This paper presents chaos synchronization between two different chaotic systems by using a nonlinear controller, in which the nonlinear functions of the system are used as a nonlinear feedback term. The feedback contr...This paper presents chaos synchronization between two different chaotic systems by using a nonlinear controller, in which the nonlinear functions of the system are used as a nonlinear feedback term. The feedback controller is designed on the basis of stability theory, and the area of feedback gain is determined. The artificial simulation results show that this control method is commendably effective and feasible.展开更多
This paper reports a new hyperchaotic system by adding an additional state variable into a three-dimensional chaotic dynamical system. Some of its basic dynamical properties, such as the hyperchaotic attractor, Lyapun...This paper reports a new hyperchaotic system by adding an additional state variable into a three-dimensional chaotic dynamical system. Some of its basic dynamical properties, such as the hyperchaotic attractor, Lyapunov expo- nents, bifurcation diagram and the hyperchaotic attractor evolving into periodic, quasi-periodic dynamical behaviours by varying parameter k are studied. An effective nonlinear feedback control method is used to suppress hyperchaos to unstable equilibrium. Furthermore, a circuit is designed to realize this new hyperchaotic system by electronic workbench (EWB). Numerical simulations are presented to show these results.展开更多
This paper focuses on the synchronisation between fractional-order and integer-order chaotic systems. Based on Lyapunov stability theory and numerical differentiation, a nonlinear feedback controller is obtained to ac...This paper focuses on the synchronisation between fractional-order and integer-order chaotic systems. Based on Lyapunov stability theory and numerical differentiation, a nonlinear feedback controller is obtained to achieve the synchronisation between fractional-order and integer-order chaotic systems. Numerical simulation results are presented to illustrate the effectiveness of this method.展开更多
In this paper we present the control and synchronization of a coupled Bragg acousto-optic bistable map system using nonlinear feedback technology. This nonlinear feedback technology is useful to control a temporally c...In this paper we present the control and synchronization of a coupled Bragg acousto-optic bistable map system using nonlinear feedback technology. This nonlinear feedback technology is useful to control a temporally chaotic system as well as a spatiotemporally chaotic system. It can be extended to synchronize the spatiotemporal chaos. It can work in a wide range of the controlled and synchronized signals, so it can decrease the sensitivity down to a noise level. The synchronization can be obtained by the analysis of the largest conditional Lyapunov exponent spectrum, and easily implemented in practical systems just by adjusting the coupled strength without any pre-knowledge of the dynamic system required.展开更多
Autopilot is an important navigation instrument,and it plays an important role in safe navigation In order to further improve the performance of the autopilot,this paper adopts the first-order closed loop gain shaping...Autopilot is an important navigation instrument,and it plays an important role in safe navigation In order to further improve the performance of the autopilot,this paper adopts the first-order closed loop gain shaping algorithm(PID)to designautopilot control algo rithm with robustness and uses tangent function nonlinear feedback technology to replace the linear feedback to improve the energy saving effect of autopilot.Taking Dalian Maritime University’s newly-built YUPENG ship as anexample,the simulation research is carried out.The results show that the control effect is still satisfactory when the model parameterschange by25%,which suggests that the designed autopilot algorithm has good robustness.Compared with linearfeedback,nonlinear feedback can save7.9%of energy.The algo rithm proposed in this paper is simple and has obvious physicalmeaning.At the same time,the control algorithm is also helpful for the localization of controller design展开更多
The objective of this research is to realize a composite nonlinear feedback control approach for a class of linear and nonlinear systems with parallel-distributed compensation along with sliding mode control technique...The objective of this research is to realize a composite nonlinear feedback control approach for a class of linear and nonlinear systems with parallel-distributed compensation along with sliding mode control technique.The proposed composite nonlinear feedback control approach consists of two parts.In a word,the first part provides the stability of the closed-loop system and the fast convergence response,as long as the second one improves transient response.In this research,the genetic algorithm in line with the fuzzy logic is designed to calculate constant controller coefficients and optimize the control effort.The effectiveness of the proposed design is demonstrated by servo position control system and inverted pendulum system with DC motor simulation results.展开更多
