorescence intensity, SOD enzyme activity and MDA concentration. Gly-SFB and Glu-SFB exhibited a greater capacity to eliminate ROS as compared to that of SFB. The intracellular SOD enzyme activity increased as the concentrations of SFB and Gly-SFB increased. Nevertheless, the intracellular SOD enzyme activity was the highest after the treatment with Glu-SFB at the low concentrations. The intracellular MDA content reached a lower value after the treatment with Gly-SFB and Glu-SFB at lower concentrations, which was opposite to the case after the treatment with SFB. WB indicated that the S. epidermidis fermentation broth regulated the expression of relevant proteins in the Nrf2-Keap1 signaling pathway to exhibit the antioxidant effects. This indicates that the S. epidermidis fermentation broth promotes the expression of relevant proteins in the Nrf2-Keap1 signaling pathway, consequently, antioxidant benefits were exerted. The fermentation broth that were prepared by incorporating glycerol or glucose into the culture medium can augment their antioxidant activity.
基金supported by the Special Project of Basic Scientific Research Business of Central Public Welfare Scientific Research Institutes (No.2019YSKY-027).
文摘Erythromycin fermentation residue(EFR)represents a typical hazardous waste produced by the microbial pharmaceutical industry.Although electrolysis is promising for EFR disposal,its microbial threats remain unclear.Herein,metagenomics was coupled with the random forest technique to decipher the antibiotic resistance patterns of electrochemically treated EFR.Results showed that 95.75%of erythromycin could be removed in 2 hr.Electrolysis temporarily influenced EFRmicrobiota,where the relative abundances of Proteobacteria and Actinobacteria increased,while those of Fusobacteria,Firmicutes,and Bacteroidetes decreased.A total of 505 antibiotic resistance gene(ARG)subtypes encoding resistance to 21 antibiotic types and 150 mobile genetic elements(MGEs),mainly including plasmid(72)and transposase(52)were assembled in EFR.Significant linear regression models were identified among microbial richness,ARG subtypes,and MGE numbers(r^(2)=0.50-0.81,p<0.001).Physicochemical factors of EFR(Total nitrogen,total organic carbon,protein,and humus)regulated ARG and MGE assembly(%IncMSE value=5.14-14.85).The core ARG,MGE,and microbe sets(93.08%-99.85%)successfully explained 89.71%-92.92%of total ARG and MGE abundances.Specifically,gene aph(3 )-I,transposase tnpA,and Mycolicibacterium were the primary drivers of the resistance dissemination system.This study also proposes efficient resistance mitigation measures,and provides recommendations for future management of antibiotic fermentation residue.
文摘Objective:When the skin is exposed to external stimuli such as ultraviolet radiation,it can lead to dryness and sensitivity,highlighting the importance of skincare.Maintaining skin homeostasis for healthy complexion requires not only controlling the inflammatory response,but also protecting the skin barrier.The study aimed to explore the potential of fermented oats(FO)as an innovative ingredient in skin care products,focusing on its capacity to alleviate inflammation and repair the skin barrier.Methods:The present study aimed to characterize the active composition and skin care effects of FO,which underwent enzymatic hydrolysis followed by fermentation with Saccharomyces cerevisiae.To evaluate the antiinflammatory properties of FO,we performed experiments to inhibit TNF-α/TNFR1 binding,nitric oxide(NO)release in RAW264.7 macrophage cells and neutrophil aggregation in zebrafish embryos.Additionally,the study evaluated the secretion of inflammatory factors,skin barrier function and moisturizing effects using a UVBirradiated skin model as a surrogate for photodamaged skin.Results:This study reveals that the fermentation process involving Saccharomyces cerevisiae significantly enhances amino acids and their derivatives in FO.Specifically,β-glucan,total protein,and flavonoids in FO increased by 14.78%,39.13%,and 600%,respectively.FO achieved a 79.87%inhibition rate of TNF-α/TNFR1 binding.It also reduced lipopolysaccharide(LPS)-induced NO release in RAW264.7 cells and inhibited neutrophil recruitment in zebrafish embryos.In a capsaicin(CAP)-stimulated skin model,3.5%FO suppressed TRPV1 expression.In a UVB-irradiated 3D skin model,FO decreased the secretion of pro-inflammatory cytokines(IL-1α,IL-6,COX2,NF-κB)and significantly upregulated loricrin(128.57%),filaggrin(336.36%),transglutaminase 1(70.97%),and caspase-14(217.65%).Additionally,FO enhanced moisturizing efficacy by increasing skin moisture content and AQP3 levels.Conclusion:As a novel fermentation ingredient,FO inhibits the expression of inflammatory factors,improves skin tissue morphology,and enhances hydration,achieving multi-faceted soothing and repairing effects.These findings suggest that Saccharomyces cerevisiae-fermented oat extracts hold promise as an innovative ingredient with anti-inflammatory and skin-protective benefits.
基金Supported by Shanghai Putuo District R&D Platform Project(2024QX04).
文摘[Objectives]To explore the effects of fermentation process on the content and functions of flavonoids in Gardenia jasminoides.[Methods]G.jasminoides was fermented by microorganisms,and the fermentation process of total flavonoids from G.jasminoides was optimized,and the antioxidant activity and hyaluronidase inhibitory activity of the fermentation broth were tested.[Results]The best strain for fermentation of total flavonoids in G.jasminoides was Bacillus subtilis.The optimum fermentation conditions were as follows:the solid-liquid ratio was 1:30,the inoculation amount was 2%,and the fermentation time was 24 h.Under these fermentation conditions,the content of total flavonoids in G.jasminoides reached 36.90 mg/g,which was 45.22%higher than that of the control group without microbial fermentation,and it had good DPPH free radical and hydroxyl free radical scavenging ability,and the inhibition ability of hyaluronidase after fermentation was also improved.[Conclusions]This study provides a technical reference for the comprehensive application of G.jasminoides.
基金support from the following foundations:the National Natural Science Foundation of China(62322309,62433004)Shanghai Science and Technology Innovation Action Plan(23S41900500)Shanghai Pilot Program for Basic Research(22TQ1400100-16).
文摘Accurate fault root cause diagnosis is essential for ensuring stable industrial production. Traditional methods, which typically rely on the entire time series and overlook critical local features, can lead to biased inferences about causal relationships, thus hindering the accurate identification of root cause variables. This study proposed a shapelet-based state evolution graph for fault root cause diagnosis (SEG-RCD), which enables causal inference through the analysis of the important local features. First, the regularized autoencoder and fault contribution plot are used to identify the fault onset time and candidate root cause variables, respectively. Then, the most representative shapelets were extracted to construct a state evolution graph. Finally, the propagation path was extracted based on fault unit shapelets to pinpoint the fault root cause variable. The SEG-RCD can reduce the interference of noncausal information, enhancing the accuracy and interpretability of fault root cause diagnosis. The superiority of the proposed SEG-RCD was verified through experiments on a simulated penicillin fermentation process and an actual one.