A novel behavioral model using three-layer time-delay feed-forward neural networks (TDFFNN)is adopted to model radio frequency (RF)power amplifiers exhibiting memory nonlinearities. In order to extract the paramet...A novel behavioral model using three-layer time-delay feed-forward neural networks (TDFFNN)is adopted to model radio frequency (RF)power amplifiers exhibiting memory nonlinearities. In order to extract the parameters, the back- propagation algorithm is applied to train the proposed neural networks. The proposed model is verified by the typical odd- order-only memory polynomial model in simulation, and the performance is compared with different numbers of taped delay lines(TDLs) and perceptrons of the hidden layer. For validating the TDFFNN model by experiments, a digital test bench is set up to collect input and output data of power amplifiers at a 60 × 10^6 sample/s sampling rate. The 3.75 MHz 16-QAM signal generated in the vector signal generator(VSG) is chosen as the input signal, when measuring the dynamic AM/AM and AM/PM characteristics of power amplifiers. By comparisons and analyses, the presented model provides a good performance in convergence, accuracy and efficiency, which is approved by simulation results and experimental results in the time domain and frequency domain.展开更多
In the oil industry, the productivity of oil wells depends on the performance of the sub-surface equipment system. These systems often have problems stemming from sand, corrosion, internal pressure variation, or other...In the oil industry, the productivity of oil wells depends on the performance of the sub-surface equipment system. These systems often have problems stemming from sand, corrosion, internal pressure variation, or other factors. In order to ensure high equipment performance and avoid high-cost losses, it is essential to identify the source of possible failures in the early stage. However, this requires additional maintenance fees and human power. Moreover, the losses caused by these problems may lead to interruptions in the whole production process. In order to minimize maintenance costs, in this paper, we introduce a model for predicting equipment failure based on processing the historical data collected from multiple sensors. The state of the system is predicted by a Feed-Forward Neural Network (FFNN) with an SGD and Backpropagation algorithm is applied in the training process. Our model’s primary goal is to identify potential malfunctions at an early stage to ensure the production process’ continued high performance. We also evaluated the effectiveness of our model against other solutions currently available in the industry. The results of our study show that the FFNN can attain an accuracy score of 97% on the given dataset, which exceeds the performance of the models provided.展开更多
A kind of second order algorithm--recursive approximate Newton algorithm was given by Karayiannis. The algorithm was simplified when it was formulated. Especially, the simplification to matrix Hessian was very reluct...A kind of second order algorithm--recursive approximate Newton algorithm was given by Karayiannis. The algorithm was simplified when it was formulated. Especially, the simplification to matrix Hessian was very reluctant, which led to the loss of valuable information and affected performance of the algorithm to certain extent. For multi layer feed forward neural networks, the second order back propagation recursive algorithm based generalized cost criteria was proposed. It is proved that it is equivalent to Newton recursive algorithm and has a second order convergent rate. The performance and application prospect are analyzed. Lots of simulation experiments indicate that the calculation of the new algorithm is almost equivalent to the recursive least square multiple algorithm. The algorithm and selection of networks parameters are significant and the performance is more excellent than BP algorithm and the second order learning algorithm that was given by Karayiannis.展开更多
Background:To promote the quality evaluation,clarify the processing mechanism and distinguish origins of Corni Fructus(cornus)from different regions.Methods:This study developed a high performance liquid chromatograph...Background:To promote the quality evaluation,clarify the processing mechanism and distinguish origins of Corni Fructus(cornus)from different regions.Methods:This study developed a high performance liquid chromatography method for simultaneous determination of 5-hydroxymethylfurfural,2 phenolic acids and 4 iridoid glycosides and the reference fingerprint of cornus from different regions.In addition,the feedforward neural network model provided a pattern classification of sample regions.Results:The content of morroniside and loganin were the highest in all raw cornus samples ranging from 9.45μg/mg to 16.3μg/mg and 6.64μg/mg to 13.7μg/mg,respectively.The level of sweroside in raw cornus from Henan(0.83μg/mg^(-1).39μg/mg)and Zhejiang(0.64μg/mg^(-1).17μg/mg)were greater than other origins.After wine-processing,the glucose or fructose were dehydrated to increase the levels of 5-hydroxymethylfurfural.The C-4 position of-COOCH3 of hot-sensitive iridoid glycosides was hydrolyzed to generate-COOH as stable components.Polyphenol derivatives may be degraded to increase the content of phenolic acid.Subsequently,an excellent feedforward neural network model for identification of raw cornus and wine-prepared cornus was established which could distinguish the sample origins.Conclusion:This work provided a trustworthy method to evaluate the quality and distinguish the sources of cornus.Meanwhile,the clear processing mechanism provided a scientific foundation for controlling the cornus quality during wine-processing.展开更多
We propose a dual feed-forward neural network(DFNN)model,consisting of a cavity parameter feature expander(CPFE)and a dynamic process predictor(DPP),for predicting the complex nonlinear dynamics of mode-locked fiber l...We propose a dual feed-forward neural network(DFNN)model,consisting of a cavity parameter feature expander(CPFE)and a dynamic process predictor(DPP),for predicting the complex nonlinear dynamics of mode-locked fiber lasers.The output of the CPFE,following layer normalization,is combined with the pulse complex electric field amplitude and then fed into the DPP to predict the dynamics.The pulse evolution process from the detuned steady state to the steady state under different cavity configurations is rapidly calculated.The predicted results of the proposed DFNN are consistent with the numerical split-step Fourier method(SSFM).The simulation speed has been greatly improved with low computational complexity,which is approximately 152 times faster than the SSFM and 4 times faster than the long short-term memory recurrent neural network(LSTM)model.The findings provide a new low computational complexity and efficient machine learning approach to model the complex nonlinear dynamics of mode-locked lasers.展开更多
Deep neural networks(DNNs)are effective in solving both forward and inverse problems for nonlinear partial differential equations(PDEs).However,conventional DNNs are not effective in handling problems such as delay di...Deep neural networks(DNNs)are effective in solving both forward and inverse problems for nonlinear partial differential equations(PDEs).However,conventional DNNs are not effective in handling problems such as delay differential equations(DDEs)and delay integrodifferential equations(DIDEs)with constant delays,primarily due to their low regularity at delayinduced breaking points.In this paper,a DNN method that combines multi-task learning(MTL)which is proposed to solve both the forward and inverse problems of DIDEs.The core idea of this approach is to divide the original equation into multiple tasks based on the delay,using auxiliary outputs to represent the integral terms,followed by the use of MTL to seamlessly incorporate the properties at the breaking points into the loss function.Furthermore,given the increased training dificulty associated with multiple tasks and outputs,we employ a sequential training scheme to reduce training complexity and provide reference solutions for subsequent tasks.This approach significantly enhances the approximation accuracy of solving DIDEs with DNNs,as demonstrated by comparisons with traditional DNN methods.We validate the effectiveness of this method through several numerical experiments,test various parameter sharing structures in MTL and compare the testing results of these structures.Finally,this method is implemented to solve the inverse problem of nonlinear DIDE and the results show that the unknown parameters of DIDE can be discovered with sparse or noisy data.展开更多
