Objective:To investigate the impact of precise nursing care based on dynamic nursing quality feedback model on the postoperative recovery of elderly patients undergoing radical resection for colon cancer,with a partic...Objective:To investigate the impact of precise nursing care based on dynamic nursing quality feedback model on the postoperative recovery of elderly patients undergoing radical resection for colon cancer,with a particular focus on its effects on psychological flexibility.Methods:Medical records of 124 elderly patients undergoing radical resection for colon cancer at The First Affiliated Hospital of Baotou Medical College between January 2021 and May 2024 were retrospectively analyzed in this study.Based on the received nursing interventions,the patients were divided into a control group(standard nursing care)and an observation group(precise nursing care based on a dynamic nursing quality feedback model).Results:The observation group exhibited significantly higher levels of hemoglobin,prealbumin,and albumin compared to the control group.Additionally,the observation group had lower scores in somatization,interpersonal sensitivity,depression,anxiety,obsessions-compulsions,hostility,phobic anxiety,psychoticism,and paranoid ideation.The observation group also demonstrated higher scores in active coping,self-efficacy,and the management of emotions,life,and symptoms.Improvements were also observed in nursing quality,perioperative intervention,satisfaction with rehabilitation guidance,and awareness of regular reexaminations,diet intervention,and complication prevention(all with P<0.05).Conclusion:Precise nursing based on a dynamic nursing quality feedback model can improve nutritional status and medical coping style,reduce psychological issues,and enhance self-management abilities in elderly patients following radical resection of colon cancer.Additionally,it increases nursing satisfaction and raises awareness regarding the importance of regular reexaminations and complication prevention.展开更多
The tele-operation robotic system which consists of an excavator as the construction robot,and two joysticks for operating the robot from a safe place are useful for performing restoration in damaged areas.In order to...The tele-operation robotic system which consists of an excavator as the construction robot,and two joysticks for operating the robot from a safe place are useful for performing restoration in damaged areas.In order to accomplish a precise task,the operator needs to feel a realistic sense of task force brought about from a feedback force between the fork glove of slave robot and unfamiliar environment.A novel force feedback model is proposed based on velocity control of cylinder to determine environment force acting on fork glove.Namely,the feedback force is formed by the error of displacement of joystick with velocity and driving force of piston,and the gain is calculated by the driving force and threshold of driving force of hydraulic cylinder.Moreover,the variable gain improved algorithm is developed to overcome the defect for grasping soft object.Experimental results for fork glove freedom of robotic system are provided to demonstrate the developed algorithm is available for grasping soft object.展开更多
In this study, a displacement-reactivity feedback model, which can directly represent the inherent ‘‘thermal expansion extinction effect'' of fast burst reactors(FBRs),was developed with the aid of the stati...In this study, a displacement-reactivity feedback model, which can directly represent the inherent ‘‘thermal expansion extinction effect'' of fast burst reactors(FBRs),was developed with the aid of the static neutron transport component of the FBR-MPC code. Dynamic behaviors of bursts in the Godiva I reactor were simulated by coupling the simplified multiphysics models consisting of the point kinetic equations for neutronics, adiabatic equation for temperature, and thermoelastic equations for displacement/stress with the developed model. The results were compared with the corresponding experimental data and those obtained using the traditional fission yield(temperature rise)-reactivity feedback models. It was found that the developed model can provide good results for the bursts with no or a small inertia effect. For the bursts with a prominent inertia effect, the smaller burst width and asymmetric distribution of the fission rate curve, noticed in the experiments but not evident using the traditional models, can be reproduced. In addition, the realistic oscillations in reactivity and fission rate caused by the core vibration, as well as the deeper sub-prompt criticality in the plateau following the burst, can be observed. Therefore, the developed displacement-reactivity feedback model can be expected to be an effective tool for calculating the dynamic behaviors of bursts.展开更多
