期刊文献+
共找到30,614篇文章
< 1 2 250 >
每页显示 20 50 100
PID Steering Control Method of Agricultural Robot Based on Fusion of Particle Swarm Optimization and Genetic Algorithm
1
作者 ZHAO Longlian ZHANG Jiachuang +2 位作者 LI Mei DONG Zhicheng LI Junhui 《农业机械学报》 北大核心 2026年第1期358-367,共10页
Aiming to solve the steering instability and hysteresis of agricultural robots in the process of movement,a fusion PID control method of particle swarm optimization(PSO)and genetic algorithm(GA)was proposed.The fusion... Aiming to solve the steering instability and hysteresis of agricultural robots in the process of movement,a fusion PID control method of particle swarm optimization(PSO)and genetic algorithm(GA)was proposed.The fusion algorithm took advantage of the fast optimization ability of PSO to optimize the population screening link of GA.The Simulink simulation results showed that the convergence of the fitness function of the fusion algorithm was accelerated,the system response adjustment time was reduced,and the overshoot was almost zero.Then the algorithm was applied to the steering test of agricultural robot in various scenes.After modeling the steering system of agricultural robot,the steering test results in the unloaded suspended state showed that the PID control based on fusion algorithm reduced the rise time,response adjustment time and overshoot of the system,and improved the response speed and stability of the system,compared with the artificial trial and error PID control and the PID control based on GA.The actual road steering test results showed that the PID control response rise time based on the fusion algorithm was the shortest,about 4.43 s.When the target pulse number was set to 100,the actual mean value in the steady-state regulation stage was about 102.9,which was the closest to the target value among the three control methods,and the overshoot was reduced at the same time.The steering test results under various scene states showed that the PID control based on the proposed fusion algorithm had good anti-interference ability,it can adapt to the changes of environment and load and improve the performance of the control system.It was effective in the steering control of agricultural robot.This method can provide a reference for the precise steering control of other robots. 展开更多
关键词 agricultural robot steering PID control particle swarm optimization algorithm genetic algorithm
在线阅读 下载PDF
A New Inversion-free Iterative Method for Solving the Nonlinear Matrix Equation and Its Application in Optimal Control
2
作者 GAO Xiangyu XIE Weiwei ZHANG Lina 《应用数学》 北大核心 2026年第1期143-150,共8页
In this paper,we consider the maximal positive definite solution of the nonlinear matrix equation.By using the idea of Algorithm 2.1 in ZHANG(2013),a new inversion-free method with a stepsize parameter is proposed to ... In this paper,we consider the maximal positive definite solution of the nonlinear matrix equation.By using the idea of Algorithm 2.1 in ZHANG(2013),a new inversion-free method with a stepsize parameter is proposed to obtain the maximal positive definite solution of nonlinear matrix equation X+A^(*)X|^(-α)A=Q with the case 0<α≤1.Based on this method,a new iterative algorithm is developed,and its convergence proof is given.Finally,two numerical examples are provided to show the effectiveness of the proposed method. 展开更多
关键词 Nonlinear matrix equation Maximal positive definite solution Inversion-free iterative method optimal control
在线阅读 下载PDF
Multi-Stage Voltage Control Optimization Strategy for Distribution Networks Considering Active-Reactive Co-Regulation of Electric Vehicles
3
作者 Shukang Lyu Fei Zeng +3 位作者 Huachun Han Huiyu Miao Yi Pan Xiaodong Yuan 《Energy Engineering》 EI 2025年第1期221-242,共22页
The high proportion of uncertain distributed power sources and the access to large-scale random electric vehicle(EV)charging resources further aggravate the voltage fluctuation of the distribution network,and the exis... The high proportion of uncertain distributed power sources and the access to large-scale random electric vehicle(EV)charging resources further aggravate the voltage fluctuation of the distribution network,and the existing research has not deeply explored the EV active-reactive synergistic regulating characteristics,and failed to realize themulti-timescale synergistic control with other regulatingmeans,For this reason,this paper proposes amultilevel linkage coordinated optimization strategy to reduce the voltage deviation of the distribution network.Firstly,a capacitor bank reactive power compensation voltage control model and a distributed photovoltaic(PV)activereactive power regulationmodel are established.Additionally,an external characteristicmodel of EVactive-reactive power regulation is developed considering the four-quadrant operational characteristics of the EVcharger.Amultiobjective optimization model of the distribution network is then constructed considering the time-series coupling constraints