For the diagnostics and health management of lithium-ion batteries,numerous models have been developed to understand their degradation characteristics.These models typically fall into two categories:data-driven models...For the diagnostics and health management of lithium-ion batteries,numerous models have been developed to understand their degradation characteristics.These models typically fall into two categories:data-driven models and physical models,each offering unique advantages but also facing limitations.Physics-informed neural networks(PINNs)provide a robust framework to integrate data-driven models with physical principles,ensuring consistency with underlying physics while enabling generalization across diverse operational conditions.This study introduces a PINN-based approach to reconstruct open circuit voltage(OCV)curves and estimate key ageing parameters at both the cell and electrode levels.These parameters include available capacity,electrode capacities,and lithium inventory capacity.The proposed method integrates OCV reconstruction models as functional components into convolutional neural networks(CNNs)and is validated using a public dataset.The results reveal that the estimated ageing parameters closely align with those obtained through offline OCV tests,with errors in reconstructed OCV curves remaining within 15 mV.This demonstrates the ability of the method to deliver fast and accurate degradation diagnostics at the electrode level,advancing the potential for precise and efficient battery health management.展开更多
The ability to accurately predict urban traffic flows is crucial for optimising city operations.Consequently,various methods for forecasting urban traffic have been developed,focusing on analysing historical data to u...The ability to accurately predict urban traffic flows is crucial for optimising city operations.Consequently,various methods for forecasting urban traffic have been developed,focusing on analysing historical data to understand complex mobility patterns.Deep learning techniques,such as graph neural networks(GNNs),are popular for their ability to capture spatio-temporal dependencies.However,these models often become overly complex due to the large number of hyper-parameters involved.In this study,we introduce Dynamic Multi-Graph Spatial-Temporal Graph Neural Ordinary Differential Equation Networks(DMST-GNODE),a framework based on ordinary differential equations(ODEs)that autonomously discovers effective spatial-temporal graph neural network(STGNN)architectures for traffic prediction tasks.The comparative analysis of DMST-GNODE and baseline models indicates that DMST-GNODE model demonstrates superior performance across multiple datasets,consistently achieving the lowest Root Mean Square Error(RMSE)and Mean Absolute Error(MAE)values,alongside the highest accuracy.On the BKK(Bangkok)dataset,it outperformed other models with an RMSE of 3.3165 and an accuracy of 0.9367 for a 20-min interval,maintaining this trend across 40 and 60 min.Similarly,on the PeMS08 dataset,DMST-GNODE achieved the best performance with an RMSE of 19.4863 and an accuracy of 0.9377 at 20 min,demonstrating its effectiveness over longer periods.The Los_Loop dataset results further emphasise this model’s advantage,with an RMSE of 3.3422 and an accuracy of 0.7643 at 20 min,consistently maintaining superiority across all time intervals.These numerical highlights indicate that DMST-GNODE not only outperforms baseline models but also achieves higher accuracy and lower errors across different time intervals and datasets.展开更多
The increasing popularity of the Internet and the widespread use of information technology have led to a rise in the number and sophistication of network attacks and security threats.Intrusion detection systems are cr...The increasing popularity of the Internet and the widespread use of information technology have led to a rise in the number and sophistication of network attacks and security threats.Intrusion detection systems are crucial to network security,playing a pivotal role in safeguarding networks from potential threats.However,in the context of an evolving landscape of sophisticated and elusive attacks,existing intrusion detection methodologies often overlook critical aspects such as changes in network topology over time and interactions between hosts.To address these issues,this paper proposes a real-time network intrusion detection method based on graph neural networks.The proposedmethod leverages the advantages of graph neural networks and employs a straightforward graph construction method to represent network traffic as dynamic graph-structured data.Additionally,a graph convolution operation with a multi-head attention mechanism is utilized to enhance the model’s ability to capture the intricate relationships within the graph structure comprehensively.Furthermore,it uses an integrated graph neural network to address dynamic graphs’structural and topological changes at different time points and the challenges of edge embedding in intrusion detection data.The edge classification problem is effectively transformed into node classification by employing a line graph data representation,which facilitates fine-grained intrusion detection tasks on dynamic graph node feature representations.The efficacy of the proposed method is evaluated using two commonly used intrusion detection datasets,UNSW-NB15 and NF-ToN-IoT-v2,and results are compared with previous studies in this field.The experimental results demonstrate that our proposed method achieves 99.3%and 99.96%accuracy on the two datasets,respectively,and outperforms the benchmark model in several evaluation metrics.展开更多
This study investigates photonuclear reaction(γ,n)cross-sections using Bayesian neural network(BNN)analysis.After determining the optimal network architecture,which features two hidden layers,each with 50 hidden node...This study investigates photonuclear reaction(γ,n)cross-sections using Bayesian neural network(BNN)analysis.After determining the optimal network architecture,which features two hidden layers,each with 50 hidden nodes,training was conducted for 30,000 iterations to ensure comprehensive data capture.By analyzing the distribution of absolute errors positively correlated with the cross-section for the isotope 159Tb,as well as the relative errors unrelated to the cross-section,we confirmed that the network effectively captured the data features without overfitting.Comparison with the TENDL-2021 Database demonstrated the BNN's reliability in fitting photonuclear cross-sections with lower average errors.The predictions for nuclei with single and double giant dipole resonance peak cross-sections,the accurate determination of the photoneutron reaction threshold in the low-energy region,and the precise description of trends in the high-energy cross-sections further demonstrate the network's generalization ability on the validation set.This can be attributed to the consistency of the training data.By using consistent training sets from different laboratories,Bayesian neural networks can predict nearby unknown cross-sections based on existing laboratory data,thereby estimating the potential differences between other laboratories'existing data and their own measurement results.Experimental measurements of photonuclear reactions on the newly constructed SLEGS beamline will contribute to clarifying the differences in cross-sections within the existing data.展开更多