In this paper, the state-feedback Nash game based mixed H2/H∞ design^([1, 2])has been extended for output feedback case. The algorithm is applied to control bioreactor system with a Laguerre-Wavelet Network(LWN)^...In this paper, the state-feedback Nash game based mixed H2/H∞ design^([1, 2])has been extended for output feedback case. The algorithm is applied to control bioreactor system with a Laguerre-Wavelet Network(LWN)^([3, 4])model of the bioreactor.This is achieved by using the LWN model as a deviation model and by successively linearising the deviation model along the state trajectory. For reducing the approximation error and to improve the controller performance, symbolic derivation algorithm, viz.,automatic differentiation is employed. A cautionary note is also given on the fragility of the output feedback mixed H2/H∞ model predictive controller^([4, 5])due to its sensitivity to its own parametric changes.展开更多
In order to design a nonlinear controller for small-scale autonomous helicopters, the dynamic characteristics of a model helicopter are investigated, and an integrated nonlinear model of a small-scale helicopter for h...In order to design a nonlinear controller for small-scale autonomous helicopters, the dynamic characteristics of a model helicopter are investigated, and an integrated nonlinear model of a small-scale helicopter for hovering control is presented. It is proved that the nonlinear system of the small-scale helicopter can be transformed to a linear system using the dynamic feedback linearization technique. Finally, simulations are carried out to validate the nonlinear controller.展开更多
A car-following model is presented, in which the effects of non-motor vehicles on adjacent lanes are taken into ac- count. A control signal including the velocity differences between the following vehicle and the targ...A car-following model is presented, in which the effects of non-motor vehicles on adjacent lanes are taken into ac- count. A control signal including the velocity differences between the following vehicle and the target vehicle is introduced according to the feedback control theory. The stability condition for the new model is derived. Numerical simulation is used to demonstrate the advantage of the new model including the control signal; the results are consistent with the analytical ones展开更多
A nonautonomous Nicholson's Blowflies model with feedback control and delay is investigated in this paper. We show that for this system, feedback control variable has no influence on the persistent property of the...A nonautonomous Nicholson's Blowflies model with feedback control and delay is investigated in this paper. We show that for this system, feedback control variable has no influence on the persistent property of the system.展开更多
Wellbore instability is one of the concerns in the field of drilling engineering.This phenomenon is affected by several factors such as azimuth,inclination angle,in-situ stress,mud weight,and rock strength parameters....Wellbore instability is one of the concerns in the field of drilling engineering.This phenomenon is affected by several factors such as azimuth,inclination angle,in-situ stress,mud weight,and rock strength parameters.Among these factors,azimuth,inclination angle,and mud weight are controllable.The objective of this paper is to introduce a new procedure based on elastoplastic theory in wellbore stability solution to determine the optimum well trajectory and global minimum mud pressure required(GMMPR).Genetic algorithm(GA) was applied as a main optimization engine that employs proportional feedback controller to obtain the minimum mud pressure required(MMPR).The feedback function repeatedly calculated and updated the error between the simulated and set point of normalized yielded zone area(NYZA).To reduce computation expenses,an artificial neural network(ANN) was used as a proxy(surrogate model) to approximate the behavior of the actual wellbore model.The methodology was applied to a directional well in southwestern Iranian oilfield.The results demonstrated that the error between the predicted GMMPR and practical safe mud pressure was 4%for elastoplastic method,and 22%for conventional elastic solution.展开更多
We analyze the energy aspects of single and coupled Hindmarsh–Rose(HR) neuron models with a quadratic flux controlled memristor. The energy function for HR neuron with memristor has been derived and the dynamics have...We analyze the energy aspects of single and coupled Hindmarsh–Rose(HR) neuron models with a quadratic flux controlled memristor. The energy function for HR neuron with memristor has been derived and the dynamics have been analyzed in the presence of various external stimuli. We found that the bursting mode of the system changes with external forcing. The negative feedback in Hamilton energy function effectively stabilizes the chaotic trajectories and controls the phase space. The Lyapunov exponents have been plotted to verify the stabilization of trajectories. The energy aspects during the synchronous dynamics of electrically coupled neurons have been analyzed. As the coupling strength increases, the average energy fluctuates and stabilizes at the point of synchronization. When the neurons are coupled via chemical synapse,the average energy variations show three important regimes: a fluctuating regime corresponding to the desynchronized, a stable region indicating synchronized and a linearly increasing regime corresponding to the amplitude death states have been observed. The synchronization transitions are verified by plotting the transverse Lyapunov exponents. The proposed method has a large number of applications in controlling coupled chaotic systems and in analyzing the energy change during various metabolic processes.展开更多
