期刊文献+
共找到3,544篇文章
< 1 2 178 >
每页显示 20 50 100
基于前馈DMC-PID的SCR脱硝系统串级预测控制
1
作者 丛日学 刘宗奇 陈立军 《吉林电力》 2025年第1期5-10,30,共7页
针对选择性催化还原(Selective Catalytic Reduction,SCR)脱硝系统优化控制问题,利用粒子群算法进行全工况系统辨识;基于动态矩阵控制(Dynamic Matrix Control,DMC)理论提出了一种带前馈的全工况DMC-PID串级控制策略,并搭建前馈DMC-PID... 针对选择性催化还原(Selective Catalytic Reduction,SCR)脱硝系统优化控制问题,利用粒子群算法进行全工况系统辨识;基于动态矩阵控制(Dynamic Matrix Control,DMC)理论提出了一种带前馈的全工况DMC-PID串级控制策略,并搭建前馈DMC-PID控制框架。仿真结果显示,该方法超调更小,调节速度更快,优于其他控制,尤其在低工况下效果更为明显;同时在扰动实验中,也验证了该方法较强的抗干扰能力,可以实现SCR脱硝系统优化控制。 展开更多
关键词 SCR脱硝系统 前馈dmc-pid 全工况模型 串级预测控制
在线阅读 下载PDF
A DDPG-based Path Following Control Strategy for Autonomous Vehicles by Integrated Imitation Learning and Feedforward Exploration
2
作者 Qianjie Liu Peixiang Xiong +4 位作者 Qingyuan Zhu Wei Xiao Kejie Wang Guoliang Hu Gang Li 《Chinese Journal of Mechanical Engineering》 2025年第5期207-223,共17页
Autonomous driving technology is constantly developing to a higher level of complex scenes,and there is a growing demand for the utilization of end-to-end data-driven control.However,the end-to-end path tracking proce... Autonomous driving technology is constantly developing to a higher level of complex scenes,and there is a growing demand for the utilization of end-to-end data-driven control.However,the end-to-end path tracking process often encounters challenges in learning efficiency and generalization.To address this issue,this paper designs a deep deterministic policy gradient(DDPG)-based reinforcement learning strategy that integrates imitation learning and feedforward exploration in the path following process.In imitation learning,the path tracking control data generated by the model predictive control(MPC)method is used to train an end-to-end steering control model of a deep neural network.Another feedforward exploration behavior is predicted by road curvature and vehicle speed,and adds it and imitation learning to the DDPG reinforcement learning to obtain decision-making experience and action prediction behavior of the path tracking process.In the reinforcement learning process,imitation learning is used to update the pre-training parameters of the actor network,and a feedforward steering technique with random noise is adopted for strategy exploration.In the reward function,a hierarchical progressive reward form and a constrained objective reward function referring to MPC are designed,and the actor-critic network architecture is determined.Finally,the path tracking performance of the designed method is verified by comparing various training results,simulations,and HIL tests.The results show that the designed method can effectively utilize pre-training and feedforward prior experience to obtain optimal path tracking performance of an autonomous vehicle,and has better generalization ability than other methods.This study provides an efficient control scheme for improving the end-to-end control performance of autonomous vehicles. 展开更多
关键词 Autonomous vehicle Path following feedforward exploration Reinforcement learning
在线阅读 下载PDF
Application of feedforward and recurrent neural networks for model-based control systems
3
作者 Marek Krok Wojciech P.Hunek +2 位作者 Szymon Mielczarek Filip Buchwald Adam Kolender 《Control Theory and Technology》 2025年第1期91-104,共14页
