One configuration for realizing voltage-mode multifunction filters and another configuration for realizing current-mode multifunction filters using current feedback amplifiers (CFAs) are presented. The proposed voltag...One configuration for realizing voltage-mode multifunction filters and another configuration for realizing current-mode multifunction filters using current feedback amplifiers (CFAs) are presented. The proposed voltage-mode circuit exhibit simultaneously lowpass and bandpass filters. The proposed current-mode circuit exhibit simultaneously lowpass, bandpass and highpass filters. The proposed circuits offer the following features: no requirements for component matching conditions;low active and passive sensitivities;employing only grounded capacitors and the ability to obtain multifunction filters from the same circuit configuration.展开更多
A chaos control strategy for chaotic current-mode boost converter is presented by using inductor current sampled feedback control technique.The quantitative analysis of control mechanism is performed by establishing a...A chaos control strategy for chaotic current-mode boost converter is presented by using inductor current sampled feedback control technique.The quantitative analysis of control mechanism is performed by establishing a discrete alterative map of the controlled system.The stability criterion,feedback gain,and corresponding critical duty ratio are obtained from the eigenvalue of the map.The simulation results verify the t heoretical analysis results of the control strategy.展开更多
A new non-inverting RC active differentiator network base on a current feedback amplifier and using a grounded capacitor is described. Small time constant can be achieved by adjusting a single grounded resistor. Becau...A new non-inverting RC active differentiator network base on a current feedback amplifier and using a grounded capacitor is described. Small time constant can be achieved by adjusting a single grounded resistor. Because the output impedance of the CFA is very low, the output terminal of the proposed circuit can be directly connected to the next stage. Experimental results that confirm theoretical analysis are presented.展开更多
In this paper, the issues of stochastic stability analysis and fault estimation are investigated for a class of continuoustime Markov jump piecewise-affine(PWA) systems against actuator and sensor faults. Firstly, a n...In this paper, the issues of stochastic stability analysis and fault estimation are investigated for a class of continuoustime Markov jump piecewise-affine(PWA) systems against actuator and sensor faults. Firstly, a novel mode-dependent PWA iterative learning observer with current feedback is designed to estimate the system states and faults, simultaneously, which contains both the previous iteration information and the current feedback mechanism. The auxiliary feedback channel optimizes the response speed of the observer, therefore the estimation error would converge to zero rapidly. Then, sufficient conditions for stochastic stability with guaranteed performance are demonstrated for the estimation error system, and the equivalence relations between the system information and the estimated information can be established via iterative accumulating representation.Finally, two illustrative examples containing a class of tunnel diode circuit systems are presented to fully demonstrate the effectiveness and superiority of the proposed iterative learning observer with current feedback.展开更多
Two simple voltage-controlled-oscillators (VCO) with linear tuning laws employing only a single current feedback operational amplifier (CFOA) in conjunction with two analog multipliers (AM) have been highlighted. The ...Two simple voltage-controlled-oscillators (VCO) with linear tuning laws employing only a single current feedback operational amplifier (CFOA) in conjunction with two analog multipliers (AM) have been highlighted. The workability of the presented VCOs has been demonstrated by experimental results based upon AD844 type CFOAs and AD534 type AMs.展开更多
There is a strong magnetic coupling between poloidal field coils of superconducting tokamak HT-7, especially between ohinic heating and vertical field coils. These coils are connected to individual power supply. The c...There is a strong magnetic coupling between poloidal field coils of superconducting tokamak HT-7, especially between ohinic heating and vertical field coils. These coils are connected to individual power supply. The control system for the plasma current and horizontal position control has been designed and showed satisfactory results with the feedback control of multivari- able feedforward-decoupling and var-parameter PID controller to simultaneously modulate power supplies. The design and analysls of the control system is presented.展开更多
We report on the room-temperature cascade laser (QCL) at λ -4.7μm. cw operation of a surface grating Both grating design and material distributed feedback (DFB) quantum optimization are used to decrease the thre...We report on the room-temperature cascade laser (QCL) at λ -4.7μm. cw operation of a surface grating Both grating design and material distributed feedback (DFB) quantum optimization are used to decrease the threshold current density and to increase the output power. For a high-reflectivity-coated 13-μm-wide and 4- mm-long laser, high wall-plug efficiency of 6% is obtained at 20℃ from a single facet producing over I W of ew output power. The threshold current density of DFB QCL is as low as 1.13kA/cm^2 at 10℃ and 1.34kA/cm2 at 30℃ in cw mode. Stable single-mode emission with a side-mode suppression ratio of about 30 dB is observed in tile working temperature range of 20-50℃.展开更多