We discuss the global stabilization procedure which renders a general class of feedback nonlinear systems exponential convergent, Our stabilizer consists of a nested saturation function, which is a nonlinear combinati...We discuss the global stabilization procedure which renders a general class of feedback nonlinear systems exponential convergent, Our stabilizer consists of a nested saturation function, which is a nonlinear combination of saturation functions. Here we prove the exponential convergence of the stabilizer for the first time and give numerical examples to illustrate the efficiency of the result given above,展开更多
Transient performance for output regulation problems of linear discrete-time systems with input saturation is addressed by using the composite nonlinear feedback(CNF) control technique. The regulator is designed to ...Transient performance for output regulation problems of linear discrete-time systems with input saturation is addressed by using the composite nonlinear feedback(CNF) control technique. The regulator is designed to be an additive combination of a linear regulator part and a nonlinear feedback part. The linear regulator part solves the regulation problem independently which produces a quick output response but large oscillations. The nonlinear feedback part with well-tuned parameters is introduced to improve the transient performance by smoothing the oscillatory convergence. It is shown that the introduction of the nonlinear feedback part does not change the solvability conditions of the linear discrete-time output regulation problem. The effectiveness of transient improvement is illustrated by a numeric example.展开更多
A composite nonlinear feedback tracking controller for motion control of robot manipulators is described. The structure of the controller is composed of a composite nonlinear feedback law plus full robot nonlinear dyn...A composite nonlinear feedback tracking controller for motion control of robot manipulators is described. The structure of the controller is composed of a composite nonlinear feedback law plus full robot nonlinear dynamics compensation. The stability is carried out in the presence of friction. The controller takes advantage of varying damping ratios induced by the composite nonlinear feedback control, so the transient performance of the closed-loop is remarkably improved. Simulation results demonstrate the feasibility of the proposed method.展开更多
To achieve fast, smooth and accurate set point tracking in servo positioning systems, a parameterized design of nonlinear feedback controllers is presented, based on a so-called composite nonlinear feedback (CNF) co...To achieve fast, smooth and accurate set point tracking in servo positioning systems, a parameterized design of nonlinear feedback controllers is presented, based on a so-called composite nonlinear feedback (CNF) control technique. The controller designed here consists of a linear feedback part and a nonlinear part. The linear part is responsible for stability and fast response of the closed-loop system. The nonlinear part serves to increase the damping ratio of closed-loop poles as the controlled output approaches the target reference. The CNF control brings together the good points of both the small and the large damping ratio cases, by continuously scheduling the damping ratio of the dominant closed-loop poles and thus has the capability for superior transient performance, i.e. a fast output response with low overshoot. In the presence of constant disturbances, an integral action is included so as to remove the static bias. An explicitly parameterized controller is derived for servo positioning systems characterized by second-order model. Practical application in a micro hard disk drive servo system is then presented, together with some discussion of the rationale and characteristics of such design. Simulation and experimental results demonstrate the effectiveness of this control design methodology.展开更多
This paper presents an optimization method of designing the integral sliding mode (ISM) based composite nonlinear feedback (CNF) controller for a class of low order linear systems with input saturation. The optima...This paper presents an optimization method of designing the integral sliding mode (ISM) based composite nonlinear feedback (CNF) controller for a class of low order linear systems with input saturation. The optimal CNF control is first designed as a nominal control to yield high tracking speed and low overshoot. The selection of all the tuning parameters for the CNF control law is turned into a minimization problem and solved automatically by particle swarm optimization (PSO) algorithm. Subsequently, the discontinuous control law is introduced to reject matched disturbances. Then, the optimal ISM-CNF control law is achieved as the sum of the optimal CNF control law and the discontinuous control law. The effectiveness of the optimal ISM-CNF controller is verified by comparing with a step by step designed one. High tracking performance is achieved by applying the optimal ISM-CNF controller to the tracking control of the micromirror.展开更多