This paper studies a stochastically forced chemostat model with feedback control in which two organisms compete for a single growth-limiting substrate. In the deterministic counterpart, previous researches show that t...This paper studies a stochastically forced chemostat model with feedback control in which two organisms compete for a single growth-limiting substrate. In the deterministic counterpart, previous researches show that the coexistence of two competing organisms may be achieved as a stable positive equilibrium or a stable positive periodic solution by different feedback schedules. In the stochastic case, based on the stochastic sensitivity function technique,we construct the confidence domains for different feedback schedules which allow us to find the configurational arrangements of the stochastic attractors and analyze the dispersion of the random states of the stochastic model.展开更多
The paper introduces effective and straightforward algorithms of both explicit and implicit model-following designs with state derivative measurement feedback in novel reciprocal state space form (RSS) to handle state...The paper introduces effective and straightforward algorithms of both explicit and implicit model-following designs with state derivative measurement feedback in novel reciprocal state space form (RSS) to handle state derivative related performance output and state related performance output design cases. Applying proposed algorithms, no integrators are required. Consequently, implementation is simple and low-cost. Simulation has also been carried out to verify the proposed algorithms. Since acceleration can only be modeled as state derivative in state space form and micro-accelerometer which is the state derivative sensor is getting more and more attentions in many microelectromechanical and nanoelectromechanical systems (MEMS/NEMS) applications, the proposed algorithms are suitable for MEMS/NEMS systems installed with micro-accelerometers.展开更多
This paper covers the dynamic behaviors for a class of Nicholson’s blowflies model with multiple time-varying delay and feedback control. By using the dierential inequality theory, a set of sucient conditions are obt...This paper covers the dynamic behaviors for a class of Nicholson’s blowflies model with multiple time-varying delay and feedback control. By using the dierential inequality theory, a set of sucient conditions are obtained to ensure the permanence of the system. Our result shows that feedback control variables have no influence on the permanence of the system.展开更多
Ensemble simulations with the Arctic coupled regional climate model HIRHAM-NAOSIM have been analyzed to investigate atmospheric feedbacks to September sea-ice anomalies in the Arctic in autumn and the following winter...Ensemble simulations with the Arctic coupled regional climate model HIRHAM-NAOSIM have been analyzed to investigate atmospheric feedbacks to September sea-ice anomalies in the Arctic in autumn and the following winter. Different "low- minus high ice" composites have been calculated using selected model runs and different periods. This approach allows us to investigate the robustness of the simulated regional atmospheric feedbacks to detected sea-ice anomalies. Since the position and strength of the September sea-ice anomaly varies between the different "low- minus high ice" composites, the related simulated atmospheric patterns in autumn differ depending on the specific surface heat flux forcing through the oceaaa-atmosphere interface. However, irrespective of those autumn differences, the regional atmospheric feedback in the following winter is rather insensitive to the applied compositing. Neither the selection of simulations nor the considered period impacts the results. The simulated consistent large-scale atmospheric circulation pattern show-s a wave-like pattern with positive pressure anomaly over the region of the Barents/Kara Seas and Scandinavia/western Russia ("Scandinavian-Ural blocking") and negative pressure anomaly over the East Siberian/Laptev Seas.展开更多
T-S fuzzy model was applied to describe nonlinear system and global fuzzy model was expressed by the form of uncertain system.Based on robust state feedback H_∞control strategy,designed a global asymptotic steady fuz...T-S fuzzy model was applied to describe nonlinear system and global fuzzy model was expressed by the form of uncertain system.Based on robust state feedback H_∞control strategy,designed a global asymptotic steady fuzzy model.This control system can use the experimental input-output data pairs for the biped robot learning and walking with dynamic balance.It is proved by simulation result that robust state feedback H_∞control method based on T-S fuzzy model can effectively restrain the effect of model uncertainties and external disturbance acting on biped robot.From these works,we showed the satisfactory performance of joint tracking without any chattering.展开更多