In this paper,a new study concerning the usage of artificial neural networks in the control application is given.It is shown,that the data gathered during proper operation of a given control plant can be used in the l... In this paper,a new study concerning the usage of artificial neural networks in the control application is given.It is shown,that the data gathered during proper operation of a given control plant can be used in the learning process to fully embrace the control pattern.Interestingly,the instances driven by neural networks have the ability to outperform the original analytically driven scenarios.Three different control schemes,namely perfect,linear-quadratic,and generalized predictive controllers were used in the theoretical study.In addition,the nonlinear recurrent neural network-based generalized predictive controller with the radial basis function-originated predictor was obtained to exemplify the main results of the paper regarding the real-world application. 展开更多
关键词 Predictive control Linear-quadratic control Inverse problems feedforward network Recurrent neural network OPTIMIZATION
原文传递
Realizing high-speed target tracking by using multi-rate feedforward predictive control for the acquisition, tracking, and pointing system
4
作者 Hang Li Gaoliang Peng +4 位作者 Xiaobiao Shan Mingyuan Zhao Wei Zhang Jinghan Wang Feng Cheng 《Defence Technology(防务技术)》 2025年第7期137-151,共15页
The acquisition,tracking,and pointing(ATP)system is widely used in target tracking,counter-UAV operations,and other related fields.As UAV technology develops,there is a growing demand to enhance the tracking capabilit... The acquisition,tracking,and pointing(ATP)system is widely used in target tracking,counter-UAV operations,and other related fields.As UAV technology develops,there is a growing demand to enhance the tracking capabilities of ATP systems.However,in practical applications,ATP systems face various design constraints and functional limitations,making it infeasible to indefinitely improve hardware performance to meet tracking requirements.As a result,tracking algorithms are required to execute increasingly complex tasks.This study introduces a multi-rate feedforward predictive controller to address issues such as low image feedback frequency and significant delays in ATP systems,which lead to tracking jitter,poor tracking performance,low precision,and target loss.At the same time,the pro-posed approach aims to improve the tracking capabilities of ATP systems for high-speed and highly maneuverable targets under conditions of low sampling feedback rates and high feedback delays.The method suggested is also characterized by its low order,fast response,and robustness to model parameter variations.In this study,an actual ATP system is built for target tracking test,and the proposed algorithm is fully validated in terms of simulation and actual system application verification.Results from both simulations and experiments demonstrate that the method effectively compensates for delays and low sampling rates.For targets with relative angular velocities ranging from 0 to 90°/s and angular accelerations between 0 and 470°/s^(2),the system improved tracking accuracy by 70.0%-89.9%at a sampling frequency of 50 Hz and a delay of 30 m s.Moreover,the compensation algorithm demonstrated consistent performance across actuators with varying characteristics,further confirming its robustness to model insensitivity.In summary,the proposed algorithm considerably enhances the tracking accuracy and capability of ATP systems for high-speed and highly maneuverable targets,reducing the probability of target loss from high speed.This approach offers a practical solution for future multi-target tracking across diverse operational scenarios. 展开更多
关键词 Multi-rate systems Predictive feedforward control Target tracking Laser weapon
在线阅读 下载PDF
Extraction of fissile isotope antineutrino spectra using feedforward neural network
5
作者 Jian Chen Jun Wang +1 位作者 Wei Wang Yue-Huan Wei 《Nuclear Science and Techniques》 2025年第10期13-23,共11页