In order to suppress the influence of uncertain factors on robot system and enable an uncertain robot system to track the reference input accurately,a strategy of combining composite nonlinear feedback(CNF)control and...In order to suppress the influence of uncertain factors on robot system and enable an uncertain robot system to track the reference input accurately,a strategy of combining composite nonlinear feedback(CNF)control and adaptive fuzzy control is studied,and a robot CNF controller based on adaptive fuzzy compensation is proposed.The key of this strategy is to use adaptive fuzzy control to approach the uncertainty of the system online,as the compensation term of the CNF controller,and make full use of the advantages of the two control methods to reduce the influence of uncertain factors on the performance of the system.The convergence of the closed-loop system is proved by feedback linearization and Lyapunov theory.The final simulation results confirm the effectiveness of this plan.展开更多
Composite nonlinear feedback (CNF) control techniquefor tracking control problems is extended to the output regulationproblem of singular linear systems with input saturation. A statefeedback CNF control law and an ...Composite nonlinear feedback (CNF) control techniquefor tracking control problems is extended to the output regulationproblem of singular linear systems with input saturation. A statefeedback CNF control law and an output feedback CNF controllaw are constructed respectively for the output regulation problemof singular linear systems with input saturation. It is shown thatthe output regulation problem by CNF control is solvable underthe same solvability conditions of the output regulation problemby linear control. However, with the virtue of the CNF control, thetransient performance of the closed-loop system can be improvedby carefully designing the linear part and the nonlinear part of theCNF control law. The design procedure and the improvement ofthe transient performance of the closed-loop system are illustratedwith a numerical simulation.展开更多
This paper investigates the cooperative output regulation problem of linear multi-agent systems with a linear exogenous system(exo-system).The network topology is described by a directed graph which contains a directe...This paper investigates the cooperative output regulation problem of linear multi-agent systems with a linear exogenous system(exo-system).The network topology is described by a directed graph which contains a directed spanning tree with the exo-system as the root.Aiming at improving the transient performance of the multi-agent systems,a dynamic control law is developed by the composite nonlinear feedback(CNF)control technique.In particular,a distributed dynamic compensator independent of the interaction on the compensator states of agents among the network,is adopted.The solvability condition for the cooperative output regulation problem is obtained using the small-gain theory,which will not be destroyed by adding the nonlinear feedback part of the CNF control law.It is also shown that in the case with the exo-system not diverging exponentially,the small-gain condition can be guaranteed using the low-gain design.Finally,simulation results illustrate that the proposed CNF control law improves the transient performance for the cooperative output regulation of linear multi-agent systems.展开更多
The aim of our work is to formulate and demonstrate the results of the normality, the Lipschitz continuity, of a nonlinear feedback system described by the monotone maximal operators and hemicontinuous, defined on rea...The aim of our work is to formulate and demonstrate the results of the normality, the Lipschitz continuity, of a nonlinear feedback system described by the monotone maximal operators and hemicontinuous, defined on real reflexive Banach spaces, as well as the approximation in a neighborhood of zero, of solutions of a feedback system [A,B] assumed to be non-linear, by solutions of another linear, This approximation allows us to obtain appropriate estimates of the solutions. These estimates have a significant effect on the study of the robust stability and sensitivity of such a system see <a href="#ref1">[1]</a> <a href="#ref2">[2]</a> <a href="#ref3">[3]</a>. We then consider a linear FS <img src="Edit_4629d4d0-bbb2-478d-adde-391efde3d1e0.bmp" alt="" />, and prove that, if <img src="Edit_435aae08-e821-4b4d-99d2-e2a2b47609c1.bmp" alt="" />;<img src="Edit_4fa030bc-1f97-4726-8257-ca8d00657aac.bmp" alt="" /> , with <img src="Edit_63ab4faa-ba40-45fe-8b8a-7a6caef91794.bmp" alt="" />the respective solutions of FS’s [A,B] and <img src="Edit_e78e2e6d-8934-4011-93eb-8b7eb52fa856.bmp" alt="" /> corresponding to the given (u,v) in <img src="Edit_0e18433c-8c7a-454f-8eec-6eb9fb69469a.bmp" alt="" /> . There exists,<img