Spectrum-based fault localization (SBFL) generates a ranked list of suspicious elements by using the program execution spectrum, but the excessive number of elements ranked in parallel results in low localization accu...Spectrum-based fault localization (SBFL) generates a ranked list of suspicious elements by using the program execution spectrum, but the excessive number of elements ranked in parallel results in low localization accuracy. Most researchers consider intra-class dependencies to improve localization accuracy. However, some studies show that inter-class method call type faults account for more than 20%, which means such methods still have certain limitations. To solve the above problems, this paper proposes a two-phase software fault localization based on relational graph convolutional neural networks (Two-RGCNFL). Firstly, in Phase 1, the method call dependence graph (MCDG) of the program is constructed, the intra-class and inter-class dependencies in MCDG are extracted by using the relational graph convolutional neural network, and the classifier is used to identify the faulty methods. Then, the GraphSMOTE algorithm is improved to alleviate the impact of class imbalance on classification accuracy. Aiming at the problem of parallel ranking of element suspicious values in traditional SBFL technology, in Phase 2, Doc2Vec is used to learn static features, while spectrum information serves as dynamic features. A RankNet model based on siamese multi-layer perceptron is constructed to score and rank statements in the faulty method. This work conducts experiments on 5 real projects of Defects4J benchmark. Experimental results show that, compared with the traditional SBFL technique and two baseline methods, our approach improves the Top-1 accuracy by 262.86%, 29.59% and 53.01%, respectively, which verifies the effectiveness of Two-RGCNFL. Furthermore, this work verifies the importance of inter-class dependencies through ablation experiments.展开更多
Identifying cyberattacks that attempt to compromise digital systems is a critical function of intrusion detection systems(IDS).Data labeling difficulties,incorrect conclusions,and vulnerability to malicious data injec...Identifying cyberattacks that attempt to compromise digital systems is a critical function of intrusion detection systems(IDS).Data labeling difficulties,incorrect conclusions,and vulnerability to malicious data injections are only a few drawbacks of using machine learning algorithms for cybersecurity.To overcome these obstacles,researchers have created several network IDS models,such as the Hidden Naive Bayes Multiclass Classifier and supervised/unsupervised machine learning techniques.This study provides an updated learning strategy for artificial neural network(ANN)to address data categorization problems caused by unbalanced data.Compared to traditional approaches,the augmented ANN’s 92%accuracy is a significant improvement owing to the network’s increased resilience to disturbances and computational complexity,brought about by the addition of a random weight and standard scaler.Considering the ever-evolving nature of cybersecurity threats,this study introduces a revolutionary intrusion detection method.展开更多
Metabolomics covers a wide range of applications in life sciences,biomedicine,and phytology.Data acquisition(to achieve high coverage and efficiency)and analysis(to pursue good classification)are two key segments invo...Metabolomics covers a wide range of applications in life sciences,biomedicine,and phytology.Data acquisition(to achieve high coverage and efficiency)and analysis(to pursue good classification)are two key segments involved in metabolomics workflows.Various chemometric approaches utilizing either pattern recognition or machine learning have been employed to separate different groups.However,insufficient feature extraction,inappropriate feature selection,overfitting,or underfitting lead to an insufficient capacity to discriminate plants that are often easily confused.Using two ginseng varieties,namely Panax japonicus(PJ)and Panax japonicus var.major(PJvm),containing the similar ginsenosides,we integrated pseudo-targeted metabolomics and deep neural network(DNN)modeling to achieve accurate species differentiation.A pseudo-targeted metabolomics approach was optimized through data acquisition mode,ion pairs generation,comparison between multiple reaction monitoring(MRM)and scheduled MRM(sMRM),and chromatographic elution gradient.In total,1980 ion pairs were monitored within 23 min,allowing for the most comprehensive ginseng metabolome analysis.The established DNN model demonstrated excellent classification performance(in terms of accuracy,precision,recall,F1 score,area under the curve,and receiver operating characteristic(ROC))using the entire metabolome data and feature-selection dataset,exhibiting superior advantages over random forest(RF),support vector machine(SVM),extreme gradient boosting(XGBoost),and multilayer perceptron(MLP).Moreover,DNNs were advantageous for automated feature learning,nonlinear modeling,adaptability,and generalization.This study confirmed practicality of the established strategy for efficient metabolomics data analysis and reliable classification performance even when using small-volume samples.This established approach holds promise for plant metabolomics and is not limited to ginseng.展开更多
Severe ground-level ozone(O_(3))pollution over major Chinese cities has become one of the most challenging problems,which have deleterious effects on human health and the sustainability of society.This study explored ...Severe ground-level ozone(O_(3))pollution over major Chinese cities has become one of the most challenging problems,which have deleterious effects on human health and the sustainability of society.This study explored the spatiotemporal distribution characteristics of ground-level O_(3) and its precursors based on conventional pollutant and meteorological monitoring data in Zhejiang Province from 2016 to 2021.Then,a high-performance convolutional neural network(CNN)model was established by expanding the moment and the concentration variations to general factors.Finally,the response mechanism of O_(3) to the variation with crucial influencing factors is explored by controlling variables and interpolating target variables.The results indicated that the annual average MDA8-90th concentrations in Zhejiang Province are higher in the northern and lower in the southern.When the wind direction(WD)ranges from east to southwest and the wind speed(WS)ranges between 2 and 3 m/sec,higher O_(3) concentration prone to occur.At different temperatures(T),the O_(3) concentration showed a trend of first increasing and subsequently decreasing with increasing NO_(2) concentration,peaks at the NO_(2) concentration around 0.02mg/m^(3).The sensitivity of NO_(2) to O_(3) formation is not easily affected by temperature,barometric pressure and dew point temperature.Additionally,there is a minimum IRNO_(2) at each temperature when the NO_(2) concentration is 0.03 mg/m^(3),and this minimum IRNO_(2) decreases with increasing temperature.The study explores the response mechanism of O_(3) with the change of driving variables,which can provide a scientific foundation and methodological support for the targeted management of O_(3) pollution.展开更多