This paper presents improvement tests based in a feedback-current controller designed to Tracking Maximum Power Point in photovoltaic system (MPPT-PV). Previously, a version was developed exhibiting results satisfacto...This paper presents improvement tests based in a feedback-current controller designed to Tracking Maximum Power Point in photovoltaic system (MPPT-PV). Previously, a version was developed exhibiting results satisfactory in simulation and through of a low cost prototype. Now, using a sophisticated physical model of solar cell available in PSIM program is shown other cases, considering variations both irradiation and temperature to evaluate successfully the controller. The results show that its system is suitable under dynamical changing atmospheric conditions operating with effectiveness acceptable.展开更多
The paper presents an adaptive controller formulated for a class of nonaffine discrete-time systems with non-strict forms and unknown dynamics.The controller operates based solely on the measured output,thus obviating...The paper presents an adaptive controller formulated for a class of nonaffine discrete-time systems with non-strict forms and unknown dynamics.The controller operates based solely on the measured output,thus obviating the need for knowledge of the physical order of the controlled plant.Utilizing an ideal solution and equivalent dynamics,the approach integrates an adaptive network with feedback and robust controllers to establish a closed-loop system.A learning law is derived under practical conditions of the designed parameters,ensuring effective closed-loop performance based on pure-output feedback.The controller’s effectiveness is validated through both numerical and experimental systems,with results meeting the conditions specified in the main theorem.Comparative analysis highlights the controller’s highly satisfactory performance and its advantages.This research offers a promising approach to adaptive control for discrete-time systems with non-strict dynamics,providing practical solutions for systems with unknown dynamics and indeterminate system order.展开更多
The design and performances of a high dynamic range DC-AC current sensor utilizing Giant Magneto-Impedance (GMI) are presented. The sensor is based on a GMI element with negative feedback. The sensing element is a 30 ...The design and performances of a high dynamic range DC-AC current sensor utilizing Giant Magneto-Impedance (GMI) are presented. The sensor is based on a GMI element with negative feedback. The sensing element is a 30 μm diameter GMI Co-based amorphous wire. It is curled to a toroidal core of 2 cm diameter. A bias magnetic field of about 650 A/m is applied to the GMI element to obtain an asymmetric GMI effect. A strong negative feedback is introduced to ensure linearity in a wide dynamic range. Analog conditioning electronics was fully developed. This includes a square wave oscillator based on an inverter trigger;a peak detector and a high gain amplifier with zero adjust. The GMI element is driven at a 3 MHz frequency and 5 mA peak-to-peak current. The closed-loop operations are investigated and the performances of the sensor are presented. DC current measurements are performed. The sensor exhibits good sensitivity and very good linearity, free from hysteresis, in a wide dynamic range of ±40 A. The sensitivity is about 0.24 V/A and the linearity error is about 0.02% of the full scale (FS). The hysteresis error is smaller than the measurement accuracy. AC current measurements using the developed sensor have also been successfully achieved. The sensor bandwidth in closed-loop was about 1.7 kHz.展开更多
In this study,on the basis of the results of the European Centre for Medium-Range Weather Forecasts Ocean Reanalysis System 4,the response of equatorial ocean currents and their roles during the peak phase of the Indi...In this study,on the basis of the results of the European Centre for Medium-Range Weather Forecasts Ocean Reanalysis System 4,the response of equatorial ocean currents and their roles during the peak phase of the Indian Ocean Dipole(IOD)are comprehensively explored.During the IOD peak season,a series of ocean responses emerge.First,significant meridional divergence in the surface layer and convergence in the subsurface layer are found in the equatorial region.The equatorial easterly winds and offequatorial wind curl anomalies are found to be responsible for the divergence at 55°–80°E and the convergence at 70°–90°E.Second,the meridional divergence and convergence are found to favor a weakened Wyrtki jet(WJ)in the surface layer and an enhanced Equatorial Undercurrent(EUC)in the subsurface layer,respectively.Therefore,these ocean responses provide ocean positive feedback that sustains the IOD peak as the weakened WJ and enhanced EUC help maintain the zonal temperature gradient.Additionally,heat budget analyses indicate that the weakened WJ favors sea surface temperature anomaly warming in the western Indian Ocean,whereas the enhanced EUC maintains the sea surface temperature anomaly cooling in the eastern Indian Ocean.展开更多
It is well accepted that lower hybrid current drive (LHCD) is the most efficient method for non-inductive current drive in fusion devices and the effect of the current drive is dependent on not only microwave power ...It is well accepted that lower hybrid current drive (LHCD) is the most efficient method for non-inductive current drive in fusion devices and the effect of the current drive is dependent on not only microwave power but also its grill phase shift. This paper presents a new kind of feedback control system for antenna phase difference in LHCD experiments. In this highspeed control system, a lot of new technologies and methods are incorporated. The results of the experiments show a very good agreement with the system design.展开更多