The precise measurement of the antineutrino spectra produced by isotope fission in reactors is of great significance for studying neutrino oscillations,refining nuclear databases,and addressing the reactor antineutrin... The precise measurement of the antineutrino spectra produced by isotope fission in reactors is of great significance for studying neutrino oscillations,refining nuclear databases,and addressing the reactor antineutrino anomaly.In this paper,we report a method that utilizes a feedforward neural network(FNN)model to decompose the prompt energy spectrum observed in a short-baseline reactor neutrino experiment and extract the antineutrino spectra produced by the fission of major isotopes such as^(235)U,^(238)U,^(239)Pu,and^(241)Pu in the nuclear reactor.We present two training strategies for the model and compare them with the traditional X^(2) minimization method by applying them to the same set of pseudo-data corresponding to a total exposure of(2.9×5×1800)GW_(th)·tons·days.The results show that the FNN model not only converges faster and better during the fitting process but also achieves relative errors of less than 1%in the 2−8 MeV range in the extracted spectra,outperforming the X^(2) minimization method.The feasibility and superiority of this method were validated in the study. 展开更多
关键词 Reactor neutrinos Isotope antineutrino spectra feedforward neural network
在线阅读 下载PDF
Predictor-based sampled-data output-feedback control for feedforward nonlinear time-delay systems
6
作者 Wenjie Zhang Weihao Pan +1 位作者 Xianfu Zhang Qingrong Liu 《Control Theory and Technology》 2025年第1期105-117,共13页
This paper studies global stabilization via predictor-based sampled-data output feedback for a class of feedforward nonlinear time-delay systems.Note that the traditional sampled-data observer via zero-order holder ma... This paper studies global stabilization via predictor-based sampled-data output feedback for a class of feedforward nonlinear time-delay systems.Note that the traditional sampled-data observer via zero-order holder may result in the performance degradation of the observer.In this paper,an improved predictor-based observer is designed to compensate for the influence of the unmeasurable states,sampling errors and output delay.In addition,a sampled-data output-feedback controller is also constructed using the gain scaling technique.By the Lyapunov-Krasovskii functional method,the global exponential stability of the resulting closed-loop system can be guaranteed under some sufficient conditions.The simulation results are provided to demonstrate the main results. 展开更多
关键词 feedforward nonlinear systems Time delay Predictor-based observer Sampled-data output-feedback controller
原文传递
An Iterative Tuning Method for Feedforward Control of Parallel Manipulators Considering Nonlinear Dynamics
7
作者 Xiaojian Wang Jun Wu 《Chinese Journal of Mechanical Engineering》 2025年第1期295-305,共11页
Feedforward control is one of the most effective control techniques to increase the robot’s tracking accuracy.However,most of the dynamic models used in the feedforward controllers are linearly simplified such that t... Feedforward control is one of the most effective control techniques to increase the robot’s tracking accuracy.However,most of the dynamic models used in the feedforward controllers are linearly simplified such that the nonlinear and time-varying characteristics of dynamics in the workspace are ignored.In this paper,an iterative tuning method for feedforward control of parallel manipulators by taking nonlinear dynamics into account