This paper investigates the chaotification problem of a stable continuous-time T S fuzzy system. A simple nonlinear state time-delay feedback controller is designed by parallel distributed compensation technique. Then...This paper investigates the chaotification problem of a stable continuous-time T S fuzzy system. A simple nonlinear state time-delay feedback controller is designed by parallel distributed compensation technique. Then, the asymptotically approximate relationship between the controlled continuous-time T-S fuzzy system with time-delay and a discrete-time T-S fuzzy system is established. Based on the discrete-time T-S fuzzy system, it proves that the chaos in the discrete- time T-S fuzzy system satisfies the Li-Yorke definition by choosing appropriate controller parameters via the revised Marotto theorem. Finally, the effectiveness of the proposed chaotic anticontrol method is verified by a practical example.展开更多
A nonautonomous delayed logistic model with linear feedback regulation is proposed in this paper. Sufficient conditions are derived for the existence, uniqueness and global asymptotic stability of positive periodic so...A nonautonomous delayed logistic model with linear feedback regulation is proposed in this paper. Sufficient conditions are derived for the existence, uniqueness and global asymptotic stability of positive periodic solution of the model展开更多
In this paper, mathematical model for cell growth and biofuel production under synthetic feedback loop is discussed. The nonlinear differential equations are solved analytically for the maximum production of biofuel u...In this paper, mathematical model for cell growth and biofuel production under synthetic feedback loop is discussed. The nonlinear differential equations are solved analytically for the maximum production of biofuel under synthetic feedback. The closed-form of analytical expressions pertaining to the concentrations of cell density, repressor proteins, pump expressions, intracellular biofuel and extracellular biofuel are presented. The constant pump model is compared with feedback loop model analytically to know the biofuel production. The numerical solution of this problem is also reported using Scilab/Matlab program. Also, the analytical results are compared with previous published numerical results and found to be in good agreement.展开更多
For a class of nonlinear systems whose states are immeasurable, when the outputs of the system are sampled asynchronously, by introducing a state observer, an output feedback distributed model predictive control algor...For a class of nonlinear systems whose states are immeasurable, when the outputs of the system are sampled asynchronously, by introducing a state observer, an output feedback distributed model predictive control algorithm is proposed. It is proved that the errors of estimated states and the actual system's states are bounded. And it is guaranteed that the estimated states of the closed-loop system are ultimately bounded in a region containing the origin. As a result, the states of the actual system are ultimately bounded. A simulation example verifies the effectiveness of the proposed distributed control method.展开更多
This paper develops a generalized dynamical model to describe the interactive dynamics between normal cells, tumor cells, immune cells, drug therapy, electromagnetic field of the human cells, extracellular heat and fl...This paper develops a generalized dynamical model to describe the interactive dynamics between normal cells, tumor cells, immune cells, drug therapy, electromagnetic field of the human cells, extracellular heat and fluid transfer, and intercellular fractional mass of Oxygen, cell acidity and Pancreatin enzyme. The overall dynamics stability, controllability and observability have been investigated. Moreover, Cesium therapy is considered as a control input to the 11-dimensional dynamics using state-feedback controlled system and pole placement technique. This approach is found to be effective in driving the desired rate of tumor cell kill and converging the system to healthy equilibrium state. Furthermore, the ranges of the system dynamics parameters which lead to instability and growth of tumor cells have been identified. Finally, simulation results are demonstrated to verify the effectiveness of the applied approach which can be implemented successfully to cancer patients.展开更多