This paper addresses the consensus problem of nonlinear multi-agent systems subject to external disturbances and uncertainties under denial-ofservice(DoS)attacks.Firstly,an observer-based state feedback control method...This paper addresses the consensus problem of nonlinear multi-agent systems subject to external disturbances and uncertainties under denial-ofservice(DoS)attacks.Firstly,an observer-based state feedback control method is employed to achieve secure control by estimating the system's state in real time.Secondly,by combining a memory-based adaptive eventtriggered mechanism with neural networks,the paper aims to approximate the nonlinear terms in the networked system and efficiently conserve system resources.Finally,based on a two-degree-of-freedom model of a vehicle affected by crosswinds,this paper constructs a multi-unmanned ground vehicle(Multi-UGV)system to validate the effectiveness of the proposed method.Simulation results show that the proposed control strategy can effectively handle external disturbances such as crosswinds in practical applications,ensuring the stability and reliable operation of the Multi-UGV system.展开更多
Real-time prediction and precise control of sinter quality are pivotal for energy saving,cost reduction,quality improvement and efficiency enhancement in the ironmaking process.To advance,the accuracy and comprehensiv...Real-time prediction and precise control of sinter quality are pivotal for energy saving,cost reduction,quality improvement and efficiency enhancement in the ironmaking process.To advance,the accuracy and comprehensiveness of sinter quality prediction,an intelligent flare monitoring system for sintering machine tails that combines hybrid neural networks integrating convolutional neural network with long short-term memory(CNN-LSTM)networks was proposed.The system utilized a high-temperature thermal imager for image acquisition at the sintering machine tail and employed a zone-triggered method to accurately capture dynamic feature images under challenging conditions of high-temperature,high dust,and occlusion.The feature images were then segmented through a triple-iteration multi-thresholding approach based on the maximum between-class variance method to minimize detail loss during the segmentation process.Leveraging the advantages of CNN and LSTM networks in capturing temporal and spatial information,a comprehensive model for sinter quality prediction was constructed,with inputs including the proportion of combustion layer,porosity rate,temperature distribution,and image features obtained from the convolutional neural network,and outputs comprising quality indicators such as underburning index,uniformity index,and FeO content of the sinter.The accuracy is notably increased,achieving a 95.8%hit rate within an error margin of±1.0.After the system is applied,the average qualified rate of FeO content increases from 87.24%to 89.99%,representing an improvement of 2.75%.The average monthly solid fuel consumption is reduced from 49.75 to 46.44 kg/t,leading to a 6.65%reduction and underscoring significant energy saving and cost reduction effects.展开更多
The isolated fracture-vug systems controlled by small-scale strike-slip faults within ultra-deep carbonate rocks of the Tarim Basin exhibit significant exploration potential.The study employs a novel training set inco...The isolated fracture-vug systems controlled by small-scale strike-slip faults within ultra-deep carbonate rocks of the Tarim Basin exhibit significant exploration potential.The study employs a novel training set incorporating innovative fault labels to train a U-Net-structured CNN model,enabling effective identification of small-scale strike-slip faults through seismic data interpretation.Based on the CNN faults,we analyze the distribution patterns of small-scale strike-slip faults.The small-scale strike-slip faults can be categorized into NNW-trending and NE-trending groups with strike lengths ranging 200–5000 m.The development intensity of small-scale strike-slip faults in the Lower Yingshan Member notably exceeds that in the Upper Member.The Lower and Upper Yingshan members are two distinct mechanical layers with contrasting brittleness characteristics,separated by a low-brittleness layer.The superior brittleness of the Lower Yingshan Member enhances the development intensity of small-scale strike-slip faults compared to the upper member,while the low-brittleness layer exerts restrictive effects on vertical fault propagation.Fracture-vug systems formed by interactions of two or more small-scale strike-slip faults demonstrate larger sizes than those controlled by individual faults.All fracture-vug system sizes show positive correlations with the vertical extents of associated small-scale strike-slip faults,particularly intersection and approaching fracture-vug systems exhibit accelerated size increases proportional to the vertical extents.展开更多
Severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)mutations are influenced by random and uncontrollable factors,and the risk of the next widespread epidemic remains.Dual-target drugs that synergistically act ...Severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)mutations are influenced by random and uncontrollable factors,and the risk of the next widespread epidemic remains.Dual-target drugs that synergistically act on two targets exhibit strong therapeutic effects and advantages against mutations.In this study,a novel computational workflow was developed to design dual-target SARS-CoV-2 candidate inhibitors with the Envelope protein and Main protease selected as the two target proteins.The drug-like molecules of our self-constructed 3D scaffold database were used as high-throughput molecular docking probes for feature extraction of two target protein pockets.A multi-layer perceptron(MLP)was employed to embed the binding affinities into a latent space as conditional vectors to control conditional distribution.Utilizing a conditional generative neural network,cG-SchNet,with 3D Euclidean group(E3)symmetries,the conditional probability distributions of molecular 3D structures were acquired and a set of novel SARS-CoV-2 dual-target candidate inhibitors were generated.The 1D probability,2D joint probability,and 2D cumulative probability distribution results indicate that the generated sets are significantly enhanced compared to the training set in the high binding affinity area.Among the 201 generated molecules,42 molecules exhibited a sum binding affinity exceeding 17.0 kcal/mol while 9 of them having a sum binding affinity exceeding 19.0 kcal/mol,demonstrating structure diversity along with strong dual-target affinities,good absorption,distribution,metabolism,excretion,and toxicity(ADMET)properties,and ease of synthesis.Dual-target drugs are rare and difficult to find,and our“high-throughput docking-multi-conditional generation”workflow offers a wide range of options for designing or optimizing potent dual-target SARS-CoV-2 inhibitors.展开更多
Timely and accurate forecasting of storm surges can effectively prevent typhoon storm surges from causing large economic losses and casualties in coastal areas.At present,numerical model forecasting consumes too many ...Timely and accurate forecasting of storm surges can effectively prevent typhoon storm surges from causing large economic losses and casualties in coastal areas.At present,numerical model forecasting consumes too many resources and takes too long to compute,while neural network forecasting lacks regional data to train regional forecasting models.In this study,we used the DUAL wind model to build typhoon wind fields,and constructed a typhoon database of 75 processes in the northern South China Sea using the coupled Advanced Circulation-Simulating Waves Nearshore(ADCIRC-SWAN)model.Then,a neural network with a Res-U-Net structure was trained using the typhoon database to forecast the typhoon processes in the validation dataset,and an excellent storm surge forecasting effect was achieved in the Pearl River Estuary region.The storm surge forecasting effect of stronger typhoons was improved by adding a branch structure and transfer learning.展开更多
基金The National Natural Science Foundation of China(No.60621002)the National High Technology Research and Development Pro-gram of China(863 Program)(No.2007AA01Z2B4).