of multiple types of voltage regulators.A multi-timescale control strategy is proposed by considering the impact of voltage regulators on active-reactive EV energy consumption and PV energy consumption.Then,a four-stage voltage control optimization strategy is proposed for various types of voltage regulators with multiple time scales.Themulti-objective optimization is solved with the improvedDrosophila algorithmto realize the power fluctuation control of the distribution network and themulti-stage voltage control optimization.Simulation results validate that the proposed voltage control optimization strategy achieves the coordinated control of decentralized voltage control resources in the distribution network.It effectively reduces the voltage deviation of the distribution network while ensuring the energy demand of EV users and enhancing the stability and economic efficiency of the distribution network. 展开更多
关键词 Electric vehicle(EV) distribution network multi-stage optimization active-reactive power regulation voltage control
在线阅读 下载PDF
Grid-Connected/Islanded Switching Control Strategy for Photovoltaic Storage Hybrid Inverters Based on Modified Chimpanzee Optimization Algorithm
4
作者 Chao Zhou Narisu Wang +1 位作者 Fuyin Ni Wenchao Zhang 《Energy Engineering》 EI 2025年第1期265-284,共20页
Uneven power distribution,transient voltage,and frequency deviations are observed in the photovoltaic storage hybrid inverter during the switching between grid-connected and island modes.In response to these issues,th... Uneven power distribution,transient voltage,and frequency deviations are observed in the photovoltaic storage hybrid inverter during the switching between grid-connected and island modes.In response to these issues,this paper proposes a grid-connected/island switching control strategy for photovoltaic storage hybrid inverters based on the modified chimpanzee optimization algorithm.The proposed strategy incorporates coupling compensation and power differentiation elements based on the traditional droop control.Then,it combines the angular frequency and voltage amplitude adjustments provided by the phase-locked loop-free pre-synchronization control strategy.Precise pre-synchronization is achieved by regulating the virtual current to zero and aligning the photovoltaic storage hybrid inverter with the grid voltage.Additionally,two novel operators,learning and emotional behaviors are introduced to enhance the optimization precision of the chimpanzee algorithm.These operators ensure high-precision and high-reliability optimization of the droop control parameters for photovoltaic storage hybrid inverters.A Simulink model was constructed for simulation analysis,which validated the optimized control strategy’s ability to evenly distribute power under load transients.This strategy effectively mitigated transient voltage and current surges during mode transitions.Consequently,seamless and efficient switching between gridconnected and island modes was achieved for the photovoltaic storage hybrid inverter.The enhanced energy utilization efficiency,in turn,offers robust technical support for grid stability. 展开更多
关键词 Photovoltaic storage hybrid inverters modified chimpanzee optimization algorithm droop control seamless switching
在线阅读 下载PDF
An optimization strategy for reliable Antarctic telescope control systems
5
作者 Yun Li Xiaoyan Li +7 位作者 Shihai Yang Zhenshuai Yan Yanpeng Guo Zhuangzhuang Deng Cong Pan Zhengyang Li Bozhong Gu Michael C.B.Ashley 《Astronomical Techniques and Instruments》 2025年第6期366-374,共9页
Antarctic telescopes,especially those located at Dome A,face significant reliability challenges owing to the extremely harsh working environment,among which the reliability of the control system is critical in ensurin... Antarctic telescopes,especially those located at Dome A,face significant reliability challenges owing to the extremely harsh working environment,among which the reliability of the control system is critical in ensuring stable operation.This paper describes various factors affecting the reliability of Antarctic telescopes,as well as the challenges of reliability improvement.Combined with the development of Antarctic telescopes and the experience of Antarctic scientific expeditions,we introduce,in detail,the optimization strategy for reliability enhancement,including the hardware layer,software layer,modular design to facilitate maintenance,and reliability management.The current status of the Antarctic Survey Telescope(AST3)is also briefly introduced,along with future development plans.We aim to provide ideas for the reliability design of Antarctic telescopes and provide technical support for the development of future Antarctic telescopes. 展开更多
关键词 Antarctic telescope control system RELIABILITY optimization strategy
在线阅读 下载PDF
Convex Optimization-Based Model Predictive Control for Mars Ascent Vehicle Guidance System
6
作者 Kun Li Yanning Guo +2 位作者 Guangtao Ran Yueyong Lyu Guangfu Ma 《IEEE/CAA Journal of Automatica Sinica》 2025年第10期2159-2161,共3页