In the recent decade,different researchers have performed hardware implementation for different applications covering various areas of experts.In this research paper,a novel analog design and implementation of differe...In the recent decade,different researchers have performed hardware implementation for different applications covering various areas of experts.In this research paper,a novel analog design and implementation of different steps of fuzzy systems with current differencing buffered amplifier(CDBA)are proposed with a compact structure that can be used in many signal processing applications.The proposed circuits are capable of wide input current range,simple structure,and are highly linear.Different electrical parameters were compared for the proposed fuzzy system when using different membership functions.The novelty of this paper lies in the electronic implementation of different steps for realizing a fuzzy system using current amplifiers.When the power supply voltage of CDBA is 2V,it results in 155mW,power dissipation;4.615KΩ,input resistance;366KΩ,output resistances;and 189.09 dB,common-mode rejection ratio.A 155.519 dB,voltage gain,and 0.76V/μs,the slew rate is analyzed when the power supply voltage of CDBAis 3V.The fuzzy system is realized in 20nm CMOS technology and investigated with an output signal of high precision and high speed,illustrating that it is suitable for realtime applications.In this research paper,a consequence of feedback resistance on the adder circuit and the defuzzified circuit is also analyzed and the best results are obtained using 100K resistance.The structure has a low hardware complexity leading to a low delay and a rather high quality.展开更多
In recent years, power generation using renewable energy sources has been developed as a solution to the global warming problem. Among these power generation methods, wind power generation is increasing. However, as t...In recent years, power generation using renewable energy sources has been developed as a solution to the global warming problem. Among these power generation methods, wind power generation is increasing. However, as the penetration level of wind power generation increases, the low inertia and lack of synchronous power characteristics of the penetrated power system can have a significant impact on the transient stability of the grid. The virtual synchronous generator provides the ability of virtual inertia and synchronous power to interconnected inverters. The interconnected inverter with the virtual synchronous generator ability uses, in general, PI control based current controller. This paper proposes a new current-control method and compares it with conventional methods. The proposed current control is a method that follows virtual synchronous generator model that changes every moment by solving the discrete-time linear quadratic optimal control problem for each sampling time interval. The new method follows the conventional method, and therefore the reactive power fluctuation can be suppressed and the interconnected inverter will be downsized.展开更多
A high power buck-boost switch-mode LED driver delivering a constant 350 mA with a power efficient current sensing scheme is presented in this paper. The LED current is extracted by differentiating the output capacito...A high power buck-boost switch-mode LED driver delivering a constant 350 mA with a power efficient current sensing scheme is presented in this paper. The LED current is extracted by differentiating the output capacitor voltage and maintained by a feedback. The circuit has been fabricated in a standard 0.35 μm AMS CMOS process. Measurement results demonstrated a power-conversion efficiency over 90% with a line regulation of 8%/V for input voltage of 3.3 V and current output between 200 mA and 350 mA.展开更多
To enhance the system damping,a permanent magnet set which served as an eddy current damper was added to the magnetic levitation positioning stage which consists of a moving table,four Halbach permanent magnetic array...To enhance the system damping,a permanent magnet set which served as an eddy current damper was added to the magnetic levitation positioning stage which consists of a moving table,four Halbach permanent magnetic arrays,four stators and displacement sensors.The dynamics model of this stage was a complex nonlinear,strong coupling system which made the control strategy to be a focus research.The nonlinear controller of the system was proposed based on the theory of differential geometry.Both simulation and experimental results show that either the decoupling control of the movement can be realized in horizontal and vertical directions,and the control performance was improved by the damper,verifying the validity and efficiency of this method.展开更多
文摘One configuration for realizing voltage-mode multifunction filters and another configuration for realizing current-mode multifunction filters using current feedback amplifiers (CFAs) are presented. The proposed voltage-mode circuit exhibit simultaneously lowpass and bandpass filters. The proposed current-mode circuit exhibit simultaneously lowpass, bandpass and highpass filters. The proposed circuits offer the following features: no requirements for component matching conditions;low active and passive sensitivities;employing only grounded capacitors and the ability to obtain multifunction filters from the same circuit configuration.