In this paper, a fuzzy adaptive tracking control for uncertain strict-feedback nonlinear systems with unknown bounded disturbances is proposed. The generalized fuzzy hyperbolic model (GFHM) with better approximation p...In this paper, a fuzzy adaptive tracking control for uncertain strict-feedback nonlinear systems with unknown bounded disturbances is proposed. The generalized fuzzy hyperbolic model (GFHM) with better approximation performance is used to approximate the unknown nonlinear function in the system. The dynamic surface control (DSC) is used to design the controller, which not only avoids the “explosion of complexity” problem in the process of repeated derivation, but also makes the control system simpler in structure and lower in computational cost because only one adaptive law is designed in the controller design process. Through the Lyapunov stability analysis, all signals in the closed loop system designed in this paper are semi-globally uniformly ultimately bounded (SGUUB). Finally, the effectiveness of the method is verified by a simulation example.展开更多
文摘Objective:To investigate the impact of precise nursing care based on dynamic nursing quality feedback model on the postoperative recovery of elderly patients undergoing radical resection for colon cancer,with a particular focus on its effects on psychological flexibility.Methods:Medical records of 124 elderly patients undergoing radical resection for colon cancer at The First Affiliated Hospital of Baotou Medical College between January 2021 and May 2024 were retrospectively analyzed in this study.Based on the received nursing interventions,the patients were divided into a control group(standard nursing care)and an observation group(precise nursing care based on a dynamic nursing quality feedback model).Results:The observation group exhibited significantly higher levels of hemoglobin,prealbumin,and albumin compared to the control group.Additionally,the observation group had lower scores in somatization,interpersonal sensitivity,depression,anxiety,obsessions-compulsions,hostility,phobic anxiety,psychoticism,and paranoid ideation.The observation group also demonstrated higher scores in active coping,self-efficacy,and the management of emotions,life,and symptoms.Improvements were also observed in nursing quality,perioperative intervention,satisfaction with rehabilitation guidance,and awareness of regular reexaminations,diet intervention,and complication prevention(all with P<0.05).Conclusion:Precise nursing based on a dynamic nursing quality feedback model can improve nutritional status and medical coping style,reduce psychological issues,and enhance self-management abilities in elderly patients following radical resection of colon cancer.Additionally,it increases nursing satisfaction and raises awareness regarding the importance of regular reexaminations and complication prevention.
基金supported by National Natural Science Foundation of China(No.50475011).
文摘The tele-operation robotic system which consists of an excavator as the construction robot,and two joysticks for operating the robot from a safe place are useful for performing restoration in damaged areas.In order to accomplish a precise task,the operator needs to feel a realistic sense of task force brought about from a feedback force between the fork glove of slave robot and unfamiliar environment.A novel force feedback model is proposed based on velocity control of cylinder to determine environment force acting on fork glove.Namely,the feedback force is formed by the error of displacement of joystick with velocity and driving force of piston,and the gain is calculated by the driving force and threshold of driving force of hydraulic cylinder.Moreover,the variable gain improved algorithm is developed to overcome the defect for grasping soft object.Experimental results for fork glove freedom of robotic system are provided to demonstrate the developed algorithm is available for grasping soft object.
基金supported by a General Financial Grant from the China Postdoctoral Science Foundation(No.2017M623313XB)Key Laboratory of Neutron Physics,CAEP(No.2018BA02)
文摘In this study, a displacement-reactivity feedback model, which can directly represent the inherent ‘‘thermal expansion extinction effect'' of fast burst reactors(FBRs),was developed with the aid of the static neutron transport component of the FBR-MPC code. Dynamic behaviors of bursts in the Godiva I reactor were simulated by coupling the simplified multiphysics models consisting of the point kinetic equations for neutronics, adiabatic equation for temperature, and thermoelastic equations for displacement/stress with the developed model. The results were compared with the corresponding experimental data and those obtained using the traditional fission yield(temperature rise)-reactivity feedback models. It was found that the developed model can provide good results for the bursts with no or a small inertia effect. For the bursts with a prominent inertia effect, the smaller burst width and asymmetric distribution of the fission rate curve, noticed in the experiments but not evident using the traditional models, can be reproduced. In addition, the realistic oscillations in reactivity and fission rate caused by the core vibration, as well as the deeper sub-prompt criticality in the plateau following the burst, can be observed. Therefore, the developed displacement-reactivity feedback model can be expected to be an effective tool for calculating the dynamic behaviors of bursts.