Dear Editor,This letter proposes a convex optimization-based model predictive control(MPC)autonomous guidance method for the Mars ascent vehicle(MAV).We use the modified chebyshev-picard iteration(MCPI)to solve optimi... Dear Editor,This letter proposes a convex optimization-based model predictive control(MPC)autonomous guidance method for the Mars ascent vehicle(MAV).We use the modified chebyshev-picard iteration(MCPI)to solve optimization sub-problems within the MPC framework,eliminating the dynamic constraints in solving the optimal control problem and enhancing the convergence performance of the algorithm.Moreover,this method can repeatedly perform trajectory optimization calculations at a high frequency,achieving timely correction of the optimal control command.Numerical simulations demonstrate that the method can satisfy the requirements of rapid computation and reliability for the MAV system when considering uncertainties and perturbations. 展开更多
关键词 guidance method optimal control problem model predictive mars ascent vehicle mav we Mars ascent vehicle convex optimization trajectory optimization enhancing convergence performance
在线阅读 下载PDF
Employing a Diversity Control Approach to Optimize Self-Organizing Particle Swarm Optimization Algorithms
7
作者 Sung-Jung Hsiao Wen-Tsai Sung 《Computers, Materials & Continua》 2025年第3期3891-3905,共15页
For optimization algorithms,the most important consideration is their global optimization performance.Our research is conducted with the hope that the algorithm can robustly find the optimal solution to the target pro... For optimization algorithms,the most important consideration is their global optimization performance.Our research is conducted with the hope that the algorithm can robustly find the optimal solution to the target problem at a lower computational cost or faster speed.For stochastic optimization algorithms based on population search methods,the search speed and solution quality are always contradictory.Suppose that the random range of the group search is larger;in that case,the probability of the algorithm converging to the global optimal solution is also greater,but the search speed will inevitably slow.The smaller the random range of the group search is,the faster the search speed will be,but the algorithm will easily fall into local optima.Therefore,our method is intended to utilize heuristic strategies to guide the search direction and extract as much effective information as possible from the search process to guide an optimized search.This method is not only conducive to global search,but also avoids excessive randomness,thereby improving search efficiency.To effectively avoid premature convergence problems,the diversity of the group must be monitored and regulated.In fact,in natural bird flocking systems,the distribution density and diversity of groups are often key factors affecting individual behavior.For example,flying birds can adjust their speed in time to avoid collisions based on the crowding level of the group,while foraging birds will judge the possibility of sharing food based on the density of the group and choose to speed up or escape.The aim of this work was to verify that the proposed optimization method is effective.We compared and analyzed the performances of five algorithms,namely,self-organized particle swarm optimization(PSO)-diversity controlled inertia weight(SOPSO-DCIW),self-organized PSO-diversity controlled acceleration coefficient(SOPSO-DCAC),standard PSO(SPSO),the PSO algorithm with a linear decreasing inertia weight(SPSO-LDIW),and the modified PSO algorithm with a time-varying acceleration constant(MPSO-TVAC). 展开更多
关键词 Diversity control optimize self-organizing PSO
在线阅读 下载PDF
An Improved Chicken Swarm Optimization Techniques Based on Cultural Algorithm Operators for Biometric Access Control
8
作者 Jonathan Ponmile Oguntoye Sunday Adeola Ajagbe +4 位作者 Oluyinka Titilayo Adedeji Olufemi Olayanju Awodoye Abigail Bola Adetunji Elijah Olusayo Omidiora Matthew Olusegun Adigun 《Computers, Materials & Continua》 2025年第9期5713-5732,共20页
This study proposes a system for biometric access control utilising the improved Cultural Chicken Swarm Optimization(CCSO)technique.This approach mitigates the limitations of conventional Chicken Swarm Optimization(CS... This study proposes a system for biometric access control utilising the improved Cultural Chicken Swarm Optimization(CCSO)technique.This approach mitigates the limitations of conventional Chicken Swarm Optimization(CSO),especially in dealing with larger dimensions due to diversity loss during solution space exploration.Our experimentation involved 600 sample images encompassing facial,iris,and fingerprint data,collected from 200 students at Ladoke Akintola University of Technology(LAUTECH),Ogbomoso.The results demonstrate the remarkable effectiveness of CCSO,yielding accuracy rates of 90.42%,91.67%,and 91.25%within 54.77,27.35,and 