is proposed.Based on the robot rigid-body dynamic model,a feedforward controller considering the dynamic nonlinearity is presented.An iterative tuning method is given to iteratively update the feedforward controller by minimizing the root mean square(RMS)of the joint errors at each cycle.The effectiveness and extrapolation capability of the proposed method are validated through the experiments on a 2-DOF parallel manipulator.This research proposes an iterative tuning method for feedforward control of parallel manipulators considering nonlinear dynamics,which has better extrapolation capability in the whole workspace of manipulators. 展开更多
关键词 Parallel manipulator Dynamic model feedforward control Iterative learning control Parameter design
在线阅读 下载PDF
An Improved Feedforward Control Strategy to Promote the Rapidity of PMSM Servo System and Reduce Overshoot Oscillation
8
作者 Wentao Zhang Yan Zhang +1 位作者 Yongxiang Xu Jibin Zou 《CES Transactions on Electrical Machines and Systems》 2025年第1期100-109,共10页
Under the condition of large inertia load,the stability of the servo system is more sensitive to the response speed and more likely to produce overshoot oscillations.In order to realize the requirements of high-precis... Under the condition of large inertia load,the stability of the servo system is more sensitive to the response speed and more likely to produce overshoot oscillations.In order to realize the requirements of high-precision and fast-response control of permanent magnet synchronous motor(PMSM)under large inertia load,an improved feedforward control strategy based on position impulse compensation and PD iterative algorithm is proposed to improve the response speed of the PMSM servo system and reduce the overshoot oscillation.This paper analyzes the mathematical models of the speed servo system and position servo system of the PMSM,calculates position overshoot impulse of the PMSM servo system,and improves the traditional feedforward control strategy to reversely compensate when the position is about to overshoot.Moreover,in order to further reduce the position overshoot,the PD iterative control algorithm is superimposed without increasing the complexity of the algorithm.The input signal is continuously corrected through multiple runs to achieve a smoother response control.The effectiveness of the proposed feedforward control strategy is verified by simulation and experiment. 展开更多
关键词 feedforward control Overshoot impulse Permanent magnet synchronous motor PD iterative control
在线阅读 下载PDF
Predicting Concrete Strength Using Data Augmentation Coupled with Multiple Optimizers in Feedforward Neural Networks
9
作者 Sandeerah Choudhary Qaisar Abbas +3 位作者 Tallha Akram Irshad Qureshi Mutlaq B.Aldajani Hammad Salahuddin 《Computer Modeling in Engineering & Sciences》 2025年第11期1755-1787,共33页
The increasing demand for sustainable construction practices has led to growing interest in recycled aggregate concrete(RAC)as an eco-friendly alternative to conventional concrete.However,predicting its compressive st... The increasing demand for sustainable construction practices has led to growing interest in recycled aggregate concrete(RAC)as an eco-friendly alternative to conventional concrete.However,predicting its compressive strength remains a challenge due to the variability in recycled materials and mix design parameters.This study presents a robust machine learning framework for predicting the compressive strength of recycled aggregate concrete using feedforward neural networks(FFNN),Random Forest(RF),and XGBoost.A literature-derived dataset of 502 samples was enriched via