文摘A novel behavioral model using three-layer time-delay feed-forward neural networks (TDFFNN)is adopted to model radio frequency (RF)power amplifiers exhibiting memory nonlinearities. In order to extract the parameters, the back- propagation algorithm is applied to train the proposed neural networks. The proposed model is verified by the typical odd- order-only memory polynomial model in simulation, and the performance is compared with different numbers of taped delay lines(TDLs) and perceptrons of the hidden layer. For validating the TDFFNN model by experiments, a digital test bench is set up to collect input and output data of power amplifiers at a 60 × 10^6 sample/s sampling rate. The 3.75 MHz 16-QAM signal generated in the vector signal generator(VSG) is chosen as the input signal, when measuring the dynamic AM/AM and AM/PM characteristics of power amplifiers. By comparisons and analyses, the presented model provides a good performance in convergence, accuracy and efficiency, which is approved by simulation results and experimental results in the time domain and frequency domain.
文摘In the oil industry, the productivity of oil wells depends on the performance of the sub-surface equipment system. These systems often have problems stemming from sand, corrosion, internal pressure variation, or other factors. In order to ensure high equipment performance and avoid high-cost losses, it is essential to identify the source of possible failures in the early stage. However, this requires additional maintenance fees and human power. Moreover, the losses caused by these problems may lead to interruptions in the whole production process. In order to minimize maintenance costs, in this paper, we introduce a model for predicting equipment failure based on processing the historical data collected from multiple sensors. The state of the system is predicted by a Feed-Forward Neural Network (FFNN) with an SGD and Backpropagation algorithm is applied in the training process. Our model’s primary goal is to identify potential malfunctions at an early stage to ensure the production process’ continued high performance. We also evaluated the effectiveness of our model against other solutions currently available in the industry. The results of our study show that the FFNN can attain an accuracy score of 97% on the given dataset, which exceeds the performance of the models provided.
文摘A kind of second order algorithm--recursive approximate Newton algorithm was given by Karayiannis. The algorithm was simplified when it was formulated. Especially, the simplification to matrix Hessian was very reluctant, which led to the loss of valuable information and affected performance of the algorithm to certain extent. For multi layer feed forward neural networks, the second order back propagation recursive algorithm based generalized cost criteria was proposed. It is proved that it is equivalent to Newton recursive algorithm and has a second order convergent rate. The performance and application prospect are analyzed. Lots of simulation experiments indicate that the calculation of the new algorithm is almost equivalent to the recursive least square multiple algorithm. The algorithm and selection of networks parameters are significant and the performance is more excellent than BP algorithm and the second order learning algorithm that was given by Karayiannis.
基金supported by the Innovation Team and Talents Cultivation Program of National Administration of Traditional Chinese Medicine.(No.ZYYCXTD-D-202005)the Key Project at Central Government Level(No.2060302)+1 种基金the National Natural Science Foundation of China Grants(No.81872956)Tianjin Science and Technology Planning Project(No.19YFZCSY00170).
文摘Background:To promote the quality evaluation,clarify the processing mechanism and distinguish origins of Corni Fructus(cornus)from different regions.Methods:This study developed a high performance liquid chromatography method for simultaneous determination of 5-hydroxymethylfurfural,2 phenolic acids and 4 iridoid glycosides and the reference fingerprint of cornus from different regions.In addition,the feedforward neural network model provided a pattern classification of sample regions.Results:The content of morroniside and loganin were the highest in all raw cornus samples ranging from 9.45μg/mg to 16.3μg/mg and 6.64μg/mg to 13.7μg/mg,respectively.The level of sweroside in raw cornus from Henan(0.83μg/mg^(-1).39μg/mg)and Zhejiang(0.64μg/mg^(-1).17μg/mg)were greater than other origins.After wine-processing,the glucose or fructose were dehydrated to increase the levels of 5-hydroxymethylfurfural.The C-4 position of-COOCH3 of hot-sensitive iridoid glycosides was hydrolyzed to generate-COOH as stable components.Polyphenol derivatives may be degraded to increase the content of phenolic acid.Subsequently,an excellent feedforward neural network model for identification of raw cornus and wine-prepared cornus was established which could distinguish the sample origins.Conclusion:This work provided a trustworthy method to evaluate the quality and distinguish the sources of cornus.Meanwhile,the clear processing mechanism provided a scientific foundation for controlling the cornus quality during wine-processing.
基金supported by the National Natural Science Foundation of China(No.62203473)the Project of State Key Laboratory of Precision Manufacturing for Extreme Service Performance,Central South University(No.ZZYJKT2023-15)the Hunan Provincial Natural Science Foundation(No.2023JJ40778).
文摘We propose a dual feed-forward neural network(DFNN)model,consisting of a cavity parameter feature expander(CPFE)and a dynamic process predictor(DPP),for predicting the complex nonlinear dynamics of mode-locked fiber lasers.The output of the CPFE,following layer normalization,is combined with the pulse complex electric field amplitude and then fed into the DPP to predict the dynamics.The pulse evolution process from the detuned steady state to the steady state under different cavity configurations is rapidly calculated.The predicted results of the proposed DFNN are consistent with the numerical split-step Fourier method(SSFM).The simulation speed has been greatly improved with low computational complexity,which is approximately 152 times faster than the SSFM and 4 times faster than the long short-term memory recurrent neural network(LSTM)model.The findings provide a new low computational complexity and efficient machine learning approach to model the complex nonlinear dynamics of mode-locked lasers.