113.92 s for facial,fingerprint,and iris biometrics,respectively.These outcomes significantly outperform those achieved by the conventional CSO technique,which produced accuracy rates of 82.92%,86.25%,and 84.58%at 92.57,63.96,and 163.94 s for the same biometric modalities.The study’s findings reveal that CCSO,through its integration of Cultural Algorithm(CA)Operators into CSO,not only enhances algorithm performance,exhibiting computational efficiency and superior accuracy,but also carries broader implications beyond biometric systems.This innovation offers practical benefits in terms of security enhancement,operational efficiency,and adaptability across diverse user populations,shaping more effective and resource-efficient access control systems with real-world applicability. 展开更多
关键词 Access control biometric technology chicken swarm optimization cultural algorithm pattern recognition
在线阅读 下载PDF
Dynamic model uncertainty analysis and control system multi-objective optimization of space nuclear reactor
9
作者 Run Luo Jun-Liang Wu +5 位作者 Xiao-Lie Wang Qi Wang Yu Zhou Hong-Tao Wan Jia-Hui Zhou Yan-Rong Wang 《Nuclear Science and Techniques》 2025年第7期135-156,共22页
Compared to other energy sources,nuclear reactors offer several advantages as a spacecraft power source,including compact size,high power density,and long operating life.These qualities make nuclear power an ideal ene... Compared to other energy sources,nuclear reactors offer several advantages as a spacecraft power source,including compact size,high power density,and long operating life.These qualities make nuclear power an ideal energy source for future deep space exploration.A whole system model of the space nuclear reactor consisting of the reactor neutron kinetics,reactivity control,reactor heat transfer,heat exchanger,and thermoelectric converter was developed.In addition,an electrical power control system was designed based on the developed dynamic model.The GRS method was used to quantitatively calculate the uncertainty of coupling parameters of the neutronics,thermal-hydraulics,and control system for the space reactor.The Spearman correlation coefficient was applied in the sensitivity analysis of system input parameters to output parameters.The calculation results showed that the uncertainty of the output parameters caused by coupling parameters had the most considerable variation,with a relative standard deviation<2.01%.Effective delayed neutron fraction was most sensitive to electrical power.To obtain optimal control performance,the non-dominated sorting genetic algorithm method was employed to optimize the controller parameters based on the uncertainty quantification calculation.Two typical transient simulations were conducted to test the adaptive ability of the optimized controller in the uncertainty dynamic system,including 100%full power(FP)to 90%FP step load reduction transient and 5%FP/min linear variable load transient.The results showed that,considering the influence of system uncertainty,the optimized controller could improve the response speed and load following accuracy of electrical power control,in which the effectiveness and superiority have been verified. 展开更多
关键词 Space nuclear reactor Uncertainty quantification control system optimization Sensitivity analysis
在线阅读 下载PDF
Aerodynamic/control coupling optimization of reentry vehicle under wide speed range
10
作者 Lulu Jiang Chao Dong +1 位作者 Xin Pan Gang Chen 《Acta Mechanica Sinica》 2025年第5期65-78,共14页
The high-speed reentry vehicle operates across a broad range of speeds and spatial domains,where optimal aerodynamic shapes for different speeds are contradictory.This makes it challenging for a single-Mach optimizati... The high-speed reentry vehicle operates across a broad range of speeds and spatial domains,where optimal aerodynamic shapes for different speeds are contradictory.This makes it challenging for a single-Mach optimization design to meet aerodynamic performance requirements throughout the vehicle’s flight envelope.Additionally,the strong coupling between aerodynamics and control adds complexity,as fluctuations in aerodynamic parameters due to speed variations complicate control system design.To address these challenges,this study proposes an aerodynamic/control coupling optimization design approach.This method,based on aerodynamic optimization principles,incorporates active control technology,treating aerodynamic layout and control system design as primary components during the conceptual design phase.By integrating the design and evaluation of aerodynamics and control,the approach aims to reduce design iterations and enhance overall flight performance.The comprehensive design of the rotary reentry vehicle,using this optimization strategy,effectively balances performance at supersonic and hypersonic speeds.The results show that the integrated design model meets aerodynamic and control performance requirements over a broader range of Mach numbers,preventing performance degradation due to deviations from the design Mach number,and providing a practical solution for high-speed reentry vehicle design. 展开更多