interpolation-based data augmentation and modeled using five distinct optimization techniques within MATLAB’s Neural Net Fitting module:Bayesian Regularization,Levenberg-Marquardt,and three conjugate gradient variants—Powell/Beale Restarts,Fletcher-Powell,and Polak-Ribiere.Hyperparameter tuning,dropout regularization,and early stopping were employed to enhance generalization.Comparative analysis revealed that FFNN outperformed RF and XGBoost,achieving an R2 of 0.9669.To ensure interpretability,accumulated local effects(ALE)along with partial dependence plots(PDP)were utilized.This revealed trends consistent with the pre-existent domain knowledge.This allows estimation of strength from the properties of the mix without extensive lab testing,permitting designers to track the performance and sustainability trends in concrete mix designs while promoting responsible construction and demolition waste utilization. 展开更多
关键词 feedforward neural networks recycled aggregates compressive strength prediction optimization techniques data augmentation grid search
在线阅读 下载PDF
Feedforward compensation-based L1 adaptive control for aeropropulsion system test facility and hardware-in-the-loop verification
10
作者 Jiashuai LIU Ai HE +1 位作者 Xitong PEI Yifu LONG 《Chinese Journal of Aeronautics》 2025年第3期85-95,共11页
Aeropropulsion System Test Facility (ASTF) is required to accurately control the pressure and temperature of the airflow to test the performance of the aero-engine. However, the control accuracy of ASTF is significant... Aeropropulsion System Test Facility (ASTF) is required to accurately control the pressure and temperature of the airflow to test the performance of the aero-engine. However, the control accuracy of ASTF is significantly affected by the flow disturbance caused by aero-engine acceleration and deceleration. This would reduce the credibility of ASTF’s test results for the aero-engine. Therefore, first, this paper proposes a feedforward compensation-based L1 adaptive control method for ASTF to address this problem. The baseline controller is first designed based on ideal uncoupled closed-loop dynamics to achieve dynamic decoupling. Then, L1 adaptive control is adopted to deal with various uncertainties and ensure good control performance. To further enhance the anti-disturbance performance, a feedforward strategy based on disturbance prediction is designed in the L1 adaptive control framework to compensate for the unmatched flow disturbance, which cannot be measured directly. In addition, this strategy takes into account the effects of actuator dynamics. With this method, the feedforward term can be determined from the nominal model parameters despite uncertainties. Finally, to demonstrate the effectiveness of the proposed method, various comparative experiments are performed on a hardware-in-the-loop system of ASTF. The experimental results show that the proposed method possesses excellent tracking performance, anti-disturbance performance and robustness. 展开更多
关键词 L_(1)adaptive control feedforward compensation DISTURBANCE COUPLING Hardware-in-the-loop simulation Aeropropulsion system test facility
原文传递
Real-Time Ship Roll Prediction via a Novel Stochastic Trainer-Based Feedforward Neural Network
11
作者 XU Dong-xing YIN Jian-chuan 《China Ocean Engineering》 2025年第4期608-620,共13页