文摘Deep neural networks(DNNs)are effective in solving both forward and inverse problems for nonlinear partial differential equations(PDEs).However,conventional DNNs are not effective in handling problems such as delay differential equations(DDEs)and delay integrodifferential equations(DIDEs)with constant delays,primarily due to their low regularity at delayinduced breaking points.In this paper,a DNN method that combines multi-task learning(MTL)which is proposed to solve both the forward and inverse problems of DIDEs.The core idea of this approach is to divide the original equation into multiple tasks based on the delay,using auxiliary outputs to represent the integral terms,followed by the use of MTL to seamlessly incorporate the properties at the breaking points into the loss function.Furthermore,given the increased training dificulty associated with multiple tasks and outputs,we employ a sequential training scheme to reduce training complexity and provide reference solutions for subsequent tasks.This approach significantly enhances the approximation accuracy of solving DIDEs with DNNs,as demonstrated by comparisons with traditional DNN methods.We validate the effectiveness of this method through several numerical experiments,test various parameter sharing structures in MTL and compare the testing results of these structures.Finally,this method is implemented to solve the inverse problem of nonlinear DIDE and the results show that the unknown parameters of DIDE can be discovered with sparse or noisy data.
基金supported by the Beijing Natural Science Foundation(Grant No.L223013)。
文摘For the diagnostics and health management of lithium-ion batteries,numerous models have been developed to understand their degradation characteristics.These models typically fall into two categories:data-driven models and physical models,each offering unique advantages but also facing limitations.Physics-informed neural networks(PINNs)provide a robust framework to integrate data-driven models with physical principles,ensuring consistency with underlying physics while enabling generalization across diverse operational conditions.This study introduces a PINN-based approach to reconstruct open circuit voltage(OCV)curves and estimate key ageing parameters at both the cell and electrode levels.These parameters include available capacity,electrode capacities,and lithium inventory capacity.The proposed method integrates OCV reconstruction models as functional components into convolutional neural networks(CNNs)and is validated using a public dataset.The results reveal that the estimated ageing parameters closely align with those obtained through offline OCV tests,with errors in reconstructed OCV curves remaining within 15 mV.This demonstrates the ability of the method to deliver fast and accurate degradation diagnostics at the electrode level,advancing the potential for precise and efficient battery health management.
文摘The ability to accurately predict urban traffic flows is crucial for optimising city operations.Consequently,various methods for forecasting urban traffic have been developed,focusing on analysing historical data to understand complex mobility patterns.Deep learning techniques,such as graph neural networks(GNNs),are popular for their ability to capture spatio-temporal dependencies.However,these models often become overly complex due to the large number of hyper-parameters involved.In this study,we introduce Dynamic Multi-Graph Spatial-Temporal Graph Neural Ordinary Differential Equation Networks(DMST-GNODE),a framework based on ordinary differential equations(ODEs)that autonomously discovers effective spatial-temporal graph neural network(STGNN)architectures for traffic prediction tasks.The comparative analysis of DMST-GNODE and baseline models indicates that DMST-GNODE model demonstrates superior performance across multiple datasets,consistently achieving the lowest Root Mean Square Error(RMSE)and Mean Absolute Error(MAE)values,alongside the highest accuracy.On the BKK(Bangkok)dataset,it outperformed other models with an RMSE of 3.3165 and an accuracy of 0.9367 for a 20-min interval,maintaining this trend across 40 and 60 min.Similarly,on the PeMS08 dataset,DMST-GNODE achieved the best performance with an RMSE of 19.4863 and an accuracy of 0.9377 at 20 min,demonstrating its effectiveness over longer periods.The Los_Loop dataset results further emphasise this model’s advantage,with an RMSE of 3.3422 and an accuracy of 0.7643 at 20 min,consistently maintaining superiority across all time intervals.These numerical highlights indicate that DMST-GNODE not only outperforms baseline models but also achieves higher accuracy and lower errors across different time intervals and datasets.
文摘The increasing popularity of the Internet and the widespread use of information technology have led to a rise in the number and sophistication of network attacks and security threats.Intrusion detection systems are crucial to network security,playing a pivotal role in safeguarding networks from potential threats.However,in the context of an evolving landscape of sophisticated and elusive attacks,existing intrusion detection methodologies often overlook critical aspects such as changes in network topology over time and interactions between hosts.To address these issues,this paper proposes a real-time network intrusion detection method based on graph neural networks.The proposedmethod leverages the advantages of graph neural networks and employs a straightforward graph construction method to represent network traffic as dynamic graph-structured data.Additionally,a graph convolution operation with a multi-head attention mechanism is utilized to enhance the model’s ability to capture the intricate relationships within the graph structure comprehensively.Furthermore,it uses an integrated graph neural network to address dynamic graphs’structural and topological changes at different time points and the challenges of edge embedding in intrusion detection data.The edge classification problem is effectively transformed into node classification by employing a line graph data representation,which facilitates fine-grained intrusion detection tasks on dynamic graph node feature representations.The efficacy of the proposed method is evaluated using two commonly used intrusion detection datasets,UNSW-NB15 and NF-ToN-IoT-v2,and results are compared with previous studies in this field.The experimental results demonstrate that our proposed method achieves 99.3%and 99.96%accuracy on the two datasets,respectively,and outperforms the benchmark model in several evaluation metrics.
基金supported by National key research and development program(No.2022YFA1602404)the National Natural Science Foundation of China(Nos.12388102,12275338,12005280)the Key Laboratory of Nuclear Data foundation(No.JCKY2022201C152)。
文摘This study investigates photonuclear reaction(γ,n)cross-sections using Bayesian neural network(BNN)analysis.After determining the optimal network architecture,which features two hidden layers,each with 50 hidden nodes,training was conducted for 30,000 iterations to ensure comprehensive data capture.By analyzing the distribution of absolute errors positively correlated with the cross-section for the isotope 159Tb,as well as the relative errors unrelated to the cross-section,we confirmed that the network effectively captured the data features without overfitting.Comparison with the TENDL-2021 Database demonstrated the BNN's reliability in fitting photonuclear cross-sections with lower average errors.The predictions for nuclei with single and double giant dipole resonance peak cross-sections,the accurate determination of the photoneutron reaction threshold in the low-energy region,and the precise description of trends in the high-energy cross-sections further demonstrate the network's generalization ability on the validation set.This can be attributed to the consistency of the training data.By using consistent training sets from different laboratories,Bayesian neural networks can predict nearby unknown cross-sections based on existing laboratory data,thereby estimating the potential differences between other laboratories'existing data and their own measurement results.Experimental measurements of photonuclear reactions on the newly constructed SLEGS beamline will contribute to clarifying the differences in cross-sections within the existing data.
基金funded by the Youth Fund of the National Natural Science Foundation of China(Grant No.42261070).