src="Edit_3dcd8afc-8cea-4c06-a920-e4148a5f793e.bmp" alt="" />, positive real constants such that, <img src="Edit_edb88446-3e39-4fe0-865a-114de701e78e.bmp" alt="" />. These results are the subject of theorems 3.1, <span style="font-size:10.0pt;font-family:;" "="">... </span>, 3.3. The proofs of these theorems are based on our lemmas 3.2, <span style="font-size:10.0pt;font-family:;" "="">... </span>, 3.5, devoted according to the hypotheses on A and B, to the existence of the inverse of the operator <em>I+BA</em> and <img src="Edit_2db1326b-cb5b-44cf-8d1f-df22bd6da45f.bmp" alt="" />. The results obtained and demonstrated along this document, present an extension in general Banach space of those in <a href="#ref4">[4]</a> on a Hilbert space <em>H</em> and those in <a href="#ref5">[5]</a> on a extended Hilbert space <img src="Edit_b70ce337-1812-4d4b-ae7d-a24da7e5b3cf.bmp" alt="" />.展开更多
This paper proposes a separated trajectory tracking controller for fishing ships at sea state level 6 to solve the trajectory tracking problem of a fishing ship in a 6-level sea state,and to adapt to different working...This paper proposes a separated trajectory tracking controller for fishing ships at sea state level 6 to solve the trajectory tracking problem of a fishing ship in a 6-level sea state,and to adapt to different working environments and safety requirements.The nonlinear feedback method is used to improve the closed-loop gain shaping algorithm.By introducing the sine function,the problem of excessive control energy of the system can be effectively solved.Moreover,an integral separation design is used to solve the influence of the integral term in conventional PID controllers on the transient performance of the system.In this paper,a common 32.98 m large fiberglass reinforced plastic(FRP)trawler is adopted for simulation research at the winds scale of Beaufort No.7.The results show that the track error is smaller than 3.5 m.The method is safe,feasible,concise and effective and has popularization value in the direction of fishing ship trajectory tracking control.This method can be used to improve the level of informatization and intelligence of fishing ships.展开更多
Load simulator is a key test equipment for aircraft actuation systems in hardware-in-the-loop-simulation. Static loading is an essential function of the load simulator and widely used in the static/dynamic stiffness t...Load simulator is a key test equipment for aircraft actuation systems in hardware-in-the-loop-simulation. Static loading is an essential function of the load simulator and widely used in the static/dynamic stiffness test of aircraft actuation systems. The tracking performance of the static loading is studied in this paper. Firstly, the nonlinear mathematical models of the hydraulic load simulator are derived, and the feedback linearization method is employed to construct a feed-forward controller to improve the force tracking performance. Considering the effect of the friction, a LuGre model based friction compensation is synthesized, in which the unmeasurable state is estimated by a dual state observer via a controlled learning mechanism to guarantee that the estimation is bounded. The modeling errors are attenuated by a well-designed robust controller with a control accuracy measured by a design parameter. Employing the dual state observer is to capture the different effects of the unmeasured state and hence can improve the friction compensation accuracy. The tracking performance is summarized by a derived theorem. Experimental results are also obtained to verify the high performance nature of the proposed control strategy.展开更多
In this paper, the synchronization of the fractional-order generalized augmented Lti system is investigated. Based on the predictor--corrector method, we obtain phase portraits, bifurcation diagrams, Lyapunov exponent...In this paper, the synchronization of the fractional-order generalized augmented Lti system is investigated. Based on the predictor--corrector method, we obtain phase portraits, bifurcation diagrams, Lyapunov exponent spectra, and Poincar6 maps of the fractional-order system and find that a four-wing chaotic attractor exists in the system when the system pa- rameters change within certain ranges. Further, by varying the system parameters, rich dynamical behaviors occur in the 2.7-order system. According to the stability theory of a fractional-order linear system, and adopting the linearization by feedback method, we have designed a nonlinear feedback controller in our theoretical analysis to implement the synchro- nization of the drive system with the response system. In addition, the synchronization is also shown by an electronic circuit implementation for the 2.7-order system. The obtained experiment results accord with the theoretical analyses, which further demonstrate the feasibility and effectiveness of the proposed synchronization scheme.展开更多
基金Project Supported by the National Natural Science Foundation of China (Grant No 20373021) and Natural Science Foundation of Liaoning Province, China (Grant No 20052151).