关键词 Aerodynamic/control coupling Surrogate-based optimization High-speed vehicle Wide speed range HYPERSONIC
原文传递
A Novel Cascaded TID-FOI Controller Tuned with Walrus Optimization Algorithm for Frequency Regulation of Deregulated Power System
11
作者 Geetanjali Dei Deepak Kumar Gupta +3 位作者 Binod Kumar Sahu Amitkumar V.Jha Bhargav Appasani Nicu Bizon 《Energy Engineering》 2025年第8期3399-3431,共33页
This paper presents an innovative and effective control strategy tailored for a deregulated,diversified energy system involving multiple interconnected area.Each area integrates a unique mix of power generation techno... This paper presents an innovative and effective control strategy tailored for a deregulated,diversified energy system involving multiple interconnected area.Each area integrates a unique mix of power generation technologies:Area 1 combines thermal,hydro,and distributed generation;Area 2 utilizes a blend of thermal units,distributed solar technologies(DST),and hydro power;andThird control area hosts geothermal power station alongside thermal power generation unit and hydropower units.The suggested control system employs a multi-layered approach,featuring a blended methodology utilizing the Tilted Integral Derivative controller(TID)and the Fractional-Order Integral method to enhance performance and stability.The parameters of this hybrid TID-FOI controller are finely tuned using an advanced optimization method known as the Walrus Optimization Algorithm(WaOA).Performance analysis reveals that the combined TID-FOI controller significantly outperforms the TID and PID controllers when comparing their dynamic response across various system configurations.The study also incorporates investigation of redox flow batteries within the broader scope of energy storage applications to assess their impact on system performance.In addition,the research explores the controller’s effectiveness under different power exchange scenarios in a deregulated market,accounting for restrictions on generation ramp rates and governor hysteresis effects in dynamic control.To ensure the reliability and resilience of the presented methodology,the system transitions and develops across a broad range of varying parameters and stochastic load fluctuation.To wrap up,the study offers a pioneering control approach-a hybrid TID-FOI controller optimized via the Walrus Optimization Algorithm(WaOA)-designed for enhanced stability and performance in a complex,three-region hybrid energy system functioning within a deregulated framework. 展开更多
关键词 Integral time multiplied by absolute error(ITAE) load frequency control(LFC) particle swarm optimization(PSO) tilted integral derivative controller(TID) independent system operator(ISO) walrus optimization algorithm(WaOA) proportional integral derivative controller(PID)
在线阅读 下载PDF
Second-Life Battery Energy Storage System Capacity Planning and Power Dispatch via Model-Free Adaptive Control-Embedded Heuristic Optimization
12
作者 Chuan Yuan Chang Liu +5 位作者 Shijun Chen Weiting Xu Jing Gou Ke Xu Zhengbo Li Youbo Liu 《Energy Engineering》 2025年第9期3573-3593,共21页
The increasing penetration of second-life battery energy storage systems(SLBESS)in power grids presents substantial challenges to system operation and control due to the heterogeneous characteristics and uncertain deg... The increasing penetration of second-life battery energy storage systems(SLBESS)in power grids presents substantial challenges to system operation and control due to the heterogeneous characteristics and uncertain degradation patterns of repurposed batteries.This paper presents a novel model-free adaptive voltage controlembedded dung beetle-inspired heuristic optimization algorithmfor optimal SLBESS capacity configuration and power dispatch.To simultaneously address the computational complexity and ensure system stability,this paper develops a comprehensive bilevel optimization framework.At the upper level,a dung beetle optimization algorithmdetermines the optimal SLBESS capacity configuration byminimizing total lifecycle costswhile incorporating the charging/discharging power trajectories derived from the model-free adaptive voltage control strategy.At the lower level,a health-priority power dispatch optimization model intelligently allocates power demands among heterogeneous battery groups based on their real-time operational states,state-of-health variations,and degradation constraints.The proposed model-free approach circumvents the need for complex battery charging/discharging power controlmodels and extensive historical data requirements whilemaintaining system stability through adaptive controlmechanisms.A novel cycle life degradation model is developed to quantify the relationship between remaining useful life,depth of discharge,and operational patterns.The integrated framework enables simultaneous strategic planning and operational control,ensuring both economic efficiency and extended battery lifespan.The effectiveness of the proposed method is validated through comprehensive case studies on hybrid energy storage systems,demonstrating superior computational efficiency,robust performance across different network configurations,and significant improvements in battery utilization compared to conventional approaches. 展开更多
