The acquisition,tracking,and pointing(ATP)system is widely used in target tracking,counter-UAV operations,and other related fields.As UAV technology develops,there is a growing demand to enhance the tracking capabilit...The acquisition,tracking,and pointing(ATP)system is widely used in target tracking,counter-UAV operations,and other related fields.As UAV technology develops,there is a growing demand to enhance the tracking capabilities of ATP systems.However,in practical applications,ATP systems face various design constraints and functional limitations,making it infeasible to indefinitely improve hardware performance to meet tracking requirements.As a result,tracking algorithms are required to execute increasingly complex tasks.This study introduces a multi-rate feedforward predictive controller to address issues such as low image feedback frequency and significant delays in ATP systems,which lead to tracking jitter,poor tracking performance,low precision,and target loss.At the same time,the pro-posed approach aims to improve the tracking capabilities of ATP systems for high-speed and highly maneuverable targets under conditions of low sampling feedback rates and high feedback delays.The method suggested is also characterized by its low order,fast response,and robustness to model parameter variations.In this study,an actual ATP system is built for target tracking test,and the proposed algorithm is fully validated in terms of simulation and actual system application verification.Results from both simulations and experiments demonstrate that the method effectively compensates for delays and low sampling rates.For targets with relative angular velocities ranging from 0 to 90°/s and angular accelerations between 0 and 470°/s^(2),the system improved tracking accuracy by 70.0%-89.9%at a sampling frequency of 50 Hz and a delay of 30 m s.Moreover,the compensation algorithm demonstrated consistent performance across actuators with varying characteristics,further confirming its robustness to model insensitivity.In summary,the proposed algorithm considerably enhances the tracking accuracy and capability of ATP systems for high-speed and highly maneuverable targets,reducing the probability of target loss from high speed.This approach offers a practical solution for future multi-target tracking across diverse operational scenarios.展开更多
In order to compensate for the disturbance of wide variation in rotor demanded torque on power turbine speed and realize the fast response control of turboshaft engine during variable rotor speed,a cascade PID control...In order to compensate for the disturbance of wide variation in rotor demanded torque on power turbine speed and realize the fast response control of turboshaft engine during variable rotor speed,a cascade PID control method based on the acceleration estimator of gas turbine speed(Ngdot)and rotor predicted torque feedforward is proposed.Firstly,a two-speed Dual Clutch Transmission(DCT)model is applied in the integrated rotor/turboshaft engine system to achieve variable rotor speed.Then,an online estimation method of Ngdot based on the Linear Quadratic Gaussian with Loop Transfer Recovery(LQG/LTR)is proposed for power turbine speed cascade control.Finally,according to the cascade PID controller based on Ngdot estimator,a rotor demanded torque predicted method based on the Min-batch Gradient Descent-Neural Network(MGD-NN)is put forward to compromise the influence of rotor torque interference.The simulation results show that compared with cascade PID controller based on Ngdot estimator and the one combined with collective pitch feedforward control,the novel control method proposed can reduce the overshoot of power turbine speed by more than 20%,which possesses faster response,superior dynamic effect and satisfactory robustness performance.The control method proposed can realize the fast response control of turboshaft engine with variable rotor speed better.展开更多
基金supported by the National Natural Science Foun-dation of China(Grant No.52275099).
文摘The acquisition,tracking,and pointing(ATP)system is widely used in target tracking,counter-UAV operations,and other related fields.As UAV technology develops,there is a growing demand to enhance the tracking capabilities of ATP systems.However,in practical applications,ATP systems face various design constraints and functional limitations,making it infeasible to indefinitely improve hardware performance to meet tracking requirements.As a result,tracking algorithms are required to execute increasingly complex tasks.This study introduces a multi-rate feedforward predictive controller to address issues such as low image feedback frequency and significant delays in ATP systems,which lead to tracking jitter,poor tracking performance,low precision,and target loss.At the same time,the pro-posed approach aims to improve the tracking capabilities of ATP systems for high-speed and highly maneuverable targets under conditions of low sampling feedback rates and high feedback delays.The method suggested is also characterized by its low order,fast response,and robustness to model parameter variations.In this study,an actual ATP system is built for target tracking test,and the proposed algorithm is fully validated in terms of simulation and actual system application verification.Results from both simulations and experiments demonstrate that the method effectively compensates for delays and low sampling rates.For targets with relative angular velocities ranging from 0 to 90°/s and angular accelerations between 0 and 470°/s^(2),the system improved tracking accuracy by 70.0%-89.9%at a sampling frequency of 50 Hz and a delay of 30 m s.Moreover,the compensation algorithm demonstrated consistent performance across actuators with varying characteristics,further confirming its robustness to model insensitivity.In summary,the proposed algorithm considerably enhances the tracking accuracy and capability of ATP systems for high-speed and highly maneuverable targets,reducing the probability of target loss from high speed.This approach offers a practical solution for future multi-target tracking across diverse operational scenarios.
基金co-supported by the National Natural Science Foundation of China,China(Nos.51576096 and 51906102)Qing Lan and 333 Project,the Fundamental Research Funds for the Central Universities,China(No.NT2019004)+3 种基金National Science and Technology Major Project China(No.2017-V-0004-0054)Research on the Basic Problem of Intelligent Aero-engine,China(No.2017-JCJQ-ZD-04721)China Postdoctoral Science Foundation Funded Project,China(No.2019M661835)Aeronautics Power Foundation,China(No.6141B09050385)。
文摘In order to compensate for the disturbance of wide variation in rotor demanded torque on power turbine speed and realize the fast response control of turboshaft engine during variable rotor speed,a cascade PID control method based on the acceleration estimator of gas turbine speed(Ngdot)and rotor predicted torque feedforward is proposed.Firstly,a two-speed Dual Clutch Transmission(DCT)model is applied in the integrated rotor/turboshaft engine system to achieve variable rotor speed.Then,an online estimation method of Ngdot based on the Linear Quadratic Gaussian with Loop Transfer Recovery(LQG/LTR)is proposed for power turbine speed cascade control.Finally,according to the cascade PID controller based on Ngdot estimator,a rotor demanded torque predicted method based on the Min-batch Gradient Descent-Neural Network(MGD-NN)is put forward to compromise the influence of rotor torque interference.The simulation results show that compared with cascade PID controller based on Ngdot estimator and the one combined with collective pitch feedforward control,the novel control method proposed can reduce the overshoot of power turbine speed by more than 20%,which possesses faster response,superior dynamic effect and satisfactory robustness performance.The control method proposed can realize the fast response control of turboshaft engine with variable rotor speed better.