文摘This paper presents chaos synchronization between two different chaotic systems by using a nonlinear controller, in which the nonlinear functions of the system are used as a nonlinear feedback term. The feedback controller is designed on the basis of stability theory, and the area of feedback gain is determined. The artificial simulation results show that this control method is commendably effective and feasible.
基金Project supported by the National Natural Science Foundations of China (Grant Nos. 70571030 and 90610031)the Society Science Foundation from Ministry of Education of China (Grant No. 08JA790057)the Advanced Talents’ Foundation and Student’s Foundation of Jiangsu University (Grant Nos. 07JDG054 and 07A075)
文摘This paper reports a new hyperchaotic system by adding an additional state variable into a three-dimensional chaotic dynamical system. Some of its basic dynamical properties, such as the hyperchaotic attractor, Lyapunov expo- nents, bifurcation diagram and the hyperchaotic attractor evolving into periodic, quasi-periodic dynamical behaviours by varying parameter k are studied. An effective nonlinear feedback control method is used to suppress hyperchaos to unstable equilibrium. Furthermore, a circuit is designed to realize this new hyperchaotic system by electronic workbench (EWB). Numerical simulations are presented to show these results.
文摘This paper focuses on the synchronisation between fractional-order and integer-order chaotic systems. Based on Lyapunov stability theory and numerical differentiation, a nonlinear feedback controller is obtained to achieve the synchronisation between fractional-order and integer-order chaotic systems. Numerical simulation results are presented to illustrate the effectiveness of this method.
文摘In this paper we present the control and synchronization of a coupled Bragg acousto-optic bistable map system using nonlinear feedback technology. This nonlinear feedback technology is useful to control a temporally chaotic system as well as a spatiotemporally chaotic system. It can be extended to synchronize the spatiotemporal chaos. It can work in a wide range of the controlled and synchronized signals, so it can decrease the sensitivity down to a noise level. The synchronization can be obtained by the analysis of the largest conditional Lyapunov exponent spectrum, and easily implemented in practical systems just by adjusting the coupled strength without any pre-knowledge of the dynamic system required.
基金National Nature Science Foundation of China(No.51679024)Fundamental Research Funds for the Central University(No.3132016315)
文摘Autopilot is an important navigation instrument,and it plays an important role in safe navigation In order to further improve the performance of the autopilot,this paper adopts the first-order closed loop gain shaping algorithm(PID)to designautopilot control algo rithm with robustness and uses tangent function nonlinear feedback technology to replace the linear feedback to improve the energy saving effect of autopilot.Taking Dalian Maritime University’s newly-built YUPENG ship as anexample,the simulation research is carried out.The results show that the control effect is still satisfactory when the model parameterschange by25%,which suggests that the designed autopilot algorithm has good robustness.Compared with linearfeedback,nonlinear feedback can save7.9%of energy.The algo rithm proposed in this paper is simple and has obvious physicalmeaning.At the same time,the control algorithm is also helpful for the localization of controller design
文摘The objective of this research is to realize a composite nonlinear feedback control approach for a class of linear and nonlinear systems with parallel-distributed compensation along with sliding mode control technique.The proposed composite nonlinear feedback control approach consists of two parts.In a word,the first part provides the stability of the closed-loop system and the fast convergence response,as long as the second one improves transient response.In this research,the genetic algorithm in line with the fuzzy logic is designed to calculate constant controller coefficients and optimize the control effort.The effectiveness of the proposed design is demonstrated by servo position control system and inverted pendulum system with DC motor simulation results.