关键词 Second-life battery energy storage systems model-free adaptive voltage control bilevel optimization framework heterogeneous battery degradation model heuristic capacity configuration optimization
在线阅读 下载PDF
Intelligent decision-making for TBM tunnelling control parameters using multi-objective optimization
13
作者 Shaokang Hou Yaoru Liu +3 位作者 Jialin Yu Rujiu Zhang Li Cheng Chenfeng Gao 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第5期2943-2963,共21页
In tunnel construction,tunnel boring machine(TBM)tunnelling typically relies on manual experience with sub-optimal control parameters,which can easily lead to inefficiency and high costs.This study proposed an intelli... In tunnel construction,tunnel boring machine(TBM)tunnelling typically relies on manual experience with sub-optimal control parameters,which can easily lead to inefficiency and high costs.This study proposed an intelligent decision-making method for TBM tunnelling control parameters based on multiobjective optimization(MOO).First,the effective TBM operation dataset is obtained through data preprocessing of the Songhua River(YS)tunnel project in China.Next,the proposed method begins with developing machine learning models for predicting TBM tunnelling performance parameters(i.e.total thrust and cutterhead torque),rock mass classification,and hazard risks(i.e.tunnel collapse and shield jamming).Then,considering three optimal objectives,(i.e.,penetration rate,rock-breaking energy consumption,and cutterhead hob wear),the MOO framework and corresponding mathematical expression are established.The Pareto optimal front is solved using DE-NSGA-II algorithm.Finally,the optimal control parameters(i.e.,advance rate and cutterhead rotation speed)are obtained by the satisfactory solution determination criterion,which can balance construction safety and efficiency with satisfaction.Furthermore,the proposed method is validated through 50 cases of TBM tunnelling,showing promising potential of application. 展开更多
关键词 Tunnel boring machine(TBM) Intelligent decision-making Multi-objective optimization(MOO) control parameters
在线阅读 下载PDF
Safety-Certified Parallel Model Predictive Control of Autonomous Surface Vehicles via Neurodynamic Optimization
14
作者 Guanghao Lyu Zhouhua Peng Jun Wang 《IEEE/CAA Journal of Automatica Sinica》 2025年第10期2056-2066,共11页
This paper addresses the parallel control of autonomous surface vehicles subject to external disturbances,state constraints,and input constraints in complex ocean environments with multiple obstacles.A safety-certifie... This paper addresses the parallel control of autonomous surface vehicles subject to external disturbances,state constraints,and input constraints in complex ocean environments with multiple obstacles.A safety-certified parallel model predictive control scheme with collision-avoiding capability is proposed for autonomous surface vehicles in the framework of parallel control.Specifically,an extended state observer is designed by leveraging historical and real-time data for concurrent learning to map the motion of autonomous surface vehicles from its physical system to its artificial counterpart.A parallel model predictive control law is developed on the basis of the artificial system for both physical and artificial autonomous surface vehicles to realize virtual-physical tracking control of vehicles subject to state and input constraints.To ensure safety,highorder discrete control barrier functions are encoded in the parallel model predictive control law as safety constraints such that collision avoidance with obstacles can be achieved.A recedinghorizon constrained optimization problem is constructed with the safety constraints encoded by control barrier functions for parallel model predictive control of autonomous surface vehicles and solved via neurodynamic optimization with projection neural networks.The effectiveness and characteristics of the proposed method are demonstrated via simulations for the safe trajectory tracking and automatic berthing of autonomous surface vehicles. 展开更多
关键词 Autonomous surface vehicles(ASVs) high-order control barrier functions neurodynamic optimization parallel model
在线阅读 下载PDF
Distributed stochastic model predictive control for energy dispatch with distributionally robust optimization
15
作者 Mengting LIN Bin LI C.C.ECATI 《Applied Mathematics and Mechanics(English Edition)》 2025年第2期323-340,共18页