文摘In this paper, the state-feedback Nash game based mixed H2/H∞ design^([1, 2])has been extended for output feedback case. The algorithm is applied to control bioreactor system with a Laguerre-Wavelet Network(LWN)^([3, 4])model of the bioreactor.This is achieved by using the LWN model as a deviation model and by successively linearising the deviation model along the state trajectory. For reducing the approximation error and to improve the controller performance, symbolic derivation algorithm, viz.,automatic differentiation is employed. A cautionary note is also given on the fragility of the output feedback mixed H2/H∞ model predictive controller^([4, 5])due to its sensitivity to its own parametric changes.
基金supported by the National Natural Science Foundation of China (No.60975023)
文摘In order to design a nonlinear controller for small-scale autonomous helicopters, the dynamic characteristics of a model helicopter are investigated, and an integrated nonlinear model of a small-scale helicopter for hovering control is presented. It is proved that the nonlinear system of the small-scale helicopter can be transformed to a linear system using the dynamic feedback linearization technique. Finally, simulations are carried out to validate the nonlinear controller.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.11072117 and 61074142)the Scientific Research Fund of the Educational Department of Zhejiang Province,China (Grant No.Z201119278)+2 种基金the Natural Science Foundation of Ningbo,China (Grant Nos.2012A610152 and 2012A610038)the Disciplinary Project of Ningbo,China (Grant No.SZXL1067)the K.C.Wong Magna Fund in Ningbo University,China
文摘A car-following model is presented, in which the effects of non-motor vehicles on adjacent lanes are taken into ac- count. A control signal including the velocity differences between the following vehicle and the target vehicle is introduced according to the feedback control theory. The stability condition for the new model is derived. Numerical simulation is used to demonstrate the advantage of the new model including the control signal; the results are consistent with the analytical ones
基金Supported by the Program of Fujian Technology Innovation Platform(2009J1007)
文摘A nonautonomous Nicholson's Blowflies model with feedback control and delay is investigated in this paper. We show that for this system, feedback control variable has no influence on the persistent property of the system.
文摘Wellbore instability is one of the concerns in the field of drilling engineering.This phenomenon is affected by several factors such as azimuth,inclination angle,in-situ stress,mud weight,and rock strength parameters.Among these factors,azimuth,inclination angle,and mud weight are controllable.The objective of this paper is to introduce a new procedure based on elastoplastic theory in wellbore stability solution to determine the optimum well trajectory and global minimum mud pressure required(GMMPR).Genetic algorithm(GA) was applied as a main optimization engine that employs proportional feedback controller to obtain the minimum mud pressure required(MMPR).The feedback function repeatedly calculated and updated the error between the simulated and set point of normalized yielded zone area(NYZA).To reduce computation expenses,an artificial neural network(ANN) was used as a proxy(surrogate model) to approximate the behavior of the actual wellbore model.The methodology was applied to a directional well in southwestern Iranian oilfield.The results demonstrated that the error between the predicted GMMPR and practical safe mud pressure was 4%for elastoplastic method,and 22%for conventional elastic solution.
