We systematically study the evolution of modulated nerve impulses in a myelinated nerve fiber, where both the ionic current and membrane capacitance provide the necessary nonlinear feedbacks. This is achieved by using...We systematically study the evolution of modulated nerve impulses in a myelinated nerve fiber, where both the ionic current and membrane capacitance provide the necessary nonlinear feedbacks. This is achieved by using a perturbation technique, in which the Liénard form of the modified discrete Fitzhugh–Nagumo equation is reduced to the complex Ginzburg–Landau amplitude equation. Three distinct values of the capacitive feedback parameter are considered. At the critical value of the capacitive feedback parameter, it is shown that the dynamics of the system is governed by the dissipative nonlinear Schr?dinger equation. Linear stability analysis of the system depicts the instability of plane waves,which is manifested as burst of modulated nerve impulses that fulfills the Benjamin–Feir criteria. Variations of the capacitive feedback parameter generally influences the plane wave stability and hence the type of wave profile identified in the neural network. Results of numerical simulations mainly confirm the propagation, collision, and annihilation of nerve impulses in the myelinated axon.展开更多
We present both a theoretical and experimental demonstration of a fully differential variable gain am- plifier (VGA) with small total harmonic distortion (THD) for an electrocardiogram (ECG) acquisition system. ...We present both a theoretical and experimental demonstration of a fully differential variable gain am- plifier (VGA) with small total harmonic distortion (THD) for an electrocardiogram (ECG) acquisition system. Capacitive feedback technology is adopted to reduce the nonlinearity of VGA. The fully differential VGA has been fabricated in SMIC 0.18-μm CMOS process, and it only occupies 0.11 mm2. The measurements are in good agreement with simulation results. Experimental results show that the gain of VGA changes from 6.17 to 43.75 dB with a gain step of 3 dB. The high-pass comer frequency and low-pass comer frequency are around 0.22 Hz and 7.9 kHz, respectively. For each gain configuration, a maximal THD of 0.13% is obtained. The fully differential VGA has a low THD and its key performance parameters are well satisfied with the demands of ECG acquisition system application in the UWB wireless body area network.展开更多
文摘We systematically study the evolution of modulated nerve impulses in a myelinated nerve fiber, where both the ionic current and membrane capacitance provide the necessary nonlinear feedbacks. This is achieved by using a perturbation technique, in which the Liénard form of the modified discrete Fitzhugh–Nagumo equation is reduced to the complex Ginzburg–Landau amplitude equation. Three distinct values of the capacitive feedback parameter are considered. At the critical value of the capacitive feedback parameter, it is shown that the dynamics of the system is governed by the dissipative nonlinear Schr?dinger equation. Linear stability analysis of the system depicts the instability of plane waves,which is manifested as burst of modulated nerve impulses that fulfills the Benjamin–Feir criteria. Variations of the capacitive feedback parameter generally influences the plane wave stability and hence the type of wave profile identified in the neural network. Results of numerical simulations mainly confirm the propagation, collision, and annihilation of nerve impulses in the myelinated axon.
基金Project supported by the National Natural Science Foundation of China(Nos.61264001,61465004,61161003,61166004)the Guangxi Natural Science Foundation(Nos.2013GXNSFAA019333,2013GXNSFAA019338)+1 种基金the Science and Technology Research Key Project of Guangxi Department of Education(No.2013ZD026)the Innovation Project of GUET Graduate Education(No.GDYCSZ201457)
文摘We present both a theoretical and experimental demonstration of a fully differential variable gain am- plifier (VGA) with small total harmonic distortion (THD) for an electrocardiogram (ECG) acquisition system. Capacitive feedback technology is adopted to reduce the nonlinearity of VGA. The fully differential VGA has been fabricated in SMIC 0.18-μm CMOS process, and it only occupies 0.11 mm2. The measurements are in good agreement with simulation results. Experimental results show that the gain of VGA changes from 6.17 to 43.75 dB with a gain step of 3 dB. The high-pass comer frequency and low-pass comer frequency are around 0.22 Hz and 7.9 kHz, respectively. For each gain configuration, a maximal THD of 0.13% is obtained. The fully differential VGA has a low THD and its key performance parameters are well satisfied with the demands of ECG acquisition system application in the UWB wireless body area network.