文摘Spectrum-based fault localization (SBFL) generates a ranked list of suspicious elements by using the program execution spectrum, but the excessive number of elements ranked in parallel results in low localization accuracy. Most researchers consider intra-class dependencies to improve localization accuracy. However, some studies show that inter-class method call type faults account for more than 20%, which means such methods still have certain limitations. To solve the above problems, this paper proposes a two-phase software fault localization based on relational graph convolutional neural networks (Two-RGCNFL). Firstly, in Phase 1, the method call dependence graph (MCDG) of the program is constructed, the intra-class and inter-class dependencies in MCDG are extracted by using the relational graph convolutional neural network, and the classifier is used to identify the faulty methods. Then, the GraphSMOTE algorithm is improved to alleviate the impact of class imbalance on classification accuracy. Aiming at the problem of parallel ranking of element suspicious values in traditional SBFL technology, in Phase 2, Doc2Vec is used to learn static features, while spectrum information serves as dynamic features. A RankNet model based on siamese multi-layer perceptron is constructed to score and rank statements in the faulty method. This work conducts experiments on 5 real projects of Defects4J benchmark. Experimental results show that, compared with the traditional SBFL technique and two baseline methods, our approach improves the Top-1 accuracy by 262.86%, 29.59% and 53.01%, respectively, which verifies the effectiveness of Two-RGCNFL. Furthermore, this work verifies the importance of inter-class dependencies through ablation experiments.
文摘Identifying cyberattacks that attempt to compromise digital systems is a critical function of intrusion detection systems(IDS).Data labeling difficulties,incorrect conclusions,and vulnerability to malicious data injections are only a few drawbacks of using machine learning algorithms for cybersecurity.To overcome these obstacles,researchers have created several network IDS models,such as the Hidden Naive Bayes Multiclass Classifier and supervised/unsupervised machine learning techniques.This study provides an updated learning strategy for artificial neural network(ANN)to address data categorization problems caused by unbalanced data.Compared to traditional approaches,the augmented ANN’s 92%accuracy is a significant improvement owing to the network’s increased resilience to disturbances and computational complexity,brought about by the addition of a random weight and standard scaler.Considering the ever-evolving nature of cybersecurity threats,this study introduces a revolutionary intrusion detection method.
基金supported by the National Key R&D Program of China(Grant No.:2022YFC3501805)the National Natural Science Foundation of China(Grant No.:82374030)+2 种基金the Science and Technology Program of Tianjin in China(Grant No.:23ZYJDSS00030)the Tianjin Outstanding Youth Fund,China(Grant No.:23JCJQJC00030)the China Postdoctoral Science Foundation-Tianjin Joint Support Program(Grant No.:2023T030TJ).
文摘Metabolomics covers a wide range of applications in life sciences,biomedicine,and phytology.Data acquisition(to achieve high coverage and efficiency)and analysis(to pursue good classification)are two key segments involved in metabolomics workflows.Various chemometric approaches utilizing either pattern recognition or machine learning have been employed to separate different groups.However,insufficient feature extraction,inappropriate feature selection,overfitting,or underfitting lead to an insufficient capacity to discriminate plants that are often easily confused.Using two ginseng varieties,namely Panax japonicus(PJ)and Panax japonicus var.major(PJvm),containing the similar ginsenosides,we integrated pseudo-targeted metabolomics and deep neural network(DNN)modeling to achieve accurate species differentiation.A pseudo-targeted metabolomics approach was optimized through data acquisition mode,ion pairs generation,comparison between multiple reaction monitoring(MRM)and scheduled MRM(sMRM),and chromatographic elution gradient.In total,1980 ion pairs were monitored within 23 min,allowing for the most comprehensive ginseng metabolome analysis.The established DNN model demonstrated excellent classification performance(in terms of accuracy,precision,recall,F1 score,area under the curve,and receiver operating characteristic(ROC))using the entire metabolome data and feature-selection dataset,exhibiting superior advantages over random forest(RF),support vector machine(SVM),extreme gradient boosting(XGBoost),and multilayer perceptron(MLP).Moreover,DNNs were advantageous for automated feature learning,nonlinear modeling,adaptability,and generalization.This study confirmed practicality of the established strategy for efficient metabolomics data analysis and reliable classification performance even when using small-volume samples.This established approach holds promise for plant metabolomics and is not limited to ginseng.
基金supported by the National Key Research and Development Program of China (Nos.2022YFC3702000 and 2022YFC3703500)the Key R&D Project of Zhejiang Province (No.2022C03146).
文摘Severe ground-level ozone(O_(3))pollution over major Chinese cities has become one of the most challenging problems,which have deleterious effects on human health and the sustainability of society.This study explored the spatiotemporal distribution characteristics of ground-level O_(3) and its precursors based on conventional pollutant and meteorological monitoring data in Zhejiang Province from 2016 to 2021.Then,a high-performance convolutional neural network(CNN)model was established by expanding the moment and the concentration variations to general factors.Finally,the response mechanism of O_(3) to the variation with crucial influencing factors is explored by controlling variables and interpolating target variables.The results indicated that the annual average MDA8-90th concentrations in Zhejiang Province are higher in the northern and lower in the southern.When the wind direction(WD)ranges from east to southwest and the wind speed(WS)ranges between 2 and 3 m/sec,higher O_(3) concentration prone to occur.At different temperatures(T),the O_(3) concentration showed a trend of first increasing and subsequently decreasing with increasing NO_(2) concentration,peaks at the NO_(2) concentration around 0.02mg/m^(3).The sensitivity of NO_(2) to O_(3) formation is not easily affected by temperature,barometric pressure and dew point temperature.Additionally,there is a minimum IRNO_(2) at each temperature when the NO_(2) concentration is 0.03 mg/m^(3),and this minimum IRNO_(2) decreases with increasing temperature.The study explores the response mechanism of O_(3) with the change of driving variables,which can provide a scientific foundation and methodological support for the targeted management of O_(3) pollution.
基金The National Natural Science Foundation of China(W2431048)The Science and Technology Research Program of Chongqing Municipal Education Commission,China(KJZDK202300807)The Chongqing Natural Science Foundation,China(CSTB2024NSCQQCXMX0052).