文摘We discuss the global stabilization procedure which renders a general class of feedback nonlinear systems exponential convergent, Our stabilizer consists of a nested saturation function, which is a nonlinear combination of saturation functions. Here we prove the exponential convergence of the stabilizer for the first time and give numerical examples to illustrate the efficiency of the result given above,
基金supported by the National Natural Science Foundation of China(61074004)the Research Fund for the Doctoral Program of Higher Education(20110121110017)
文摘Transient performance for output regulation problems of linear discrete-time systems with input saturation is addressed by using the composite nonlinear feedback(CNF) control technique. The regulator is designed to be an additive combination of a linear regulator part and a nonlinear feedback part. The linear regulator part solves the regulation problem independently which produces a quick output response but large oscillations. The nonlinear feedback part with well-tuned parameters is introduced to improve the transient performance by smoothing the oscillatory convergence. It is shown that the introduction of the nonlinear feedback part does not change the solvability conditions of the linear discrete-time output regulation problem. The effectiveness of transient improvement is illustrated by a numeric example.
基金supported by the National Natural Science Foundation of China (60428303)
文摘A composite nonlinear feedback tracking controller for motion control of robot manipulators is described. The structure of the controller is composed of a composite nonlinear feedback law plus full robot nonlinear dynamics compensation. The stability is carried out in the presence of friction. The controller takes advantage of varying damping ratios induced by the composite nonlinear feedback control, so the transient performance of the closed-loop is remarkably improved. Simulation results demonstrate the feasibility of the proposed method.
文摘To achieve fast, smooth and accurate set point tracking in servo positioning systems, a parameterized design of nonlinear feedback controllers is presented, based on a so-called composite nonlinear feedback (CNF) control technique. The controller designed here consists of a linear feedback part and a nonlinear part. The linear part is responsible for stability and fast response of the closed-loop system. The nonlinear part serves to increase the damping ratio of closed-loop poles as the controlled output approaches the target reference. The CNF control brings together the good points of both the small and the large damping ratio cases, by continuously scheduling the damping ratio of the dominant closed-loop poles and thus has the capability for superior transient performance, i.e. a fast output response with low overshoot. In the presence of constant disturbances, an integral action is included so as to remove the static bias. An explicitly parameterized controller is derived for servo positioning systems characterized by second-order model. Practical application in a micro hard disk drive servo system is then presented, together with some discussion of the rationale and characteristics of such design. Simulation and experimental results demonstrate the effectiveness of this control design methodology.
基金This work was supported by National Natural Science Foundation of China (No. 61374036) and the Fundamental Research Funds for the Central Universities (No. SCUT 2014ZM0035).
文摘This paper presents an optimization method of designing the integral sliding mode (ISM) based composite nonlinear feedback (CNF) controller for a class of low order linear systems with input saturation. The optimal CNF control is first designed as a nominal control to yield high tracking speed and low overshoot. The selection of all the tuning parameters for the CNF control law is turned into a minimization problem and solved automatically by particle swarm optimization (PSO) algorithm. Subsequently, the discontinuous control law is introduced to reject matched disturbances. Then, the optimal ISM-CNF control law is achieved as the sum of the optimal CNF control law and the discontinuous control law. The effectiveness of the optimal ISM-CNF controller is verified by comparing with a step by step designed one. High tracking performance is achieved by applying the optimal ISM-CNF controller to the tracking control of the micromirror.
基金Supported by the National Natural Science Foundation of China(No.61663030,61663032)Natural Science Foundation of Jiangxi Province(No.20142BAB207021)+4 种基金the Foundation of Jiangxi Educational Committee(No.GJJ150753)the Innovation Fund Designated for Graduate Students of Nanchang Hangkong University(No.YC2017027)the Open Fund of Key Laboratory of Image Processing and Pattern Recognition of Jiangxi Province(Nanchang Hangkong University)(No.TX201404003)Key Laboratory of Nondestructive Testing(Nanchang Hangkong University),Ministry of Education(No.ZD29529005)the Reform Project of Degree and Postgraduate Education in Jiangxi(No.JXYJG-2017-131)
文摘In order to suppress the influence of uncertain factors on robot system and enable an uncertain robot system to track the reference input accurately,a strategy of combining composite nonlinear feedback(CNF)control and adaptive fuzzy control is studied,and a robot CNF controller based on adaptive fuzzy compensation is proposed.The key of this strategy is to use adaptive fuzzy control to approach the uncertainty of the system online,as the compensation term of the CNF controller,and make full use of the advantages of the two control methods to reduce the influence of uncertain factors on the performance of the system.The convergence of the closed-loop system is proved by feedback linearization and Lyapunov theory.The final simulation results confirm the effectiveness of this plan.