A chance-constrained energy dispatch model based on the distributed stochastic model predictive control(DSMPC)approach for an islanded multi-microgrid system is proposed.An ambiguity set considering the inherent uncer... A chance-constrained energy dispatch model based on the distributed stochastic model predictive control(DSMPC)approach for an islanded multi-microgrid system is proposed.An ambiguity set considering the inherent uncertainties of renewable energy sources(RESs)is constructed without requiring the full distribution knowledge of the uncertainties.The power balance chance constraint is reformulated within the framework of the distributionally robust optimization(DRO)approach.With the exchange of information and energy flow,each microgrid can achieve its local supply-demand balance.Furthermore,the closed-loop stability and recursive feasibility of the proposed algorithm are proved.The comparative results with other DSMPC methods show that a trade-off between robustness and economy can be achieved. 展开更多
关键词 distributed stochastic model predictive control(DSMPC) distributionally robust optimization(DRO) islanded multi-microgrid energy dispatch strategy
在线阅读 下载PDF
Optimization and Intelligent Control in Hybrid Renewable Energy Systems Incorporating Solar and Biomass
16
作者 Arpita Johri Varnita Verma Mainak Basu 《Energy Engineering》 2025年第5期1887-1918,共32页
The globe faces an urgent need to close the energy demand-supply gap.Addressing this difficulty requires constructing a Hybrid Renewable Energy System(HRES),which has proven to be the most appropriate solution.HRES al... The globe faces an urgent need to close the energy demand-supply gap.Addressing this difficulty requires constructing a Hybrid Renewable Energy System(HRES),which has proven to be the most appropriate solution.HRES allows for integrating two or more renewable energy resources,successfully addressing the issue of intermittent availability of non-conventional energy resources.Optimization is critical for improving the HRES’s performance parameters during implementation.This study focuses on HRES using solar and biomass as renewable energy supplies and appropriate energy storage technologies.However,energy fluctuations present a problem with the power quality of HRES.To address this issue,the research paper introduces the Generalized Dynamic Progressive Neural Fuzzy Controller(GDPNFC),which regulates power flow within the proposed HRES.Furthermore,a unique approach called Enhanced Multi-Objective Monarch Butterfly Optimization(EMMBO)is used to optimize technical parameters.The simulation tool used in the research work is HOMER(Hybrid Optimization of Multiple Energy Resources)-PRO,and the system’s power quality is assessed using MATLAB 2016.The research paper concludes with comparing the performance of existing systems to the proposed system in terms of power loss and Total Harmonic Distortion(THD).It was established that the proposed technique involving EMMBO outperformed existing methods in technical optimization. 展开更多
关键词 Hybrid renewable energy sources(HRES) multi-objective optimization generalized dynamic progressive neural fuzzy controller(GDPNFC) pre-feasibility analysis total harmonic distortion(THD) enhanced multi-objective monarch butterfly optimization(EMMBO)
在线阅读 下载PDF
Microstructure Control and Mechanical Property Optimization of High-Strength Aluminum Alloys
17
作者 Jiao Luo 《机械工程与设计(中英文版)》 2025年第2期7-13,共7页
High-strength aluminum alloys are widely used in industries such as aerospace,automotive,and defense due to their excellent strength-to-weight ratio and good mechanical properties.However,optimizing their mechanical p... High-strength aluminum alloys are widely used in industries such as aerospace,automotive,and defense due to their excellent strength-to-weight ratio and good mechanical properties.However,optimizing their mechanical properties while maintaining cost-effectiveness and processing efficiency remains a significant challenge.This paper investigates the fundamental aspects of microstructure control and mechanical property optimization in high-strength aluminum alloys.It focuses on the influence of alloy composition,heat treatments,and processing techniques on the material's strength,ductility,toughness,fatigue resistance,corrosion resistance,and wear properties.The paper also explores the role of advanced experimental techniques,such as metallographic analysis,mechanical testing,and X-ray diffraction(XRD),in characterizing the microstructure and mechanical performance of these alloys.Moreover,it emphasizes the importance of microstructure refinement,solid solution strengthening,precipitation hardening,and the addition of specific alloying elements in optimizing the alloy's overall performance.The review provides valuable insights into the key strategies for designing high-strength aluminum alloys with enhanced mechanical properties,focusing on their applications in high-performance engineering fields. 展开更多