文摘A chaos control strategy for chaotic current-mode boost converter is presented by using inductor current sampled feedback control technique.The quantitative analysis of control mechanism is performed by establishing a discrete alterative map of the controlled system.The stability criterion,feedback gain,and corresponding critical duty ratio are obtained from the eigenvalue of the map.The simulation results verify the t heoretical analysis results of the control strategy.
文摘A new non-inverting RC active differentiator network base on a current feedback amplifier and using a grounded capacitor is described. Small time constant can be achieved by adjusting a single grounded resistor. Because the output impedance of the CFA is very low, the output terminal of the proposed circuit can be directly connected to the next stage. Experimental results that confirm theoretical analysis are presented.
基金supported in part by the National Natural Science Foundation of China (62222310, U1813201, 61973131, 62033008)the Research Fund for the Taishan Scholar Project of Shandong Province of China+2 种基金the NSFSD(ZR2022ZD34)Japan Society for the Promotion of Science (21K04129)Fujian Outstanding Youth Science Fund (2020J06022)。
文摘In this paper, the issues of stochastic stability analysis and fault estimation are investigated for a class of continuoustime Markov jump piecewise-affine(PWA) systems against actuator and sensor faults. Firstly, a novel mode-dependent PWA iterative learning observer with current feedback is designed to estimate the system states and faults, simultaneously, which contains both the previous iteration information and the current feedback mechanism. The auxiliary feedback channel optimizes the response speed of the observer, therefore the estimation error would converge to zero rapidly. Then, sufficient conditions for stochastic stability with guaranteed performance are demonstrated for the estimation error system, and the equivalence relations between the system information and the estimated information can be established via iterative accumulating representation.Finally, two illustrative examples containing a class of tunnel diode circuit systems are presented to fully demonstrate the effectiveness and superiority of the proposed iterative learning observer with current feedback.
文摘Two simple voltage-controlled-oscillators (VCO) with linear tuning laws employing only a single current feedback operational amplifier (CFOA) in conjunction with two analog multipliers (AM) have been highlighted. The workability of the presented VCOs has been demonstrated by experimental results based upon AD844 type CFOAs and AD534 type AMs.
文摘There is a strong magnetic coupling between poloidal field coils of superconducting tokamak HT-7, especially between ohinic heating and vertical field coils. These coils are connected to individual power supply. The control system for the plasma current and horizontal position control has been designed and showed satisfactory results with the feedback control of multivari- able feedforward-decoupling and var-parameter PID controller to simultaneously modulate power supplies. The design and analysls of the control system is presented.