Enhancing the accuracy of real-time ship roll prediction is crucial for maritime safety and operational efficiency.To address the challenge of accurately predicting the ship roll status with nonlinear time-varying dyn... Enhancing the accuracy of real-time ship roll prediction is crucial for maritime safety and operational efficiency.To address the challenge of accurately predicting the ship roll status with nonlinear time-varying dynamic characteristics,a real-time ship roll prediction scheme is proposed on the basis of a data preprocessing strategy and a novel stochastic trainer-based feedforward neural network.The sliding data window serves as a ship time-varying dynamic observer to enhance model prediction stability.The variational mode decomposition method extracts effective information on ship roll motion and reduces the non-stationary characteristics of the series.The energy entropy method reconstructs the mode components into high-frequency,medium-frequency,and low-frequency series to reduce model complexity.An improved black widow optimization algorithm trainer-based feedforward neural network with enhanced local optimal avoidance predicts the high-frequency component,enabling accurate tracking of abrupt signals.Additionally,the deterministic algorithm trainer-based neural network,characterized by rapid processing speed,predicts the remaining two mode components.Thus,real-time ship roll forecasting can be achieved through the reconstruction of mode component prediction results.The feasibility and effectiveness of the proposed hybrid prediction scheme for ship roll motion are demonstrated through the measured data of a full-scale ship trial.The proposed prediction scheme achieves real-time ship roll prediction with superior prediction accuracy. 展开更多
关键词 ship roll prediction data preprocessing strategy sliding data widow improved black widow optimization algorithm stochastic trainer feedforward neural network
在线阅读 下载PDF
A Novel Feedforward Hybrid Active Noise Control System with Narrowband Frequency Adaptive Estimation and Error Separation
12
作者 PANG Mingrui LIU Yifei LIU Jian 《Transactions of Nanjing University of Aeronautics and Astronautics》 2025年第5期638-647,共10页
The conventional feedforward hybrid active noise control(FFHANC)system combines the advantages of the feedforward narrowband active noise control(FFNANC)system and the feedforward broadband active noise control(FFBANC... The conventional feedforward hybrid active noise control(FFHANC)system combines the advantages of the feedforward narrowband active noise control(FFNANC)system and the feedforward broadband active noise control(FFBANC)system.To enhance its adaptive adjustment capability under frequency mismatch(FM)conditions,this paper introduces a narrowband frequency adaptive estimation module into the conventional FFHANC system.This module integrates an autoregressive(AR)model and a linear cascaded adaptive notch filter(LCANF),enabling accurate reference signal frequency estimation even under significant FM.Furthermore,in order to improve the coherence between narrowband and broadband components in the system’s error signal and its corresponding control filter for the conventional FFHANC system,this paper proposes an algorithm based on autoregressive bandpass filter bank(AR-BPFB)for error separation.Simulation results demonstrate that the proposed FFHANC system maintains robust performance under high FM conditions and effectively suppresses hybrid-band noise.The AR-BPFB algorithm significantly elevates the convergence speed of the FFHANC system. 展开更多
关键词 active noise control feedforward hybrid active noise control(FFHANC)system autoregressive(AR)model linear cascaded adaptive notch filter(LCANF) bandpass filter bank(BPFB) error separation
在线阅读 下载PDF
基于DMC-PID的循环流化床锅炉床层温度控制设计与实现 被引量:7
13
作者 张强 王前虹 +1 位作者 白宵丽 王孝红 《化工自动化及仪表》 CAS 北大核心 2009年第6期63-66,共4页