基金supported by the National Natural Science Foundation of China(61374035)
文摘Composite nonlinear feedback (CNF) control techniquefor tracking control problems is extended to the output regulationproblem of singular linear systems with input saturation. A statefeedback CNF control law and an output feedback CNF controllaw are constructed respectively for the output regulation problemof singular linear systems with input saturation. It is shown thatthe output regulation problem by CNF control is solvable underthe same solvability conditions of the output regulation problemby linear control. However, with the virtue of the CNF control, thetransient performance of the closed-loop system can be improvedby carefully designing the linear part and the nonlinear part of theCNF control law. The design procedure and the improvement ofthe transient performance of the closed-loop system are illustratedwith a numerical simulation.
基金This work was supported in part by the National Natural Science Foundation of China under Grants 62273285 and 62173283in part by the Natural Science Foundation of Fujian Province of China under Grants 2021J01051.
文摘This paper investigates the cooperative output regulation problem of linear multi-agent systems with a linear exogenous system(exo-system).The network topology is described by a directed graph which contains a directed spanning tree with the exo-system as the root.Aiming at improving the transient performance of the multi-agent systems,a dynamic control law is developed by the composite nonlinear feedback(CNF)control technique.In particular,a distributed dynamic compensator independent of the interaction on the compensator states of agents among the network,is adopted.The solvability condition for the cooperative output regulation problem is obtained using the small-gain theory,which will not be destroyed by adding the nonlinear feedback part of the CNF control law.It is also shown that in the case with the exo-system not diverging exponentially,the small-gain condition can be guaranteed using the low-gain design.Finally,simulation results illustrate that the proposed CNF control law improves the transient performance for the cooperative output regulation of linear multi-agent systems.
文摘The aim of our work is to formulate and demonstrate the results of the normality, the Lipschitz continuity, of a nonlinear feedback system described by the monotone maximal operators and hemicontinuous, defined on real reflexive Banach spaces, as well as the approximation in a neighborhood of zero, of solutions of a feedback system [A,B] assumed to be non-linear, by solutions of another linear, This approximation allows us to obtain appropriate estimates of the solutions. These estimates have a significant effect on the study of the robust stability and sensitivity of such a system see <a href="#ref1">[1]</a> <a href="#ref2">[2]</a> <a href="#ref3">[3]</a>. We then consider a linear FS <img src="Edit_4629d4d0-bbb2-478d-adde-391efde3d1e0.bmp" alt="" />, and prove that, if <img src="Edit_435aae08-e821-4b4d-99d2-e2a2b47609c1.bmp" alt="" />;<img src="Edit_4fa030bc-1f97-4726-8257-ca8d00657aac.bmp" alt="" /> , with <img src="Edit_63ab4faa-ba40-45fe-8b8a-7a6caef91794.bmp" alt="" />the respective solutions of FS’s [A,B] and <img src="Edit_e78e2e6d-8934-4011-93eb-8b7eb52fa856.bmp" alt="" /> corresponding to the given (u,v) in <img src="Edit_0e18433c-8c7a-454f-8eec-6eb9fb69469a.bmp" alt="" /> . There exists,<img src="Edit_3dcd8afc-8cea-4c06-a920-e4148a5f793e.bmp" alt="" />, positive real constants such that, <img src="Edit_edb88446-3e39-4fe0-865a-114de701e78e.bmp" alt="" />. These results are the subject of theorems 3.1, <span style="font-size:10.0pt;font-family:;" "="">... </span>, 3.3. The proofs of these theorems are based on our lemmas 3.2, <span style="font-size:10.0pt;font-family:;" "="">... </span>, 3.5, devoted according to the hypotheses on A and B, to the existence of the inverse of the operator <em>I+BA</em> and <img src="Edit_2db1326b-cb5b-44cf-8d1f-df22bd6da45f.bmp" alt="" />. The results obtained and demonstrated along this document, present an extension in general Banach space of those in <a href="#ref4">[4]</a> on a Hilbert space <em>H</em> and those in <a href="#ref5">[5]</a> on a extended Hilbert space <img src="Edit_b70ce337-1812-4d4b-ae7d-a24da7e5b3cf.bmp" alt="" />.