基金University Grants Commission,India for providing financial assistance through JRF scheme for doing the research workDST,India for their financial assistance through the FIST program
文摘We analyze the energy aspects of single and coupled Hindmarsh–Rose(HR) neuron models with a quadratic flux controlled memristor. The energy function for HR neuron with memristor has been derived and the dynamics have been analyzed in the presence of various external stimuli. We found that the bursting mode of the system changes with external forcing. The negative feedback in Hamilton energy function effectively stabilizes the chaotic trajectories and controls the phase space. The Lyapunov exponents have been plotted to verify the stabilization of trajectories. The energy aspects during the synchronous dynamics of electrically coupled neurons have been analyzed. As the coupling strength increases, the average energy fluctuates and stabilizes at the point of synchronization. When the neurons are coupled via chemical synapse,the average energy variations show three important regimes: a fluctuating regime corresponding to the desynchronized, a stable region indicating synchronized and a linearly increasing regime corresponding to the amplitude death states have been observed. The synchronization transitions are verified by plotting the transverse Lyapunov exponents. The proposed method has a large number of applications in controlling coupled chaotic systems and in analyzing the energy change during various metabolic processes.
基金Supported by the National Natural Science Foundation of China(11671260,11801224)Natural Science Foundation of Jiangsu Province(BK20180856)
文摘This paper studies a stochastically forced chemostat model with feedback control in which two organisms compete for a single growth-limiting substrate. In the deterministic counterpart, previous researches show that the coexistence of two competing organisms may be achieved as a stable positive equilibrium or a stable positive periodic solution by different feedback schedules. In the stochastic case, based on the stochastic sensitivity function technique,we construct the confidence domains for different feedback schedules which allow us to find the configurational arrangements of the stochastic attractors and analyze the dispersion of the random states of the stochastic model.
文摘The paper introduces effective and straightforward algorithms of both explicit and implicit model-following designs with state derivative measurement feedback in novel reciprocal state space form (RSS) to handle state derivative related performance output and state related performance output design cases. Applying proposed algorithms, no integrators are required. Consequently, implementation is simple and low-cost. Simulation has also been carried out to verify the proposed algorithms. Since acceleration can only be modeled as state derivative in state space form and micro-accelerometer which is the state derivative sensor is getting more and more attentions in many microelectromechanical and nanoelectromechanical systems (MEMS/NEMS) applications, the proposed algorithms are suitable for MEMS/NEMS systems installed with micro-accelerometers.
基金Supported by the Foundation of Fujian Education Bureau(JA13361)Supported by the National Natural Science Foundation of Fujian Province(2013J01010)
文摘This paper covers the dynamic behaviors for a class of Nicholson’s blowflies model with multiple time-varying delay and feedback control. By using the dierential inequality theory, a set of sucient conditions are obtained to ensure the permanence of the system. Our result shows that feedback control variables have no influence on the permanence of the system.
基金supported by the SFB/TR172 “Arctic Amplification:Climate Relevant Atmospheric and Surface Processes,and Feedback Mechanisms (AC)” funded by the Deutsche Forschungsgemeinschaft (DFG)supported by the project QUARCCS “Quantifying Rapid Climate Change in the Arctic:Regional feedbacks and large-scale impacts” funded by the German Federal Ministry for Education and Research (BMBF)
文摘Ensemble simulations with the Arctic coupled regional climate model HIRHAM-NAOSIM have been analyzed to investigate atmospheric feedbacks to September sea-ice anomalies in the Arctic in autumn and the following winter. Different "low- minus high ice" composites have been calculated using selected model runs and different periods. This approach allows us to investigate the robustness of the simulated regional atmospheric feedbacks to detected sea-ice anomalies. Since the position and strength of the September sea-ice anomaly varies between the different "low- minus high ice" composites, the related simulated atmospheric patterns in autumn differ depending on the specific surface heat flux forcing through the oceaaa-atmosphere interface. However, irrespective of those autumn differences, the regional atmospheric feedback in the following winter is rather insensitive to the applied compositing. Neither the selection of simulations nor the considered period impacts the results. The simulated consistent large-scale atmospheric circulation pattern show-s a wave-like pattern with positive pressure anomaly over the region of the Barents/Kara Seas and Scandinavia/western Russia ("Scandinavian-Ural blocking") and negative pressure anomaly over the East Siberian/Laptev Seas.