首先分析了循环流化床锅炉燃烧部分床层温度多种影响因素,得到在各严重耦合关系影响因素下床层温度变化过程难以建立一个准确的数学模型来描述。针对此特点,设计采用蒸汽负荷作为前馈信号的床层温度-燃料量串级控制方案。其中床层温度... 首先分析了循环流化床锅炉燃烧部分床层温度多种影响因素,得到在各严重耦合关系影响因素下床层温度变化过程难以建立一个准确的数学模型来描述。针对此特点,设计采用蒸汽负荷作为前馈信号的床层温度-燃料量串级控制方案。其中床层温度控制器采用动态矩阵算法,具体地给出可实现的动态矩阵控制算法过程。介绍了VC通过OPC接口技术与DCS控制系统进行数据交换,实现了VC环境下的DMC-PID控制算法在循环流化床锅炉床层温度中的成功应用,并证明了该算法的实用性、有效性和可靠性。 展开更多
关键词 循环流化床锅炉 床层温度 dmc-pid DCS OPC
在线阅读 下载PDF
蒸煮锅内温差DMC-PID串级解耦控制 被引量:6
14
作者 汤伟 王震 +2 位作者 党世宏 甘文涛 于东伟 《中国造纸》 CAS 北大核心 2014年第12期47-50,共4页
在置换蒸煮制浆过程中,蒸煮锅内温差过大会产生不均匀蒸煮现象,影响最终的蒸煮质量。针对蒸煮锅顶层流量与底层流量存在强耦合关系、蒸煮锅内温差大时滞特点、温差控制要求实时性,设计了DMC-PID串级解耦控制系统,通过流量-温差串级控制... 在置换蒸煮制浆过程中,蒸煮锅内温差过大会产生不均匀蒸煮现象,影响最终的蒸煮质量。针对蒸煮锅顶层流量与底层流量存在强耦合关系、蒸煮锅内温差大时滞特点、温差控制要求实时性,设计了DMC-PID串级解耦控制系统,通过流量-温差串级控制系统来实现对温差的控制。通过Matlab仿真表明,DMC-PID串级解耦控制系统具有更好的动态性能和鲁棒性,其控制效果明显优于单回路控制系统。 展开更多
关键词 置换蒸煮系统 温差控制 dmc-pid串级解耦 鲁棒性
在线阅读 下载PDF
双容水箱液位DMC-PID串级控制仿真研究 被引量:13
15
作者 周荣强 罗真 《自动化仪表》 CAS 北大核心 2011年第10期63-65,共3页
双容水箱作为工业过程控制中常见的被控对象,其液位控制具有大惯性滞后、系统参数时变的特点,且经常受到来自外界水压频繁波动的干扰,常规算法很难对其进行控制。对此,采用动态矩阵控制(DMC)与PID控制相结合的DMC-PID控制方案,使被控系... 双容水箱作为工业过程控制中常见的被控对象,其液位控制具有大惯性滞后、系统参数时变的特点,且经常受到来自外界水压频繁波动的干扰,常规算法很难对其进行控制。对此,采用动态矩阵控制(DMC)与PID控制相结合的DMC-PID控制方案,使被控系统具有良好的动态调节品质和很强的鲁棒性。Matlab仿真结果表明,该串级控制系统取得了较为理想的控制效果,满足控制要求,具有较好的实用价值。 展开更多
关键词 双容水箱 dmc-pid 工业控制 串级控制 Matlab 鲁棒性
在线阅读 下载PDF
基于DMC-PID串级控制的茶叶远红外烘干机设计与试验 被引量:18
16
作者 李兵 孙长应 +1 位作者 李为宁 宋扬扬 《茶叶科学》 CAS CSCD 北大核心 2018年第4期410-415,共6页
根据茶叶物料烘焙时具有迟滞、大惯性和非线性的特点,采用传统PID控制时温度控制精度不高,超调量较大,鲁棒性差。设计了一种基于动态矩阵控制的茶叶烘干机,烘干机采用多层隧道式,上加热方式,加热元件为电加热远红外辐射板,运用DMC-PID... 根据茶叶物料烘焙时具有迟滞、大惯性和非线性的特点,采用传统PID控制时温度控制精度不高,超调量较大,鲁棒性差。设计了一种基于动态矩阵控制的茶叶烘干机,烘干机采用多层隧道式,上加热方式,加热元件为电加热远红外辐射板,运用DMC-PID串级温度控制系统,前级的DMC算法提高温度控制系统的动态响应能力与鲁棒性;后级PID算法提高系统的抗干扰性能。对样机进行绿茶烘焙试验,试验表明,采用PID温度控制系统时烘干机超调量为10.5%,而采用DMC-PID串级温度控制其超调量为5.9%。DMC-PID可显著提高茶叶烘干机的温度控制精度及成茶品质。 展开更多
关键词 茶叶烘干机 dmc-pid控制器 红外辐射板加热单元
在线阅读 下载PDF
简化的DMC-PID串级控制及其在汽温系统中的应用 被引量:6
17
作者 李玉红 刘红军 +1 位作者 王东风 韩璞 《电力科学与工程》 2003年第4期62-64,共3页
DMC控制(动态矩阵控制)中控制量的计算涉及到矩阵的求逆,计算量较大。提出了一种SDMC(简化的DMC算法),并且与串级控制相结合,形成SDMC-PID控制策略。应用于电厂过热汽温系统仿真研究表明,该方案使控制系统具有较强的鲁棒性及良好的跟踪... DMC控制(动态矩阵控制)中控制量的计算涉及到矩阵的求逆,计算量较大。提出了一种SDMC(简化的DMC算法),并且与串级控制相结合,形成SDMC-PID控制策略。应用于电厂过热汽温系统仿真研究表明,该方案使控制系统具有较强的鲁棒性及良好的跟踪性能,提高了系统的动静态性能指标。 展开更多
关键词 锅炉 汽温控制系统 dmc-pid串级控制 动态矩阵控制 过热器 电厂
在线阅读 下载PDF
再热汽温控制系统的DMC-PID仿真研究 被引量:6
18
作者 张嘉英 王文兰 《自动化仪表》 CAS 北大核心 2010年第6期58-60,共3页
预测控制作为一种对模型精确度要求低、鲁棒性强并适用于计算机实现的控制算法,近年来在过程控制中得到广泛应用。针对火电厂再热汽温控制系统大惯性、大迟延和时变性的缺点,提出了DMC-PID控制策略,内外环分别采用PID控制器和DMC控制器... 预测控制作为一种对模型精确度要求低、鲁棒性强并适用于计算机实现的控制算法,近年来在过程控制中得到广泛应用。针对火电厂再热汽温控制系统大惯性、大迟延和时变性的缺点,提出了DMC-PID控制策略,内外环分别采用PID控制器和DMC控制器。仿真研究表明,该策略综合利用了预测控制和串级控制的优点,控制效果优于常规的PID控制,能适应对象参数的变化并表现出良好的控制品质,具有较强的鲁棒性和自适应能力。 展开更多
关键词 动态矩阵算法 dmc-pid 再热汽温控制 MATLAB仿真
在线阅读 下载PDF
电厂过热汽温系统DMC-PID控制仿真研究 被引量:6
19
作者 李学明 李志军 林四成 《热力发电》 CAS 北大核心 2005年第2期24-26,61,共4页
应用 DMC PID 串级控制策略对过热汽温系统进行了仿真研究。研究了动态矩阵控(DMC)的预测模型及其性能指标和控制率,给出了过热汽温系统模型及其 DMC PID控制结构。该控系统既保留了串级控制能够快速消除二次扰动的优点,且由于引入... 应用 DMC PID 串级控制策略对过热汽温系统进行了仿真研究。研究了动态矩阵控(DMC)的预测模型及其性能指标和控制率,给出了过热汽温系统模型及其 DMC PID控制结构。该控系统既保留了串级控制能够快速消除二次扰动的优点,且由于引入了DMC控制器,增强了系统的鲁棒性仿真结果表明,这种汽温控制系统具有较好的控制品质。 展开更多
关键词 火电厂 过热汽温 控制系统 动态矩阵控制(DMC) dmc-pid控制器 仿真
在线阅读 下载PDF
基于DMC-PID复合算法的温度控制器的设计 被引量:2
20
作者 杨盛泉 刘白林 +1 位作者 刘萍萍 王博洋 《西安工业大学学报》 CAS 2011年第5期459-464,共6页
为解决传统温度控制器中存在惯性大、滞后强、振荡周期长及余差消除困难等缺点,研究与设计了一种DMC-PID复合算法的控制器.用DMC预测算法在线滚动优化控制参数,同时在优化过程中利用实测信息不断进行反馈校正,充分发挥DMC算法的超前预... 为解决传统温度控制器中存在惯性大、滞后强、振荡周期长及余差消除困难等缺点,研究与设计了一种DMC-PID复合算法的控制器.用DMC预测算法在线滚动优化控制参数,同时在优化过程中利用实测信息不断进行反馈校正,充分发挥DMC算法的超前预测性和强鲁棒性以及PID控制算法的小范围温差快速跟随能力.详细地论述了DMC与PID算法原理,给出复合控制器的硬件组成结构以及单片机软件模块编程方法.实验表明,与传统PID控制器以及工业AI调节控制器相比,该控制器能有效减小温度跟随过程中的余差波动,超调量由8%下降为2%,惯性过渡时间由5.6s缩短为2.0s,从而提高了系统的动静态差控制性能. 展开更多
关键词 温度控制 dmc-pid 控制器 模块化
在线阅读 下载PDF
上一页 1 2 178 下一页 到第
使用帮助 返回顶部