基金supported by Liaoning Provincial Department of Education 2023 Basic Research Projects for Universities and Colleges(Grant No.JYTQN2023131)Liaoning Provincial Science and Technology Program:Cooperative Control and Recognition of Unmanned Vessels for Fishing Vessel Operation Scenarios(Grant No.600024003)Liaoning Provincial Department of Education Scientific Research Funding Project(Grant No.LJKZ0726).
文摘This paper proposes a separated trajectory tracking controller for fishing ships at sea state level 6 to solve the trajectory tracking problem of a fishing ship in a 6-level sea state,and to adapt to different working environments and safety requirements.The nonlinear feedback method is used to improve the closed-loop gain shaping algorithm.By introducing the sine function,the problem of excessive control energy of the system can be effectively solved.Moreover,an integral separation design is used to solve the influence of the integral term in conventional PID controllers on the transient performance of the system.In this paper,a common 32.98 m large fiberglass reinforced plastic(FRP)trawler is adopted for simulation research at the winds scale of Beaufort No.7.The results show that the track error is smaller than 3.5 m.The method is safe,feasible,concise and effective and has popularization value in the direction of fishing ship trajectory tracking control.This method can be used to improve the level of informatization and intelligence of fishing ships.
基金National Science Fund for Distinguished Young Scholars (50825502)
文摘Load simulator is a key test equipment for aircraft actuation systems in hardware-in-the-loop-simulation. Static loading is an essential function of the load simulator and widely used in the static/dynamic stiffness test of aircraft actuation systems. The tracking performance of the static loading is studied in this paper. Firstly, the nonlinear mathematical models of the hydraulic load simulator are derived, and the feedback linearization method is employed to construct a feed-forward controller to improve the force tracking performance. Considering the effect of the friction, a LuGre model based friction compensation is synthesized, in which the unmeasurable state is estimated by a dual state observer via a controlled learning mechanism to guarantee that the estimation is bounded. The modeling errors are attenuated by a well-designed robust controller with a control accuracy measured by a design parameter. Employing the dual state observer is to capture the different effects of the unmeasured state and hence can improve the friction compensation accuracy. The tracking performance is summarized by a derived theorem. Experimental results are also obtained to verify the high performance nature of the proposed control strategy.
基金supported by the National Natural Science Foundation of China(Grant No.61174094)the Young Scientists Fund of the National Natural Science Foundation of China(Grant No.11202148)
文摘In this paper, the synchronization of the fractional-order generalized augmented Lti system is investigated. Based on the predictor--corrector method, we obtain phase portraits, bifurcation diagrams, Lyapunov exponent spectra, and Poincar6 maps of the fractional-order system and find that a four-wing chaotic attractor exists in the system when the system pa- rameters change within certain ranges. Further, by varying the system parameters, rich dynamical behaviors occur in the 2.7-order system. According to the stability theory of a fractional-order linear system, and adopting the linearization by feedback method, we have designed a nonlinear feedback controller in our theoretical analysis to implement the synchro- nization of the drive system with the response system. In addition, the synchronization is also shown by an electronic circuit implementation for the 2.7-order system. The obtained experiment results accord with the theoretical analyses, which further demonstrate the feasibility and effectiveness of the proposed synchronization scheme.
基金supported by National Natural Science Foundation of China(11271139)Guangdong Natural Science Foundation(2014A030313256,S2013040016144)+1 种基金Science and Technology Projects of Guangdong Province(2013B010101009)Tianhe Science and Technology Foundation of Guangzhou(201301YG027)