关键词 High-strength Aluminum Alloys Microstructure control Mechanical Property optimization Alloy Composition Heat Treatment Precipitation Hardening Metallographic Analysis Fatigue Resistance Corrosion Resistance Wear Resistance
在线阅读 下载PDF
NSGA-Ⅱ based traffic signal control optimization algorithm for over-saturated intersection group 被引量:8
18
作者 李岩 过秀成 +1 位作者 陶思然 杨洁 《Journal of Southeast University(English Edition)》 EI CAS 2013年第2期211-216,共6页
In order to improve the efficiency of traffic signal control for an over-saturated intersection group, a nondominated sorting genetic algorithm Ⅱ(NSGA-Ⅱ) based traffic signal control optimization algorithm is prop... In order to improve the efficiency of traffic signal control for an over-saturated intersection group, a nondominated sorting genetic algorithm Ⅱ(NSGA-Ⅱ) based traffic signal control optimization algorithm is proposed. The throughput maximum and average queue ratio minimum for the critical route of the intersection group are selected as the optimization objectives of the traffic signal control for the over-saturated condition. The consequences of the efficiency between traffic signal timing plans generated by the proposed algorithm and a commonly utilized signal timing optimization software Synchro are compared in a VISSIM signal control application programming interfaces (SCAPI) simulation environment by using real filed observed traffic data. The simulation results indicate that the signal timing plan generated by the proposed algorithm is more efficient in managing oversaturated flows at intersection groups, and, thus, it has the capability of optimizing signal timing under the over-saturated conditions. 展开更多
关键词 traffic signal control optimization algorithm intersection group over-saturated status NSGA-H algorithm
在线阅读 下载PDF
IMPROVED PARTICLE SWARM OPTIMIZATION ALGORITHM FOR INTELLIGENTLY SETTING UAV ATTITUDE CONTROLLER PARAMETERS
19
作者 浦黄忠 甄子洋 +1 位作者 王道波 胡勇 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2009年第1期52-57,共6页
An improved particle swarm optimization (PSO) algorithm is investigated in the optimization of the attitude controller parameters of unmanned aerial vehicle (UAV). Considering the stagnation phenomenon in the late... An improved particle swarm optimization (PSO) algorithm is investigated in the optimization of the attitude controller parameters of unmanned aerial vehicle (UAV). Considering the stagnation phenomenon in the later phase of the basic PSO algorithm caused by the diversity scarcity of particles, a modified PSO algorithm is presented. For the basic PSO algorithm, the velocity of each particle is adjusted according to the inertia motion, the swarm previous best position and its own previous best position. However, in the improved PSO algorithm, each particle only learns from another randomly selected particle with higher performance, besides keeping the inertia motion. The inertia weight of the improved PSO algorithm is a random number. The modification decreases the uncertain parameters of the algorithm, simplifies the learning mechanism of the particle, and enhances the diversity of the swarm. Furthermore, a UAV attitude control system is built, and the improved PSO algorithm is applied in the optimized tuning of four controller parameters. Simulation results show that the improved PSO algorithm has stronger global searching ability than the common PSO algorithms, and obtains better UAV attitude control parameters. 展开更多
关键词 unmanned aerial vehicle attitude control particle swarm optimization
在线阅读 下载PDF
Preference-based multiobjective artificial bee colony algorithm for optimization of superheated steam temperature control
20
作者 周霞 沈炯 李益国 《Journal of Southeast University(English Edition)》 EI CAS 2014年第4期449-455,共7页
In order to incorporate the decision maker's preference into multiobjective optimization a preference-based multiobjective artificial bee colony algorithm PMABCA is proposed.In the proposed algorithm a novel referenc... In order to incorporate the decision maker's preference into multiobjective optimization a preference-based multiobjective artificial bee colony algorithm PMABCA is proposed.In the proposed algorithm a novel reference point based preference expression method is addressed.The fitness assignment function is defined based on the nondominated rank and the newly defined preference distance.An archive set is introduced for saving the nondominated solutions and an improved crowding-distance operator is addressed to remove the extra solutions in the archive.The experimental results of two benchmark test functions show that a preferred set of solutions and some other non-preference solutions are achieved simultaneously.The simulation results of the proportional-integral-derivative PID parameter optimization for superheated steam temperature verify that the PMABCA is efficient in aiding to making a reasonable decision. 展开更多
关键词 PREFERENCE MULTIOBJECTIVE artificial bee colony superheated steam temperature control optimization
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部