基金Supported by the National Basic Research Program of China under Grant Nos 2013CB632801 and 2013CB632803the National Natural Science Foundation of China under Grant Nos 61435014,61306058 and 61274094the Beijing Natural Science Foundation under Grant No 4144086
文摘We report on the room-temperature cascade laser (QCL) at λ -4.7μm. cw operation of a surface grating Both grating design and material distributed feedback (DFB) quantum optimization are used to decrease the threshold current density and to increase the output power. For a high-reflectivity-coated 13-μm-wide and 4- mm-long laser, high wall-plug efficiency of 6% is obtained at 20℃ from a single facet producing over I W of ew output power. The threshold current density of DFB QCL is as low as 1.13kA/cm^2 at 10℃ and 1.34kA/cm2 at 30℃ in cw mode. Stable single-mode emission with a side-mode suppression ratio of about 30 dB is observed in tile working temperature range of 20-50℃.
文摘This paper presents improvement tests based in a feedback-current controller designed to Tracking Maximum Power Point in photovoltaic system (MPPT-PV). Previously, a version was developed exhibiting results satisfactory in simulation and through of a low cost prototype. Now, using a sophisticated physical model of solar cell available in PSIM program is shown other cases, considering variations both irradiation and temperature to evaluate successfully the controller. The results show that its system is suitable under dynamical changing atmospheric conditions operating with effectiveness acceptable.
文摘The paper presents an adaptive controller formulated for a class of nonaffine discrete-time systems with non-strict forms and unknown dynamics.The controller operates based solely on the measured output,thus obviating the need for knowledge of the physical order of the controlled plant.Utilizing an ideal solution and equivalent dynamics,the approach integrates an adaptive network with feedback and robust controllers to establish a closed-loop system.A learning law is derived under practical conditions of the designed parameters,ensuring effective closed-loop performance based on pure-output feedback.The controller’s effectiveness is validated through both numerical and experimental systems,with results meeting the conditions specified in the main theorem.Comparative analysis highlights the controller’s highly satisfactory performance and its advantages.This research offers a promising approach to adaptive control for discrete-time systems with non-strict dynamics,providing practical solutions for systems with unknown dynamics and indeterminate system order.
文摘The design and performances of a high dynamic range DC-AC current sensor utilizing Giant Magneto-Impedance (GMI) are presented. The sensor is based on a GMI element with negative feedback. The sensing element is a 30 μm diameter GMI Co-based amorphous wire. It is curled to a toroidal core of 2 cm diameter. A bias magnetic field of about 650 A/m is applied to the GMI element to obtain an asymmetric GMI effect. A strong negative feedback is introduced to ensure linearity in a wide dynamic range. Analog conditioning electronics was fully developed. This includes a square wave oscillator based on an inverter trigger;a peak detector and a high gain amplifier with zero adjust. The GMI element is driven at a 3 MHz frequency and 5 mA peak-to-peak current. The closed-loop operations are investigated and the performances of the sensor are presented. DC current measurements are performed. The sensor exhibits good sensitivity and very good linearity, free from hysteresis, in a wide dynamic range of ±40 A. The sensitivity is about 0.24 V/A and the linearity error is about 0.02% of the full scale (FS). The hysteresis error is smaller than the measurement accuracy. AC current measurements using the developed sensor have also been successfully achieved. The sensor bandwidth in closed-loop was about 1.7 kHz.
基金the National Key R&D Program of China(No.2019YFA0606701)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA20060502)+6 种基金the National Natural Science Foundation of China(Nos.42076020,41776023 and 91958202)the Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)(No.GML2019ZD0306)the Innovation Academy of South China Sea Ecology and Environmental Engineering of the Chinese Academy of Sciences(No.ISEE2018PY06)the Key Research Program of the Chinese Academy of Sciences(No.ZDRW-XH-2019-2)the Youth Innovation Promotion Association of the Chinese Academy of Sciences(No.2020340)the Rising Star Foundation of the SCSIO(No.NHXX2018WL0201)the Independent Research Project Program of the State Key Laboratory of Tropical Oceanography(No.LTOZZ2101)。
文摘In this study,on the basis of the results of the European Centre for Medium-Range Weather Forecasts Ocean Reanalysis System 4,the response of equatorial ocean currents and their roles during the peak phase of the Indian Ocean Dipole(IOD)are comprehensively explored.During the IOD peak season,a series of ocean responses emerge.First,significant meridional divergence in the surface layer and convergence in the subsurface layer are found in the equatorial region.The equatorial easterly winds and offequatorial wind curl anomalies are found to be responsible for the divergence at 55°–80°E and the convergence at 70°–90°E.Second,the meridional divergence and convergence are found to favor a weakened Wyrtki jet(WJ)in the surface layer and an enhanced Equatorial Undercurrent(EUC)in the subsurface layer,respectively.Therefore,these ocean responses provide ocean positive feedback that sustains the IOD peak as the weakened WJ and enhanced EUC help maintain the zonal temperature gradient.Additionally,heat budget analyses indicate that the weakened WJ favors sea surface temperature anomaly warming in the western Indian Ocean,whereas the enhanced EUC maintains the sea surface temperature anomaly cooling in the eastern Indian Ocean.