文摘This paper addresses the consensus problem of nonlinear multi-agent systems subject to external disturbances and uncertainties under denial-ofservice(DoS)attacks.Firstly,an observer-based state feedback control method is employed to achieve secure control by estimating the system's state in real time.Secondly,by combining a memory-based adaptive eventtriggered mechanism with neural networks,the paper aims to approximate the nonlinear terms in the networked system and efficiently conserve system resources.Finally,based on a two-degree-of-freedom model of a vehicle affected by crosswinds,this paper constructs a multi-unmanned ground vehicle(Multi-UGV)system to validate the effectiveness of the proposed method.Simulation results show that the proposed control strategy can effectively handle external disturbances such as crosswinds in practical applications,ensuring the stability and reliable operation of the Multi-UGV system.
基金founded by the Open Project Program of Anhui Province Key Laboratory of Metallurgical Engineering and Resources Recycling(Anhui University of Technology)(No.SKF21-06)Research Fund for Young Teachers of Anhui University of Technology in 2020(No.QZ202001).
文摘Real-time prediction and precise control of sinter quality are pivotal for energy saving,cost reduction,quality improvement and efficiency enhancement in the ironmaking process.To advance,the accuracy and comprehensiveness of sinter quality prediction,an intelligent flare monitoring system for sintering machine tails that combines hybrid neural networks integrating convolutional neural network with long short-term memory(CNN-LSTM)networks was proposed.The system utilized a high-temperature thermal imager for image acquisition at the sintering machine tail and employed a zone-triggered method to accurately capture dynamic feature images under challenging conditions of high-temperature,high dust,and occlusion.The feature images were then segmented through a triple-iteration multi-thresholding approach based on the maximum between-class variance method to minimize detail loss during the segmentation process.Leveraging the advantages of CNN and LSTM networks in capturing temporal and spatial information,a comprehensive model for sinter quality prediction was constructed,with inputs including the proportion of combustion layer,porosity rate,temperature distribution,and image features obtained from the convolutional neural network,and outputs comprising quality indicators such as underburning index,uniformity index,and FeO content of the sinter.The accuracy is notably increased,achieving a 95.8%hit rate within an error margin of±1.0.After the system is applied,the average qualified rate of FeO content increases from 87.24%to 89.99%,representing an improvement of 2.75%.The average monthly solid fuel consumption is reduced from 49.75 to 46.44 kg/t,leading to a 6.65%reduction and underscoring significant energy saving and cost reduction effects.
基金supported by the National Natural Science Foundation of China(No.U21B2062).
文摘The isolated fracture-vug systems controlled by small-scale strike-slip faults within ultra-deep carbonate rocks of the Tarim Basin exhibit significant exploration potential.The study employs a novel training set incorporating innovative fault labels to train a U-Net-structured CNN model,enabling effective identification of small-scale strike-slip faults through seismic data interpretation.Based on the CNN faults,we analyze the distribution patterns of small-scale strike-slip faults.The small-scale strike-slip faults can be categorized into NNW-trending and NE-trending groups with strike lengths ranging 200–5000 m.The development intensity of small-scale strike-slip faults in the Lower Yingshan Member notably exceeds that in the Upper Member.The Lower and Upper Yingshan members are two distinct mechanical layers with contrasting brittleness characteristics,separated by a low-brittleness layer.The superior brittleness of the Lower Yingshan Member enhances the development intensity of small-scale strike-slip faults compared to the upper member,while the low-brittleness layer exerts restrictive effects on vertical fault propagation.Fracture-vug systems formed by interactions of two or more small-scale strike-slip faults demonstrate larger sizes than those controlled by individual faults.All fracture-vug system sizes show positive correlations with the vertical extents of associated small-scale strike-slip faults,particularly intersection and approaching fracture-vug systems exhibit accelerated size increases proportional to the vertical extents.
基金supported by Interdisciplinary Innova-tion Project of“Bioarchaeology Laboratory”of Jilin University,China,and“MedicineþX”Interdisciplinary Innovation Team of Norman Bethune Health Science Center of Jilin University,China(Grant No.:2022JBGS05).
文摘Severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)mutations are influenced by random and uncontrollable factors,and the risk of the next widespread epidemic remains.Dual-target drugs that synergistically act on two targets exhibit strong therapeutic effects and advantages against mutations.In this study,a novel computational workflow was developed to design dual-target SARS-CoV-2 candidate inhibitors with the Envelope protein and Main protease selected as the two target proteins.The drug-like molecules of our self-constructed 3D scaffold database were used as high-throughput molecular docking probes for feature extraction of two target protein pockets.A multi-layer perceptron(MLP)was employed to embed the binding affinities into a latent space as conditional vectors to control conditional distribution.Utilizing a conditional generative neural network,cG-SchNet,with 3D Euclidean group(E3)symmetries,the conditional probability distributions of molecular 3D structures were acquired and a set of novel SARS-CoV-2 dual-target candidate inhibitors were generated.The 1D probability,2D joint probability,and 2D cumulative probability distribution results indicate that the generated sets are significantly enhanced compared to the training set in the high binding affinity area.Among the 201 generated molecules,42 molecules exhibited a sum binding affinity exceeding 17.0 kcal/mol while 9 of them having a sum binding affinity exceeding 19.0 kcal/mol,demonstrating structure diversity along with strong dual-target affinities,good absorption,distribution,metabolism,excretion,and toxicity(ADMET)properties,and ease of synthesis.Dual-target drugs are rare and difficult to find,and our“high-throughput docking-multi-conditional generation”workflow offers a wide range of options for designing or optimizing potent dual-target SARS-CoV-2 inhibitors.
基金supported by the National Natural Science Foundation of China(Grant No.42076214)Natural Science Foundation of Shandong Province(Grant No.ZR2024QD057).
文摘Timely and accurate forecasting of storm surges can effectively prevent typhoon storm surges from causing large economic losses and casualties in coastal areas.At present,numerical model forecasting consumes too many resources and takes too long to compute,while neural network forecasting lacks regional data to train regional forecasting models.In this study,we used the DUAL wind model to build typhoon wind fields,and constructed a typhoon database of 75 processes in the northern South China Sea using the coupled Advanced Circulation-Simulating Waves Nearshore(ADCIRC-SWAN)model.Then,a neural network with a Res-U-Net structure was trained using the typhoon database to forecast the typhoon processes in the validation dataset,and an excellent storm surge forecasting effect was achieved in the Pearl River Estuary region.The storm surge forecasting effect of stronger typhoons was improved by adding a branch structure and transfer learning.