文摘T-S fuzzy model was applied to describe nonlinear system and global fuzzy model was expressed by the form of uncertain system.Based on robust state feedback H_∞control strategy,designed a global asymptotic steady fuzzy model.This control system can use the experimental input-output data pairs for the biped robot learning and walking with dynamic balance.It is proved by simulation result that robust state feedback H_∞control method based on T-S fuzzy model can effectively restrain the effect of model uncertainties and external disturbance acting on biped robot.From these works,we showed the satisfactory performance of joint tracking without any chattering.
基金supported by the National Natural Science Foundation of China (Grant Nos. 60904101,60972164 and 60904046)the Fundamental Research Funds for the Central Universities (Grant No. N090404009)the Research Foundation of Education Bureau of Liaoning Province,China (Grant No. 2009A544)
文摘This paper investigates the chaotification problem of a stable continuous-time T S fuzzy system. A simple nonlinear state time-delay feedback controller is designed by parallel distributed compensation technique. Then, the asymptotically approximate relationship between the controlled continuous-time T-S fuzzy system with time-delay and a discrete-time T-S fuzzy system is established. Based on the discrete-time T-S fuzzy system, it proves that the chaos in the discrete- time T-S fuzzy system satisfies the Li-Yorke definition by choosing appropriate controller parameters via the revised Marotto theorem. Finally, the effectiveness of the proposed chaotic anticontrol method is verified by a practical example.
文摘A nonautonomous delayed logistic model with linear feedback regulation is proposed in this paper. Sufficient conditions are derived for the existence, uniqueness and global asymptotic stability of positive periodic solution of the model
文摘In this paper, mathematical model for cell growth and biofuel production under synthetic feedback loop is discussed. The nonlinear differential equations are solved analytically for the maximum production of biofuel under synthetic feedback. The closed-form of analytical expressions pertaining to the concentrations of cell density, repressor proteins, pump expressions, intracellular biofuel and extracellular biofuel are presented. The constant pump model is compared with feedback loop model analytically to know the biofuel production. The numerical solution of this problem is also reported using Scilab/Matlab program. Also, the analytical results are compared with previous published numerical results and found to be in good agreement.
文摘For a class of nonlinear systems whose states are immeasurable, when the outputs of the system are sampled asynchronously, by introducing a state observer, an output feedback distributed model predictive control algorithm is proposed. It is proved that the errors of estimated states and the actual system's states are bounded. And it is guaranteed that the estimated states of the closed-loop system are ultimately bounded in a region containing the origin. As a result, the states of the actual system are ultimately bounded. A simulation example verifies the effectiveness of the proposed distributed control method.
文摘This paper develops a generalized dynamical model to describe the interactive dynamics between normal cells, tumor cells, immune cells, drug therapy, electromagnetic field of the human cells, extracellular heat and fluid transfer, and intercellular fractional mass of Oxygen, cell acidity and Pancreatin enzyme. The overall dynamics stability, controllability and observability have been investigated. Moreover, Cesium therapy is considered as a control input to the 11-dimensional dynamics using state-feedback controlled system and pole placement technique. This approach is found to be effective in driving the desired rate of tumor cell kill and converging the system to healthy equilibrium state. Furthermore, the ranges of the system dynamics parameters which lead to instability and growth of tumor cells have been identified. Finally, simulation results are demonstrated to verify the effectiveness of the applied approach which can be implemented successfully to cancer patients.
文摘In this paper, a fuzzy adaptive tracking control for uncertain strict-feedback nonlinear systems with unknown bounded disturbances is proposed. The generalized fuzzy hyperbolic model (GFHM) with better approximation performance is used to approximate the unknown nonlinear function in the system. The dynamic surface control (DSC) is used to design the controller, which not only avoids the “explosion of complexity” problem in the process of repeated derivation, but also makes the control system simpler in structure and lower in computational cost because only one adaptive law is designed in the controller design process. Through the Lyapunov stability analysis, all signals in the closed loop system designed in this paper are semi-globally uniformly ultimately bounded (SGUUB). Finally, the effectiveness of the method is verified by a simulation example.