基金Meg-science Engineering Project of the Chinese Academy of Sciences
文摘It is well accepted that lower hybrid current drive (LHCD) is the most efficient method for non-inductive current drive in fusion devices and the effect of the current drive is dependent on not only microwave power but also its grill phase shift. This paper presents a new kind of feedback control system for antenna phase difference in LHCD experiments. In this highspeed control system, a lot of new technologies and methods are incorporated. The results of the experiments show a very good agreement with the system design.
文摘In the recent decade,different researchers have performed hardware implementation for different applications covering various areas of experts.In this research paper,a novel analog design and implementation of different steps of fuzzy systems with current differencing buffered amplifier(CDBA)are proposed with a compact structure that can be used in many signal processing applications.The proposed circuits are capable of wide input current range,simple structure,and are highly linear.Different electrical parameters were compared for the proposed fuzzy system when using different membership functions.The novelty of this paper lies in the electronic implementation of different steps for realizing a fuzzy system using current amplifiers.When the power supply voltage of CDBA is 2V,it results in 155mW,power dissipation;4.615KΩ,input resistance;366KΩ,output resistances;and 189.09 dB,common-mode rejection ratio.A 155.519 dB,voltage gain,and 0.76V/μs,the slew rate is analyzed when the power supply voltage of CDBAis 3V.The fuzzy system is realized in 20nm CMOS technology and investigated with an output signal of high precision and high speed,illustrating that it is suitable for realtime applications.In this research paper,a consequence of feedback resistance on the adder circuit and the defuzzified circuit is also analyzed and the best results are obtained using 100K resistance.The structure has a low hardware complexity leading to a low delay and a rather high quality.
文摘In recent years, power generation using renewable energy sources has been developed as a solution to the global warming problem. Among these power generation methods, wind power generation is increasing. However, as the penetration level of wind power generation increases, the low inertia and lack of synchronous power characteristics of the penetrated power system can have a significant impact on the transient stability of the grid. The virtual synchronous generator provides the ability of virtual inertia and synchronous power to interconnected inverters. The interconnected inverter with the virtual synchronous generator ability uses, in general, PI control based current controller. This paper proposes a new current-control method and compares it with conventional methods. The proposed current control is a method that follows virtual synchronous generator model that changes every moment by solving the discrete-time linear quadratic optimal control problem for each sampling time interval. The new method follows the conventional method, and therefore the reactive power fluctuation can be suppressed and the interconnected inverter will be downsized.
文摘A high power buck-boost switch-mode LED driver delivering a constant 350 mA with a power efficient current sensing scheme is presented in this paper. The LED current is extracted by differentiating the output capacitor voltage and maintained by a feedback. The circuit has been fabricated in a standard 0.35 μm AMS CMOS process. Measurement results demonstrated a power-conversion efficiency over 90% with a line regulation of 8%/V for input voltage of 3.3 V and current output between 200 mA and 350 mA.
基金Supported by the National Natural Science Foundation of China (60674052)
文摘To enhance the system damping,a permanent magnet set which served as an eddy current damper was added to the magnetic levitation positioning stage which consists of a moving table,four Halbach permanent magnetic arrays,four stators and displacement sensors.The dynamics model of this stage was a complex nonlinear,strong coupling system which made the control strategy to be a focus research.The nonlinear controller of the system was proposed based on the theory of differential geometry.Both simulation and experimental results show that either the decoupling control of the movement can be realized in horizontal and vertical directions,and the control performance was improved by the damper,verifying the validity and efficiency of this method.